CPTOPS[™] User's Manual Issue February, 2022

CAEPIPE-to-PIPESTRESS

CPTOPS[™]

User's Manual

Server Version 10.xx

CPTOPS User's Manual

Disclaimer

Please read the following carefully:

This software and this manual have been developed and checked for correctness and accuracy by SST Systems, Inc. and SST India Pvt. Ltd. However, no warranty, expressed or implied, is made by SST Systems, Inc. and SST India Pvt. Ltd. as to the accuracy and correctness of the manual or the functioning of the software and the accuracy, correctness and utilization of its calculations. Users must carry out all necessary tests to assure the proper functioning of the software and the applicability of its results.

CPTOPS is trademark of SST Systems, Inc. and SST India Pvt. Ltd. All other product names mentioned in this document are trademarks or registered trademarks of their respective companies/holders.

For queries, contact

SST Systems, Inc. 1798 Technology Drive, Suite 236 San Jose, California 95110 USA.

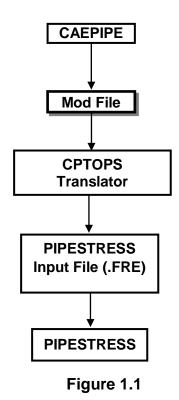
SST India Pvt. Ltd. 7, Crescent Road Bangalore – 560 001 India.

Tel: (408) 452-8111 Fax: (408) 452-8388 Email: sales@sstusa.com www.sstusa.com

Tel: +91-80-40736999 Fax: +91-80-41120695 Email: sales@sstindia.co.in www.sstindia.co.in

Table of Contents

1.0 Introduction	1
1.1 How the Translator Works?	1
1.2 Points to be considered	1
2.0 Installing the Program	3
3. Limitations of CPTOPS	3
4. Working Procedure	4
5.0 Reference	
5.1 Load Cases created by CPTOPS	5
Veight Case	
Pressure Case	
Expansion Case	
Wind Load Case	5
Sustained Load Case	5
Settlement Load	5
Operating Load Case	5
Cold Spring	5
Static Seismic Case	6
Seismic Displacement	6
Response Case	6
Response Spectrum	7
5.2 Analysis Options	7
Code	7
Elastic Modulus	7
Pressure Stress Option	7
5.3 Element Types	8
Pipe	8
Bend	8
Miter Bend	9
Valve	9
Reducer1	0
Bellows1	1
Slip Joint1	1
Hinge Joint1	1
Ball Joint1	1


Rigid Element	12
Elastic Element	12
Jacketed Pipe and Bend	12
Cold Spring (Cut Pipe)	12
Beam	12
Tie Rod	12
Comment	12
Hydrotest Load	12
5.4 Data Types	12
Anchor	12
Branch SIF	12
User SIF	13
Concentrated Mass	13
Constant Support	13
Flange	13
Force	13
Force Spectrum Load	13
Guide	13
Hanger	13
Harmonic Load	14
Jacketed End Cap	14
Limit Stop	14
Nozzle	14
Restraint	14
Rod Hanger	14
Skewed Restraint	14
Snubber	14
Spider	14
Weld	15
Material	15
6.0 Verification and Validation of Translator	16
6.1. General	16
6.2 Verification Models	17
6.3 Live Project Models	
Appendix A	
Units used in CAEPIPE and PIPESTRESS	
UTILS USEU ITI UAEFIFE aTIU FIFESTRESS	01

Appendix B	83
Weight Calculations	83
Pipe	
Valve	
Appendix C	84
ETYPES	
DTYPES	
Branch SIFs	
Welds	
Appendix D	86
Appendix E	88
Errors and Descriptions	
Messages in Log file	

1.0 Introduction

CPTOPS: CPTOPS Translator program is a stand-alone program, which shall be used for transferring pipe geometry, section properties and other engineering properties from SST System Inc. Pipe Stress Analysis software CAEPIPE to DST Computer Services Pipe Stress Analysis software PIPESTRESS.

The sequence of this Translator operation is shown diagrammatically in Figure 1.1.

This manual describes the development done on CPTOPS. It is assumed that the user is already familiar with CAEPIPE and PIPESTRESS.

1.1 How the Translator Works?

The windows executable 'CPTOS.exe' reads the CAEPIPE mod file (which is in binary format) and extracts all the information of the piping system and creates the 'Free format' file for PIPESTRESS. It not only creates the piping layout but also creates the analysis cards taking care of all the design considerations. During transfer suitable assumptions are made wherever necessary. The analysis cards are customized so as to have same result in PIPESTRESS and CAEPIPE.

1.2 Points to be considered

The following are the points to be considered before transferring the stress model from CAEPIPE to PIPESTRESS.

CAEPIPE offers numerous options and flexibility during modeling. Though PIPESTRESS offers tremendous flexibility and options in the analysis front, when it comes to modeling it follows some stringent rules. A few things, which can be done quite easily in CAEPIPE, cannot be done so easily in PIPESTRESS. For example CAEPIPE allows junction points at the near end or far end of a bend, and also the user can apply a force at these points, which cannot be done in PIPSTRESS. In CAEPIPE, one can apply as many numbers of forces as the user wants at any node point using 'Location' element. Doing the same in

PIPESTRESS is not easy. Though 'CPTOPS' transfers most data present in CAEPIPE, in certain situations (as mentioned before), the user may need to alter a few things in the *.fre file generated. For the Translator to work at its best, the user can keep a few points in mind while modeling in CAEPIPE. These points are mentioned below. It is worthwhile going through these points as it may save the user a lot of time at a later stage.

- 1. It is advisable to model a header line first, and then a branch should be started from a junction point using 'FROM' element in CAEPIPE.
- 2. While modeling in CAEPIPE, it is advisable to define the type of weld (at a junction) in the same line where 'FROM' element is defined.
- 3. It is advisable not to have concentrated mass and force, or multiple forces acting at the same node. In PIPESTRESS, 'FORC', 'MOMT' and 'LUMP' cards are required to be defined immediately after a member or junction having the same node number. If multiple forces are present at a node, one needs multiple 'FORC' cards and it is not possible to have all of them follow the member or junction immediately. Though 'CPTOPS' transfers all the forces with the help of 'FORC' card, an attempt to run this file will fail. To solve this problem, the user has to manually change the '*.fre ' file. The user may judicially take the help of 'JUNC' cards to split the pipeline at the node and use the 'FORC' cards.
- 4. After a reducer, the pipe cross-section should change.
- 5. There are a few element types in CAEPIPE (e.g. Valve, Bellows, Rigid element etc.), which are modeled with the help of multiple cards in PIPESTRESS. Avoid having such elements back to back, or if it is inevitable check the *.fre file for any inconsistency.
- 6. It is highly recommended to turn ON all the load cases shown in the "load cases" dialog of CAEPIPE and save them in the .mod file before transferring the same to PIPESTRESS.

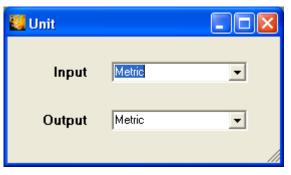
After transferring the *.mod file to *.fre file, it is advisable to check the *.fre file; particularly the junction points, 'LUMP' cards, 'FORC' cards, 'MOMT' cards and 'MTXS' cards.

2.0 Installing the Program

Refer Section 1.0 in SST License Manager User's Manual for details.

3. Limitations of CPTOPS

- 1. For To-be-Designed hangers, 'VSUP' card is created, but is commented. The user has to fill the values for 'FO' (hot load) and 'LO' field.
- 2. 'VSUP' card for user hanger is created and commented if cold load for user hanger is specified in the CAEPIPE mod file. The user has to fill the 'FO' (hot load) field manually.
- 3. Non-linear load cases for limit stops and rod hangers are not created. The user has to create them manually.
- 4. Slip joint is not transferred.
- 5. Jacketed pipe and jacketed bend are not transferred.
- 6. Spider is not transferred.
- 7. Guide is not transferred.
- 'Connected to' node information, if present (as in the case of 'To be designed Hanger', 'User Hanger', 'Rod Hanger ','Skewed Restraint', 'Limit Stop' etc. in CAEPIPE), is ignored by the Translator.
- 9. Pump, Compressor and Turbine data are not transferred at this time.


4. Working Procedure

📒 CAEP IP E - to - P IP ES TRI	ESS Interface		
CAEPIPE-to-PIPESTRI	ESS		
CAEPIPE file	C:\Temp\Temp01.mod		mod Browse
PIPESTRESS file	C:\Temp\Temp01.fre		fre Browse
	Transfer	E <u>x</u> it	

- 1. Selection of CAEPIPE mod file can be done in two ways viz. by entering the name of the CAEPIPE mod file along with the valid path in the text box provided or by clicking the button available near the text box opens a file dialog and lets the user to navigate and select the CAEPIPE mod file.
- 2. Similarly, enter the name of the PIPESTRESS free format file to be created.
- 3. Click the button "Transfer" to transfer model from CAEPIPE to PIPESTRESS free format. Upon successful transfer, user gets the message as shown below.

СР ТОРS
Caepipe-mod file has been successfully translated. Refer the log file C:\Temp\Temp01_CPTOPS.log
[OK]

- 4. Launch PIPESTRESS software or Edit Pipe to view the free format file.
- 5. To change input and output unit, in the free format file, choose 'Unit' sub menu from 'Option' menu. The following dialog box will appear. Make necessary changes and close the dialog box.

5.0 Reference

This section describes in detail, the methodology followed for transferring the Elements and Data types from CAEPIPE to PIPESTRESS.

5.1 Load Cases created by CPTOPS

'CPTOPS' generates a number of load cases and load combinations in PIPESTRESS input file, based on analysis options and load cases chosen in the CAEPIPE mod file. All the cases and combinations generated in PIPESTRESS input file are customized so as to obtain almost identical results from PIPESTRESS as those from CAEPIPE. The user can modify these cases as per requirements. The following paragraphs discuss the load cases generated by CPTOPS. For details of cases and case numbers created, refer Appendix D.

Weight Case

'LCAS' cards for weight case(s) are created irrespective of the options chosen in CAEPIPE, with Case number (CA) ranging from 1 to 10. In the present version, three weight cases are created, namely, empty weight, operating weight and hydrotest weight.

If hydrotest is performed in CAEPIPE, then a load case (CA = 3) is created by 'CPTOPS'. In this version of 'CPTOPS', the 'Exclude Insulation' option in CAEPIPE is ignored for this case.

Pressure Case

'LCAS' cards are created to analyze response due to pressure only, irrespective of the options chosen in CAEPIPE. Case numbers for 'LCAS' cards in this category are in the 10 series. At most, four cases are created. CAEPIPE can have at most three pressure inputs, so three 'LCAS' cards for three pressures and one separate 'LCAS' card for the maximum pressure.

Expansion Case

'LCAS' and 'CCAS' cards are created to analyze thermal expansion cases. Case numbers for 'LCAS' cards in this category are given in the 20s. Different 'LCAS' cards are created for different thermal expansions (at most 3 thermal loads T1, T2, T3 are allowed in CAEPIPE) and then combination cases for thermal ranges namely (T1-T2), (T1-T3) and (T2-T3) are automatically generated. Also a 'CCAS' card for maximum thermal range is created (CA=124).

Wind Load Case

'LCAS' and 'CCAS' cards involving wind are created with case numbers in the 60s and 160s respectively. One 'LCAS' for analysis of pure wind load is created. This 'LCAS' is then combined with sustained and operating cases to get combination cases. In CAEPIPE the user can input pressure/velocity at different elevations. CPTOPS transfers the maximum of these pressure/velocity values to PIPESTRESS.

Sustained Load Case

This is a combination case (with 'CA=61') wherein weight case and maximum pressure case are algebraically added.

Settlement Load

A 'LCAS' card for settlement load is created with case number 41.

Operating Load Case

These cases are combination cases of weight, pressure and thermal expansion cases with case numbers in the 130s.

Cold Spring

If cold spring is present in the CAEPIPE mod file, then a 'LCAS' card with case number 31 is created.

Static Seismic Case

If static seismic analysis option is turned on in CAEPIPE, 'LCAS' cards are prepared for all three directional accelerations (case numbers are in the 50s), and then they are combined together (CA=151). The mode of summation is as chosen by the user in the CAEPIPE mod file.

If seismic displacement is present, a new combination case is prepared, combining the 'CCAS' card resulting from static seismic case and the 'LCAS' card from seismic displacement case. The mode of combination is always absolute (in CAEPIPE this summation is always absolute). The user can modify the mode of summation in the PIPESTRESS file generated to suit his/her requirements.

Several 'CCAS' cards are created combining Seismic, Operating and Sustained cases.

Seismic Displacement

If seismic displacement(s) at support(s) are specified, a load case (LCAS with CA = 54) is created.

Response Case

A 'RCAS' card (CA = 71) is created if response analysis option is turned on in CAEPIPE. If seismic displacement is present in CAEPIPE, then a separate combination case (CA = 171) is created combining the response case and seismic displacement case. The mode of summation for this combination case (CA = 171) is always absolute (in CAEPIPE this summation is always absolute). The user can modify the mode of summation to suit his/her requirements.

In CAEPIPE, for modal superposition the user has got three options, namely :

- 1) SRSS
- 2) Closely Spaced
- 3) Absolute

Also the user has the freedom to choose the spatial summation. They are :

- 1) SRSS
- 2) Absolute

Based on the options chosen, CPTOPS sets the value of 'SU' field in the 'RCAS' card. Table 6.1 presents the values of 'SU' chosen by CPTOPS.

MODAL SUPERPOSITION								
SRSS	SRSS	3						
	Absolute	8**						
Absolute	SRSS	9**						
	Absolute	4						
Closely Spaced	SRSS	1						
	Absolute	0**						

Table 5.1

** For these combinations, there are no combinations available in PIPESTRESS. The user is free to change the 'SU' value for these combinations.

Response Spectrum

'CPTOPS' transfers the response spectrum data using 'RCAS' card, and 'SPEC' card. For the Translator to work properly, the following points should be kept in mind while inputting spectral data in CAEPIPE.

- 1. Spectrums have to be in Frequency/Period vs Acceleration format as PIPESTRESS does not support any other format. Any other format will result in the program being aborted.
- 2. The entire spectrum should use the same interpolation method for Frequency/Period, or else the program will abort.

Only linear interpolation is allowed for acceleration. Any other interpolation method will result in the program being aborted.

5.2 Analysis Options

In CAEPIPE, a user has different analysis options to choose from. These options change the way the analysis is performed and the results may vary to different extent depending upon the options selected for a particular CAEPIPE model. Given below are different CAEPIPE analysis options and the corresponding PIPESTRESS options created by CPTOPS.

Code

Depending upon codes chosen in CAEPIPE, CPTOPS chooses the value of 'CD' field in the 'IDEN' card and 'CV' field of 'TITL' card. Table 6.2 gives the CD and CV values corresponding to different codes in CAEPIPE.

Table 5.2									
CAEPIPE CODE	CD	CV	CAEPIPE CODE	CD	CV				
NONE	0	16	ASME Class 3 (2017)	3	24				
B31.1	0	16	BS 806 (1986)	0	16				
B31.1 (1967)	0	-4	IGEM	4	13				
B31.3	4	13	NORWEGIAN (1983)	4	13				
B31.4	4	13	NORWEGIAN (1990)	4	13				
B31.5	4	13	RCC-M (1985)	8	2				
B31.8	4	13	CODETI (SNCT)	5	5				
B31.9	0	16	STOOMWEZEN (1989)	0	16				
B31.12	4	13	SWEDISH (1978)	0	16				
ASME Class 2 (1980)	2	5	Z183 (1990)	0	16				
ASME Class 2 (1986)	2	7	Z184 (1992)	0	16				
ASME Class 2 (1992)	2	11	EN 13480-3	F	1				
ASME Class 2 (2015)	2	24	Z662	0	16				
ASME Class 2 (2017)	2	24							

Elastic Modulus

In PIPESTRESS, the 'MD' field in the 'TITL' card decides which modulus (Hot or Cold) is to be used. If cold modulus is chosen, then 'MD = 0', else 'MD = 1'.

Pressure Stress Option

If pressure stress = PD / 4t in CAEPIPE, then 'PR = 1' (in 'TITL' card)

If pressure stress = $Pd^2/(D^2-d^2)$, then 'PR = 0'

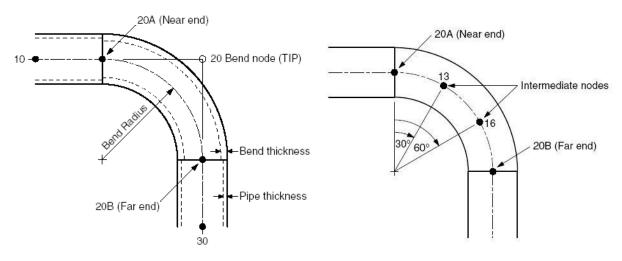
If Bourdon effect is included, then 'IP = 1' (in 'TITL' card), else 'IP = 0'

If pressure correction is 'ON' for bends, then 'OF = 0' (in 'TITL' card), else 'OF = 1'.

5.3 Element Types

Pipe

Pipe from CAEPIPE is transferred as 'TANG' card in PIPESTRESS. If the pipe element is a branch pipe, then it is transferred as a 'BRAN' card. The Translator uses the same node numbers used in CAEPIPE while identifying the nodes in PIPESTRESS. It should be noted here that PIPESTRESS allows node numbers to be a string of four characters only, so the CAEPIPE model should not have node numbers greater than 9999.


The material properties are transferred using 'MATH' and 'MATD' cards.

The cross-sectional properties are transferred using 'CROS' card.

The loads are transferred using 'OPER' cards. Additional weight per unit length (for example, to represent snow load) is not transferred.

Bend

In CAEPIPE, the term Bend refers to all elbows and bends (custom-bent pipes). Some of the items associated with the bend are shown in Fig. 6.1

Node 20 is the Bend node, which is at the Tangent Intersection Point (TIP). As one can see in Fig.6.1, TIP is not physically located on the bend. Its only purpose is to define the bend. CAEPIPE automatically generates the end nodes of the curved portion of the bend (nodes 20A and 20B, called the near and far ends of the bend). The data items such as flanges, hangers, forces, etc. can be specified at the bend end nodes (20A and 20B in the figure). Also CAEPIPE has provision to specify intermediate nodes (at most two intermediate nodes) at specific angles as shown in Fig.6.1. A typical CAEPIPE-bend has a straight portion and a curved portion. In Fig.6.1, Node 10 to 20A is the straight portion and 20A to 20B is the curved portion. 20B to 30 is not part of the bend. If a bend has one or two intermediate nodes, then the curved portion is again subdivided into two or three curved portions respectively.

The Translator uses either a BRAD card or BEND card in PIPESTRESS to transfer a bend. If CAEPIPE bend has intermediate nodes, then BEND card is used, or else BRAD card is used.

If intermediate nodes are present, the Translator transfers the straight portion of a CAEPIPE-bend as a 'TANG' card or 'BRAN' card. The curved portion(s) is/are transferred as 'BEND' card(s).

The node numbers used in CAEPIPE are used for node numbering in PIPESTRESS. However, if the bend node number in CAEPIPE is greater than 999 e.g. 5000, then the near end and far end become 5000A and 5000B respectively; these node numbers having more than four characters cannot be transferred to PIPESTRESS. For such a case, the first three digits of the node number are retained and then any letter from 'C' to 'V' is added depending on the last digit. For near end node, letters 'C' to 'L' are used. For far end node, letters 'K' to 'V' are used. For example, if the bend node number is 5000, the near and far ends will be transferred as 500C and 500K respectively.

Miter Bend

CAEPIPE offers two types of miter bend namely:

- 1) Closely-spaced miter bend
- 2) Widely-spaced miter bend

Closely-spaced miter bend

A closely-spaced miter bend in CAEPIPE is modeled as a 'MITC' card in PIPESTRESS. PIPESTRESS dictates a miter bend to be preceded and followed by straight members only. So, the CAEPIPE user is required to do the same, or else the Translator throws an error message and does not transfer the CAEPIPE mod file.

Widely-spaced miter bend

A widely-spaced miter bend in CAEPIPE is modeled as a 'MITW' card in PIPESTRESS. In CAEPIPE, a widely spaced miter bend (with cuts more than or equal to two) is modeled with as many separate widely spaced miter bend elements as the number of cuts. For example, a widely spaced miter bend with number of cuts equal to 3 is modeled as three widely spaced miter bend elements in CAEPIPE. So, the Translator allows CAEPIPE mod files to have widely-spaced miter bend preceded or followed by another widely spaced miter bend, provided they have the same radius. For example, if there are three back-to-back widely spaced miter bends of same radius; the Translator transfers them as one widely spaced miter bend with three cuts.

Valve

Valve is transferred as a 'VALV' card in PIPESTRESS. Internally, a valve element is modeled as a pipe, both in CAEPIPE and PIPESTRESS; but both these software introduce the valve thickness in different ways as explained next.

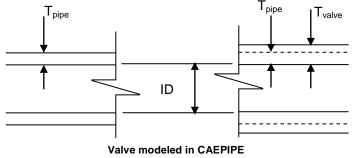
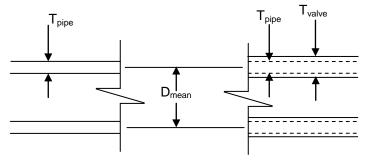



Fig.5.2

Fig. 5.2 shows how a valve is modeled in CAEPIPE. OD and Tpipe are the outer diameter and thickness of the pipe section entered for the valve element. T_{valve} is the thickness of the valve, which is nothing but thickness factor times T_{pipe} . The thickness is increased by increasing the outer diameter and keeping the inner diameter fixed.

Valve modeled in PIPESTRESS

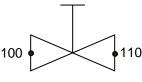

Fig.5.3

Fig. 5.3 shows how a valve is modeled in PIPESTRESS. In PIPESTRESS also, T_{valve} is calculated in the same manner as in CAEPIPE (i.e., thickness factor times pipe thickness). But, unlike CAEPIPE, the valve thickness is introduced by keeping the mean diameter fixed, and increasing the outer diameter and decreasing the inner diameter equally.

So, when a valve is modeled in CAEPIPE and in PIPESTRESS (using 'VALV' card in PIPESTRESS) with same reference-pipe-section and same thickness factor, their stiffnesses are different. The valve in PIPESTRESS is going to have a smaller inner diameter than CAEPIPE. So, the weight of the fluid contained in the valve (in PIPESTRESS) is going to be less than that for CAEPIPE.

While transferring a valve to PIPESTRESS, CPTOPS creates three nodes for the valve. One at each end of the valve and one at the middle. The total weight of the valve (including insulation weight and excluding additional weight) is divided by two and each half is applied as a lumped mass at both ends of the valve. If additional weight is present, then the stem is modeled as a rigid element (with no mass) starting from the middle node and additional weight is applied at the far end of the rigid element.

The 'FROM' and 'TO' nodes in CAEPIPE are used for naming the end nodes of the valve in PIPESTRESS. For naming the intermediate node in PIPESTRESS, the alphabet 'M' is prefixed to a sequential number starting from 101. For the far end of the rigid element (if additional weight is present) the alphabet 'V' is prefixed to the same sequential number used for the intermediate node. Fig. 5.4 illustrates this point.

Valve in CAEPIPE

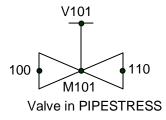
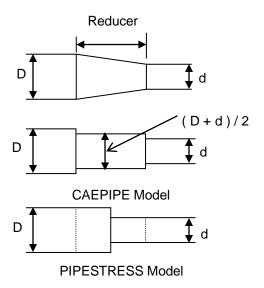



Fig. 5.4

Reducer

Reducer in CAEPIPE is transferred as 'CRED' or 'ERED' card in PIPESTRESS. Concentric reducer is transferred as 'CRED' card and eccentric reducer is transferred as 'ERED' card. Outer diameter and thickness at the start and end of the reducer are taken from CAEPIPE. Like valve, reducer is also modeled differently in CAEPIPE and PIPESTRESS, as explained next.

Fig.5.5

Figure 5.5 shows how a reducer is modeled in CAEPIPE and PIPESTRESS. In CAEPIPE, the properties such as empty weight, stiffness, contents weight and insulation weight of a reducer are based on the average diameter (of OD1 and OD2) and average thickness (of Thk1 and Thk2) between the two ends of the reducer; whereas, PIPESTRESS changes the pipe diameter from OD1 to OD2 and the wall thickness from Thk1 to Thk2 at the mid-point of the reducer.

Bellows

A bellow in CAEPIPE is translated to a 'MTXS' card in PIPESTRESS. 'FROM node' to 'TO node' direction of the bellow is taken as the local Z-axis direction for the 'MTXS' card and an arbitrary perpendicular direction is taken as the local X-axis direction. Pressure and pressure thrust area for the bellow (read from the CAEPIPE-mod file) are multiplied and applied as force at both the ends of the 'MTXS' element.

Slip Joint

Slip joint is not transferred to PIPESTRESS.

Hinge Joint

A hinge joint in CAEPIPE is translated to a 'MTXS' card in PIPESTRESS. A hinge joint in CAEPIPE has zero length. PIPESTRES does not allow any member having zero length; to prevent PIPESTRESS from generating an error, CPTOPS assigns a length of 1mm to 'MTXS' element representing a hinge joint. The axis direction of the hinge joint in CAEPIPE is taken as the X-axis of the 'MTXS' card in PIPESTRESS. The rotational stiffness of the 'MTXS' card is assigned the value of rotational stiffness of the hinge joint in CAEPIPE. For all other directions, the 'MTXS' card behaves as a rigid element. Rotational limit and friction torque values in CAEPIPE are ignored by CPTOPS.

Ball Joint

Like hinge joint, a ball joint in CAEPIPE is transferred as a 'MTXS' card in PIPESTRESS with 1 mm as its length. The torsional direction of the ball joint (for definition refer CAEPIPE Manual) in CAEPIPE is transferred as the local Z-axis direction of the 'MTXS' card. One arbitrary direction orthogonal to local Z-axis of the 'MTXS' card is taken as the local X-axis direction for the 'MTXS' card. The torsional stiffness obtained from the CAEPIPE-mod file is used as the rotational stiffness about the local Z-axis of the 'MTXS' card. Bending stiffness obtained from CAEPIPE-mod file is used for the rotational stiffness of 'MTXS' card about the local X-axis and the local Y-axis. 'MTXS' card behaves rigidly for all other directions.

Rigid Element

Rigid element in CAEPIPE is transferred as a 'RIGD' card in PIPESTRESS. The mass of the rigid element in CAEPIPE is equally divided between two 'LUMP' cards, one at each end node of the 'RIGD' card.

Elastic Element

Elastic element in CAEPIPE is transferred as 'MTXS' card in PIPESTRESS. Elastic element in CAEPIPE is a 6x6 matrix with zero off-diagonal terms. The X-axis and Z-axis of elastic element in CAEPIPE are transferred as X-axis and Z-axis of 'MTXS' card respectively.

Jacketed Pipe and Bend

Jacketed pipe and bend are not transferred to PIPESTRESS.

Cold Spring (Cut Pipe)

Cold spring is transferred as 'CLDS' card in PIPESTRESS.

Beam

Beam element in CAEPIPE is transferred as 'BEAM' card in PIPESTRESS. In CAEPIPE two separate conventions are used to determine the local axes of beam element, depending on whether Global Y-Axis is vertical or Global Z-Axis is vertical. In CAEPIPE, local X-axis is always in the element direction ('From' to 'To' node). If Global Y-axis is vertical in CAEPIPE, then I_{zz} is major principal axis and I_{yy} is minor principal axis. If Global Z-axis is vertical in CAEPIPE, then I_{zz} is minor principal axis and I_{yy} is major principal axis.

In PIPESTRESS, local Z-axis is along the element direction. So, CAEPIPE local X-axis direction is assigned to the local Z-axis direction in PIPESTRESS. Minor moment of inertia for a beam in CAEPIPE is assigned to 'IX' field of 'BEAM' card in PIPESTRESS, and major principal moment of inertia is assigned to the 'IY' field.

Tie Rod

Tie rod in CAEPIPE is not transferred to PIPESTRESS.

Comment

Comments in CAEPIPE are ignored during transfer.

Hydrotest Load

For hydrotest load, the 'Exclude Insulation' option of CAEPIPE is ignored. For more details on 'Hydrotest Load', see 'Weight Case' reported earlier in this chapter.

5.4 Data Types

Anchor

Anchor in CAEPIPE is transferred as 'ANCH' card in PIPESTRESS. For a rigid anchor, a translational stiffness of 1.751×10^8 kN/mm is used. Rotational stiffness for the same is 1.13×10^8 kN m/radian. Anchor movements may be specified in CAEPIPE for different thermal loads. For each thermal load, CPTOPS creates an 'AMVT' card to specify displacements. For seismic anchor movement and settlement also, CPTOPS creates suitable 'AMVT' cards.

Branch SIF

Branch SIF in CAEPIPE is transferred to PIPESTRESS as suitable 'TE' and 'PD' fields in 'BRAN' card. Table 5.3 lists different Branch SIFs available in CAEPIPE and the corresponding 'TE' and 'PD' fields generated by CPTOPS.

Branch SIF in CAEPIPE	Corresponding TE and PD fields				
Welding Tee	TE = 1				
Reinforced Fabricated Tee	TE = 3, PD = Pad thickness				
Unreinforced Fabricated Tee	TE = 3, PD = Pad thickness=0				
Weldolet	TE = 6				
Extruded Welding Tee	TE =7				
Sweepolet	TE = 4				
Branch Connection	TE = 0				

Table 5.3

User SIF

CPTOPS transfers User SIF in PIPESTRESS through 'INDI' card.

Concentrated Mass

Concentrated mass is transferred as a 'LUMP' card in PIPESTRESS. In case offsets for concentrated mass are specified in CAEPIPE, then a 'RIGD' card with no mass is created. DX, DY and DZ fields of the 'RIGD' card are set to DX, DY and DZ offset values in CAEPIPE respectively and then the 'LUMP' card is created, with its position at the far end of the rigid element ('RIGD' card).

Constant Support

Constant support in CAEPIPE is transferred as 'CSUP' card, but this card is commented. The user has to enter suitable value for the 'FO' field (i.e. cold load) and use it. Please note, for a constant support (i.e. 'CSUP' card), hot load = cold load.

Flange

Flange is transferred as a 'LUMP' card. The weight of flange in CAEPIPE is transferred, but other properties like Flange type, Gasket diameter and Allowable pressure are ignored.

Force

'FORC' and 'MOMT' cards are used to transfer forces and moments from CAEPIPE to PIPESTRESS. These cards are created with load case number assigned to the operating weight case. It is advisable not to have a concentrated mass and force at the same location in CAEPIPE.

Force Spectrum Load

Force spectrum load is not transferred to PIPESTRESS.

Guide

Guide is not transferred to PIPESTRESS.

Hanger

In CAEPIPE a hanger can be a 'Rod Hanger', 'User Hanger' or a To-Be-Designed hanger called 'Hanger'. To-Be-Designed hanger and 'User Hanger' are transferred as 'VSUP' card in PIPESTRESS. 'VSUP' card requires the value of cold load to be entered ('FO' field). For To-Be-Designed hanger, CAEPIPE automatically calculates cold load. That load has to be entered in the PIPESTRESS input file manually by the user.

In CAEPIPE a 'Rod Hanger' acts as a one-way restraint. It prevents downward movement, but allows upward movement. In PIPESTRESS, a 'HANG' card acts as a two-way restraint. So, 'HANG' card cannot be used to transfer a 'Rod Hanger' from CAEPIPE; instead, a 'NRST' card is used to represent a 'Rod Hanger' in PIPESTRESS. However, this 'NRST' card is commented and no 'NCAS' card is created by 'CPTOPS'. The user can analyze the model in CAEPIPE and check the piping response at the node (at which 'Rod Hanger' is present) in CAEPIPE. If the node moves down, then the 'NRST' card can be uncommented, so that 'NRST' card is activated, in which case the 'NRST' card is treated as a 'RSTN' card for all dynamic analyses (including 'FREQ' card and 'RCAS' card) and for all 'LCAS' cards.

Harmonic Load

Harmonic load is not transferred to PIPESTRESS.

Jacketed End Cap

Jacketed end cap is not transferred to PIPESTRESS.

Limit Stop

Limit stop is transferred as 'NRST' card, but the corresponding 'NCAS' cards are not provided by the Translator. The user has to manually create 'NCAS' card. Please note that the 'NRST' card is treated as a 'RSTN' card for all dynamic analyses (including 'FREQ' card and 'RCAS' card) and for all 'LCAS' cards.

Nozzle

Nozzle is transferred as 'NOZZ' card in PIPESTRESS.

Restraint

Restraint is transferred as 'MULR' card.

Rod Hanger

Rod hanger is transferred as 'NRST' card in PIPESTRESS as described in the article titled 'Hanger' above. Global co-ordinate system (i.e. LO=0 in PIPESTRESS) is used in the free format file to define the direction of hanger. A translational stiffness of 1.751 x 10⁸ kN/mm is set for the 'SP' and 'K1' fields in 'NRST' card. The user should note that this 'NRST' card is commented in the 'PIPESTRESS' input file. In case the user wants to see the PIPESTRESS results for the sustained load case, the user should run the *.fre file with the 'NRST' card commented so that 'NRST' card is not activated, and note the pipe movement at the node(s) where 'Rod Hanger(s)' is/are present. If the pipe moves down at certain 'Rod Hanger' node(s), the user should uncomment the 'NRST' card(s) so that they get activated and re-run the *.fre file to get the correct results.

Skewed Restraint

Translational skewed restraint is transferred as 'RSTN' card and rotational skewed restraint is transferred as 'ROTR' card. The stiffness value is assigned to the corresponding 'SP' field. Connected node information is ignored by the Translator.

Snubber

Snubber is transferred as 'SNUB' card. The stiffness is assigned to the corresponding 'SP' field of the 'SNUB' card.

Spider

Spider is not transferred.

Weld

CPTOPS transfers different welds specified in CAEPIPE by assigning suitable values to TA, LW, EW and MM fields for the corresponding piping elements. Table 5.4 lists different welds available in CAEPIPE and the corresponding TA, LW, EW and MM fields used by CPTOPS to transfer them. In CAEPIPE, it is advisable to input the type of weld in the same line where the node is defined.

Weld in CAEPIPE	Corresponding TA, LW, EW and MM fields				
Butt Weld	LW = 2, MM = Mismatch				
Fillet Weld, Concave Fillet Weld	EW = 3				
Tapered Transition	TA = 2, MM = Mismatch				

Table 5.4

Material

The Translator transfers all the material properties used in a CAEPIPE mod file with the help of 'MATH' and 'MATD' cards. If material properties at negative temperatures are present in the CAEPIPE mod file, PIPESTRESS may issue a warning.

6.0 Verification and Validation of Translator

6.1. General

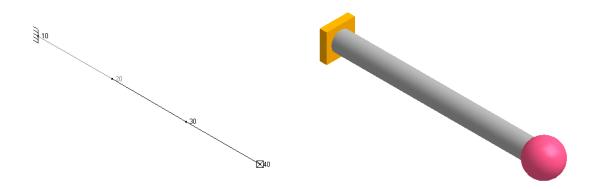
To verify that CPTOPS transfers the data present in CAEPIPE properly, a number of models were considered with different options and complexity. The models were then transferred using CPTOPS and analyzed. The analyses were performed in both the software and the results thus obtained were compared against each other. Some of the models and their analysis results are included in this manual for the users' reference. The user can find more models in the distribution CD that they can run and test themselves.

The models are presented with increasing complexity, starting from a four-nodded piping system to piping system with many more elements and data types.

The models chosen for testing and comparing results are included with the distribution CD for reference. Due to space constraints in listing the results for all nodes, the table listed below shows values for Total weight, Support loads under different loading conditions and frequencies.

During the verification, the 'Cold Load' and the 'Spring Rate' obtained from the hanger results report of CAEPIPE were entered manually at the 'FO' and 'SP' fields of PIPESTRESS hanger input to get identical results between CAEPIPE and PIPESTRESS. Hence, we recommend the user to input the above said parameters manually to PIPESTRESS before performing the analysis.

Important: PIPESTRESS creates intermediate nodes automatically (based on the value input for 'MP' field., i.e, for 'Automatic Mass Modeling Frequency/Period') to have more accurate results during dynamic analysis. This feature is not present in CAEPIPE. Because of this, when dynamic analysis is performed, the CAEPIPE and PIPESTRESS results may vary more often than not. To get identical results, the user can either set the automatic mass modeling off in PIPESTRESS (by setting 'MP = 0' in 'FREQ' card) or create additional intermediate nodes in CAEPIPE. (Information on the additional nodes created by PIPESTRESS can be found in the corresponding *.prd file after running the *.fre file). For more details, refer study Model-027.

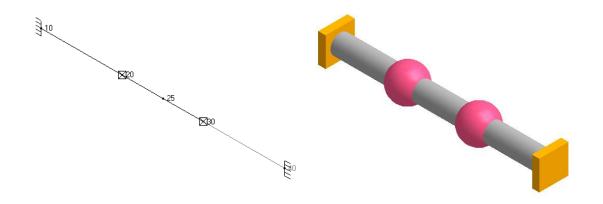

6.2 Verification Models

About Model-001

This model has the following

- a. Three Pipe elements with 4 node points starting from node 10. The length of each piping element is 1m.
- b. Rigid anchor at node 10.
- c. Concentrated mass of 1000 kg at node 40.
- d. Design pressure and design temperature are 0 kg/cm2 and 148.9^o C respectively.
- e. A53 Grade B material and 10" Nominal diameter section are used.
- f. Insulation, Fluid density and Pipe material density are taken to be zero.

The pictorial representation of the CAEPIPE model is shown below.

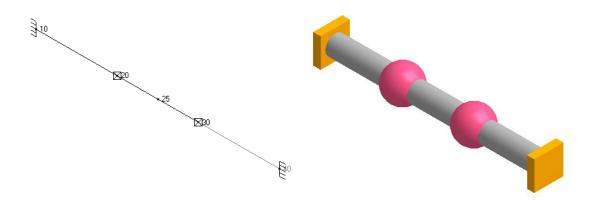


Nar	ne of the Mod	el			Model – 001						
Analysis Options in CAEPIPE											
1											
2	Reference Temperature = 20 ⁰ c										
3	Do not include bourdon effect										
4	Do not use p	ressure co	rrection	for bends							
5											
6	,										
7	Y – Vertical										
Tota	al Weight (Kg)										
CAE	EPIPE	1000									
PIP	ESTRESS	1000.001									
Sup	oport Load (Su	istained)									
		Node	Fx	Fy	Fz	Mx	My	Mz			
			(N)	(N)	(N)	(N-m)	(N-m)	(N-m)			
	CAEPIPE	10	0	-9807	0	0	0	-29420			
PI	PESTRESS	10	0	-9807	0	0	0	-29420			
Оре	erating Case							<u> </u>			
	-	Node	Fx	Fy	Fz	Mx	My	Mz			
			(N)	(Ň)	(N)	(N-m)	(N-m)	(N-m)			
	CAEPIPE	10	0	-9807	0	0	0	-29420			
PI	PESTRESS	10	0	-9807	0	0	0	-29420			

Frequencies (in Hz)									
Mode Number	CAEPIPE	PIPESTRSS	PIPESTRSS						
		(MP=0)	(MP=33)						
1	7.586	7.586	7.586						
2	7.586	7.586	7.586						

This model shown below is the same as Model-001 above, with the following modifications.

- a. Concentrated mass at node 40 is replaced by Rigid anchor.
- b. Two concentrated masses of 500 kg each are added at nodes 20 and 30.
- c. An intermediate node is inserted at mid point between nodes 20 and 30.

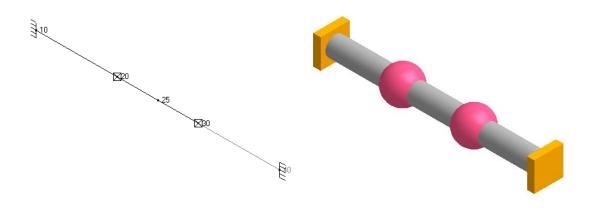


Name of the Model Model – 002									
Analysis Options in CAEPIPE									
1 Code – B 31.3									
2 Reference Temperature = 20° c									
3 Do not include bourdon effect									
4 Do not use p	ressure co	prrection for	or be	nds					
5 Do not incluc									
6 Do not use fr	iction in dy	/namic and	alysi	s					
7 Y – Vertical									
Total Weight (Kg)									
CAEPIPE	1000								
PIPESTRESS	1000.001								
Support Load (Su	ustained)								
	Node	Fx		Fy	E	z (N)	Mx	My	Mz
	Noue	(N)	((N)	N)		(N-m)	(N-m)	(N-m)
CAEPIPE	10	0	-4	903		0	0	0	-3268
PIPESTRESS	10	0	-4	903		0	0	0	-3268
CAEPIPE	40	0	-4	903		0	0	0	-3268
PIPESTRESS	40	0	-4	903		0	0	0	-3268
Support Load (Op	perating C	ase)							
	Node	, Fx		Fy		Fz	Mx	My	Mz
	inode	(N)		(Ň)		(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	10	-37695	12	-490	2	0	0	0	-3268
PIPESTRESS	10	-376953	36	-490	3	0	0	0	-3268
			_					-	
CAEPIPE	40	376951		-490		0	0	0	3268
PIPESTRESS	40	376953	6	-490	3	0	0	0	3268

Frequencies (in Hz)			
Mode Number	CAEPIPE	PIPESTRESS (MP=0)	PIPESTRSS (MP=33)
1	70.777	70.732	70.732

This model shown below is the same as Model-002 above with the following modifications.

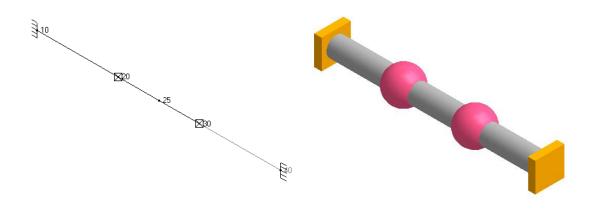
a. Rigid anchors at nodes 10 and 40 are replaced by flexible anchor with the following stiffnesses kx=ky=kz=1000kg/mm and kxx=kyy=kzz=1000kg-m/deg.



Nan	ne of the Mode	el			Model –	003					
Ana	Analysis Options in CAEPIPE										
1	Code – B 31.3										
2	Reference Temperature = 20 [°] c										
3	Do not includ	le bourdon	effect								
4	Do not use p	ressure co	prrection for	or bends							
5	Do not includ	le missing	mass cor	rection							
6	Do not use fr	iction in dy	/namic an	alysis							
7	Y – Vertical										
Tota	al Weight (Kg)										
CAE	EPIPE	1000									
PIP	ESTRESS	1000.001	l								
Sup	Support Load (Sustained)										
		Node	Fx (N)	Fy (N)	Fz (N)	Mx (N-m)	My (N-m)	Mz (N-m)			
(CAEPIPE	10	0	-4903	0	0	0	-128			
PII	PESTRESS	10	0	-4903	0	0	0	-128			
(CAEPIPE	40	0	-4903	0	0	0	128			
	PESTRESS	40	0	-4903	0	0	0	128			
Ope	erating Case		II		1	L	1	•			
•		Node	Fx (N)	Fy (N)	Fz (N)	Mx (N-m)	My (N-m)	Mz (N-m)			
(CAEPIPE	10	-22200	-4903	0	0	0	-128			
PII	PESTRESS	10	-22201	-4903	0	0	0	-128			
	CAEPIPE	40	22200	-4903	0	0	0	128			
PII	PESTRESS	40	22201	-4903	0	0	0	128			

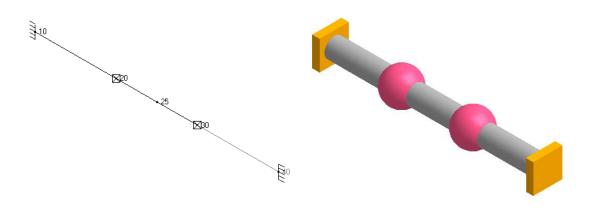
Frequencies (in			
Mode Number	CAEPIPE	PIPESTRSS	PIPESTRESS
		(MP=0)	(MP=33)
1	18.83	18.829	18.829
2	18.83	18.829	18.829
3	22.254	22.254	22.254

This model shown below is the same as Model-003 above with the following modifications.


- a. Insulation density of section as 400 kg/m3 and
- b. Insulation thickness of section as 100mm.

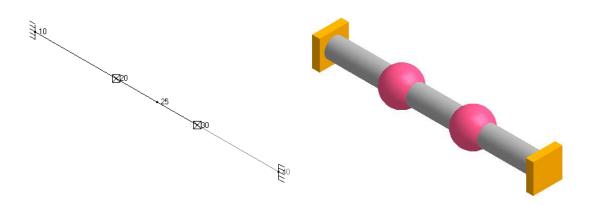
Name of the Model					Мо	odel –	004				
Ana	lysis Option	is in CAEPI	PE								
1	Code – B 3										
2	Reference	Temperatur	emperature = 20°c								
3	Do not inclu	o not include bourdon effect									
4		pressure co									
5		ude missing									
6		friction in dy	/nami	c ana	alysis						
7	Y – Vertica			_							
Tota	al Weight (kg	3)									
	PIPE	1140.6									
	ESTRESS	1140.637	7								
Sup	port Load (S	Sustained)									
		Node	F	х	Fy		Fz	Mx	My	Mz	
		Node	(N		(N)		(N)	(N-m)	(N-m)	(N-m)	
	CAEPIPE	10	0.	0	-5593	(0.0	0.0	0.0	-141	
PIF	PESTRESS	10	0.	0	-5593	(0.0	0.0	0.0	-141	
					5500						
		40	0.		-5593		0.0	0.0	0.0	141	
	PESTRESS	40	0.	0	-5593		0.0	0.0	0.0	141	
Ope	rating Case									T	
		Node	F		Fy		Fz	Mx	My	Mz	
		- 10	(N		(N)		<u>(N)</u>	(N-m)	(N-m)	(N-m)	
		10	-222		-5593		0.0	0.0	0.0	-141	
PI	PESTRESS	10	-222	201	-5593	(0.0	0.0	0.0	-141	
(CAEPIPE	40	222	200	-5593	(0.0	0.0	0.0	141	
	PESTRESS	40	222		-5593		0.0	0.0	0.0	141	
	quencies (in	_					-			1	
	de Number CAEPIPE PIPESTRES					S	PIF	ESTRSS	1		
					(MP=0)			MP=33)			
	1	17.795			17.794			17.794	1		
	2	17.795			17.794			17.794	1		
	3 20.841 20.841 20.841										

This model shown below is the same as Model-004 above with the following modification.


a. Fluid density as 1000 kg/m3.

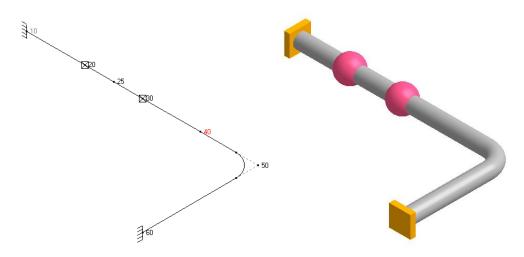
Name of the Mod	el			Model -	- 005						
Analysis Options	in CAEPI	PE									
1 Code – B 31	Code – B 31.3										
	eference Temperature = 20°c										
3 Do not includ	Do not include bourdon effect										
4 Do not use p	Do not use pressure correction for bends										
	Do not include missing mass correction										
	Do not use friction in dynamic analysis										
7 Y – Vertical											
Total Weight (Kg)											
CAEPIPE	1279.5										
PIPESTRESS	1279.62										
Support Load (Su	ustained)										
	Node	Fx	Fy	Fz	Mx	My	Mz				
		(N)	(N)	(N)	(N-m)	(N-m)	(N-m)				
CAEPIPE	10	0	-6274	0	0	0	-154				
PIPESTRESS	10	0	-6274	0	0	0	-155				
CAEPIPE	40	0	-6274	0	0	0	154				
PIPESTRESS	40	0	-6274	0	0	0	154				
	40	0	-0274	0	0	0	155				
Operating Case	1	Fx		Fz	Mx	NA:	Mz				
	Node	(N)	Fy (N)	(N)	(N-m)	My (N-m)	(N-m)				
CAEPIPE	10	-22200	-6274	0	0	0	154				
PIPESTRESS	10	-22200	-6274	0	0	0	-155				
	10	-22201	-0274	0	0	0	-100				
CAEPIPE	40	22200	-6274	0	0	0	154				
PIPESTRESS	40	22201	-6274	0	0	0	155				
Frequencies (in H	lz)										
Mode Number		CAEPIP	E	PIPES	STRESS	PIPESTR	RSS				
				(M	P=0)	(MP=33	3)				
1		16.922	_	16	5.920	16.92					
2	2 16.92			16.920		16.92					
3		19.679		19	0.679	19.679	€				

This model shown below is the same as Model-005 above with the following modification.


a. Density of material as 7833 kg/m3.

Name of the Mode	el			Model –	006						
Analysis Options in CAEPIPE											
1 Code – B 31.											
	emperatur	mperature = 20 [°] c									
	Do not include bourdon effect										
	Do not use pressure correction for bends										
	Do not include missing mass correction										
6 Do not use fr	iction in d	ynamic an	alysis								
7 Y – Vertical											
Total Weight (Kg)											
CAEPIPE	1566.40										
PIPESTRESS	1566.48	7									
Support Load (Su	istained)										
	Node	Fx	Fy	Fz	Mx	Му	Mz				
	Noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)				
CAEPIPE	10	0	-7681	0	0	0	-182				
PIPESTRESS	10	0	-7681	0	0	0	-182				
	40	0	7004		0	0	400				
	40	0	-7681	0	0	0	182				
PIPESTRESS	40	0	-7681	0	0	0	182				
Operating Case	1										
	Node	Fx	Fy	Fz	Mx (Num)	My (Norm)	Mz				
CAEPIPE	10	(N) -22200	(N) -7681	(N) 0	<u>(N-m)</u> 0	(N-m) 0	<u>(N-m)</u> -182				
PIPESTRESS	10	-22200	-7681	0	0	0	-182				
PIPESIRESS	10	-22201	-7001	0	0	0	-102				
CAEPIPE	40	22200	-7681	0	0	0	182				
PIPESTRESS	40	22201	-7681	0	0	0	182				
Frequencies (in H	lz)	1	1		1						
		CAEP		PIPES	TRESS	PIPESTR	SS				
					>= 0)	(MP=33					
1		15.4			458	15.458					
2		15.45		15.458		15.458					
3		17.78	39	17.	789	17.789)				

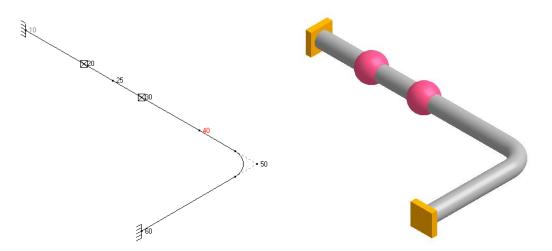
This model shown below is the same as Model-006 above with the following modification.


a. Internal fluid pressure of 50 kg/cm2.

Name of the Mod	el			Model – 0	07						
Analysis Options	in CAEPI	PE									
1 Code – B 31	Code – B 31.3										
2 Reference T	ce Temperature = 20°c										
3 Do not includ	Do not include bourdon effect										
	Do not use pressure correction for bends										
	Do not include missing mass correction										
	Do not use friction in dynamic analysis										
7 Y – Vertical											
Total Weight (Kg)											
CAEPIPE	1566.4										
PIPESTRESS	1566.48	7									
Support Load (Su	ustained)										
	Node	Fx	Fy	Fz	Mx	My	Mz				
		(N)	(N)	(N)	(N-m) (N-m)	(N-m)				
CAEPIPE	10	0	-768		0	0	-182				
PIPESTRESS	10	0	-768	1 0.0	0	0	-182				
	40	0	700	1 0.0	0		100				
CAEPIPE PIPESTRESS	40 40	0	-768 ⁻		0	0	182 182				
	40	0	-768	1 0.0	0	0	182				
Operating Case						N4					
	Node	Fx	Fy	Fz	Mx (N m	My	Mz				
CAEPIPE	10	(N) -22200	(N) -768	(N) 1 0	(N-m 0) (N-m) 0	(N-m) -182				
PIPESTRESS	10	-22200	-768		0	0	-182				
FIFLOINLOO	10	-22201	-700		0	0	-102				
CAEPIPE	40	22200	-768	1 0	0	0	182				
PIPESTRESS	40	22201	-768	1 0	0	0	182				
Frequencies (in H	lz)			•							
Mode Numbe		CAEPIP	Ε	PIPESTRE	SS	PIPESTRSS					
				(MP=0)		(MP=33)					
1		15.458		15.458		15.458					
2		15.458		15.458		15.458					
3		17.789		17.789		17.789					

This model shown below is the same as Model-007 above with the following modifications.

- a. Long radius bend at node 50.
- b. Straight pipe of 2m length and
- c. Flexible anchor at node 60 with stiffnesses kx=ky=kz=1000 kg/mm and kxx=kyy=kzz=1000 kg-m/deg.

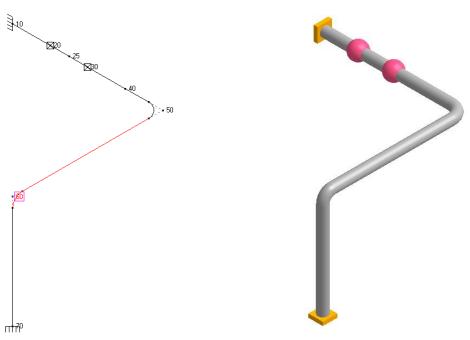


Name of the Mod	del			Mode	I – 011						
Analysis Options in CAEPIPE											
1 Code – B 3	Code – B 31.3										
2 Reference T	Cemperat	ture = 20°	с								
3 Do not inclu	de bourc	on effect									
4 Do not use	pressure	correction	n for bends								
5 Do not inclu	de missi	ng mass c	correction								
6 Do not use f	friction in	dynamic	analysis								
7 Y – Vertical											
Total Weight (Kg	3)										
CAEPIPE	2101.9										
PIPESTRESS	2102.0	95									
Support Load (S	ustained	d)									
	Node	Fx	Fy	Fz	Mx	My	Mz				
		(N)	(N)	(N)	(N-m)	(N-m)	(N-m)				
CAEPIPE	10	0	-11624	0	-6565	0	-4129				
PIPESTRESS	10	0	-11625	0	-6566	0	-4130				
CAEPIPE		0	0000	0	7000	0	2004				
-	60	0	-8989	0	-7690	0	-3021				
PIPESTRESS	60	0	-8989	0	-7691	0	-3021				
Operating Case	1		r	r		1					
	Node	Fx	Fy	Fz	Mx	My	Mz				
0.150105		(N)	(N)	(N)	(N-m)	(N-m)	(N-m)				
CAEPIPE	10	-8495	-11624	-4052	-6565	597	-4129				
PIPESTRESS	10	-8495	-11625	-4052	-6566	597	-4130				
CAEPIPE	60	8495	-8989	4052	-7690	-1381	-3021				
PIPESTRESS	60 60	8495	-8989	4052	-7690	-1381	-3021				
FIFESIKESS	00	0490	-0909	4052	-7091	-1301	-3021				

Frequencies (in Hz)										
Mode Number	CAEPIPE	PIPESTRESS	PIPESTRSS							
		(MP=0)	(MP=33)							
1	3.79	3.790	3.790							
2	11.819	11.819	11.819							
3	13.073	13.072	13.072							
4	19.189	19.189	19.189							
5	25.437	25.436	25.436							

This model shown below is the same as Model-011 above with the following modification.

a. Flexible anchor at node 60 is replaced by rigid anchor.



Nan	ne of the Mod	el			Model –	012					
Ana	lysis Options	in CAEPI	PE								
1	Code – B 31.3										
2		Reference Temperature = 20° c									
3	Do not incluc										
4	Do not use p	ressure co	rrection fo	or bends							
5	Do not includ										
6	Do not use fr										
7	Y – Vertical			,							
Tota	al Weight (Kg)										
	EPIPE	2101.9									
PIP	ESTRESS	2102.095	5								
Sup	port Load (Su	istained)	•								
		Node	Fx	Fy	Fz	Mx	My	Mz			
		noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)			
	CAEPIPE	10	0.0	-9250	0.0	-465	0.0	-355			
PI	PESTRESS	10	0.0	-9250	0.0	-465	0.0	-355			
	CAEPIPE	60	0.0	-11363	0.	-18539	0.0	2703			
	PESTRESS	60	0.	-11364	0.0	-18541	0.0	2704			
Оре	erating Case	1		1	I						
•	~	Node	Fx	Fy	Fz	Mx	My	Mz			
		node	(N)	(Ň)	(N)	(N-m)	(N-m)	(N-m)			
	CAEPIPE	10	-33372	-9250	-4486	-465	677	-355			
PI	PESTRESS	10	-33375	-9250	-4486	-465	677	-355			
	CAEPIPE	60	33372	-11363	4486	-18539	-49478	2703			
PI	PESTRESS	60	33375	-11364	4486	-18541	-49485	2704			

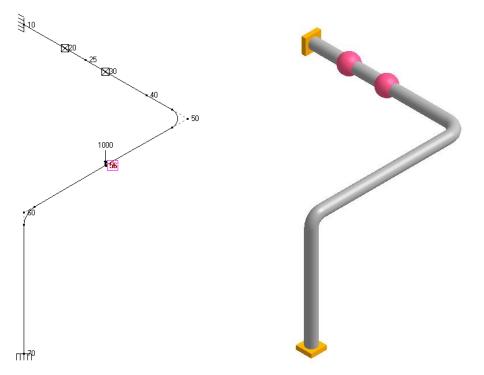
Frequencies (in Hz)										
Mode Number	CAEPIPE	PIPESTRESS	PIPESTRESS							
		(MP=0)	(MP=33)							
1	12.556	12.556	12.556							
2	14.430	14.429	14.429							
3	18.485	18.485	18.485							
4	29.96	29.958	29.958							

This model shown below is the same as Model-012 above with the following modification.

- a. Short radius bend at node 60.
- b. Vertically downward pipe of length 3m and
- c. Rigid anchor at node 70.

Nan	ne of the Mo	del			Model	- 013				
Ana	Analysis Options in CAEPIPE									
1	Code – B 3	1.3								
2	Reference	Tempera	ture = 20°	С						
3	Do not inclu	ide bour	don effect							
4	Do not use	pressure	e correction	n for bends						
5	Do not inclu	ide missi	ing mass c	orrection						
6	Do not use	friction ir	n dynamic	analysis						
7	Y – Vertical									
Tota	al Weight (K	g)								
CAE	EPIPE	3025.4								
PIP	ESTRESS	3025.6	55							
Sup	port Load (S	Sustaine	d)							
		Node	Fx	Fy	Fz	Mx	My	Mz		
		node	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)		
CAE	EPIPE	10	100	-13702	-842	-3437	737	-4236		
PIP	IPESTRESS 10 100			-13702	-842	-3437	737	-4236		
	EPIPE	70	-100	-15967	842	-21673	3029	-10924		
PIP	ESTRESS	70	-100	-15969	842	-21675	3029	-10925		

Operating Case	Э						
	Node	Fx (N)	Fy (N)	Fz (N)	Mx (N-m)	My (N-m)	Mz (N-m)
CAEPIPE	10	-4320	-12721	-4110	. ,	1662	-3783
PIPESTRESS	10	-4320	-12721	-4110	-3736	1662	-3784
CAEPIPE	70	4320	-16948	4110	-15494	-2503	-20711
PIPESTRESS	70	4320	-16950	4110	-15496	-2503	-20712
Frequencies (in	ו Hz)						
Mode Number	CAE	EPIPE	PIPESTRE	SS	PIPESTRESS		
			(MP=0)		(MP=33)		
1	3.	489	3.488		3.638		
2	8.	133	8.133		8.352		
3	10	.827	10.827		10.907		
4	12	2.38	12.379		13.988		
5	18	.177	18.176		18.856		


PIPESTRESS

70

-159

This model shown below is the same as Model-013 above with the following modifications.

- a. Welding tee at node 55 and
- b. Force of 100kg in vertical direction at node 55.

Nam	ne of the Moo	del			Model –	014		
Ana	lysis Option	s in CAE	PIPE					
1	Code – B 3	1.3						
2	Reference 7	Fempera	ture = 20 ⁰ c					
3	Do not inclu	ide bour	don effect					
4	Do not use	pressure	correction	for bends				
5	Do not inclu	ıde missi	ing mass co	orrection				
6	Do not use	friction ir	n dynamic a	analysis				
7	Y – Vertical							
Tota	l Weight (Kg	g)						
CAE	PIPE	3025.6						
PIPE	ESTRESS	3025.8	43					
Sup	port Load (S	Sustaine	d)					
		Node	Fx	Fy	Fz	Mx	My	Mz
		node	(N)	(Ň)	(N)	(N-m)	(N-m)	(N-m)
С	AEPIPE	10	159	-15460	-1231	-4684	1082	-5904
PIP	ESTRESS	10	159	-15461	-1231	-4685	1082	-5905
CAE	PIPE	70	-159	-24017	1231	-31842	4477	-16111

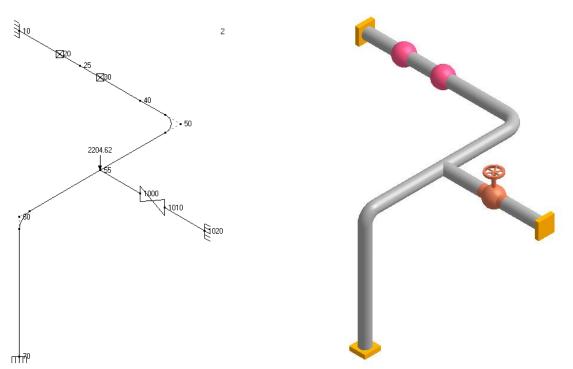
-24019

1231

-31844

4477

-16112


Operating Case							
	Node	Fx	Fy	Fz	Mx	My	Mz
	Noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	10	-4260	-14479	-4499	-4983	2007	-5452
PIPESTRESS	10	-4260	-14480	-4499	-4983	2007	-5452
CAEPIPE	70	4260	-24998	4499	-25663	-1054	-25898
PIPESTRESS	70	4260	-25000	4499	-25665	-1054	-25899
Frequencies (in	Hz)						
Mode Number	CAE	EPIPE	PIPESTRESS	S PIPE	STRESS		
			(MP=0)	(N	1P=33)		
1	3.	628	3.629	3	3.638		
2	8.	172	8.171	8	3.352		
3	10	.767	10.767	1	0.906]	
4	13	.196	13.196	1	3.998]	
5	18	.395	18.394	1	8.850]	

PIPESTRESS

3580.329

This model shown below is the same as Model-014 above with the following modifications.

- a. Two horizontal pipes of length 1m and force of 9806.65 N (Downward).
- b. Valve between two pipes with 100 kg weight and 600mm length.
- c. Welding Tee at Node 55.

Nan	ne of the Moo	lel		Model – 015				
Ana	Analysis Options in CAEPIPE							
1	Code – B 31	.3						
2	Reference T	emperature = 20°	С					
3	Do not inclu	de bourdon effect						
4	Do not use	pressure correction	n for bends					
5	Do not inclu	de missing mass o	correction					
6	Do not use f	riction in dynamic	analysis					
7	Y – Vertical							
Tota	otal Weight (Kg)							
CAE	AEPIPE 3580							

Support Load (Sustained)											
	Node	Fx (N)	Fy (N)	Fz (N)	Mx (N-m)	My (N-m)	Mz (N-m)				
CAEPIPE	10	1227	-12108	-167	-886	69	-1258				
PIPESTRESS	10	1273	-12102	-164	-865	67	-1236				
CAEPIPE	70	1384	-10957	2933	1171	-1442	398				
PIPESTRESS	70	1438	-11017	2882	1163	-1490	397				
CAEPIPE	1020	-2611	-21849	-2766	-12288	-5465	37360				
PIPESTRESS	1020	-2711	-21547	-2718	-12587	-5320	36435				

Operating Case									
	Node	F	x Fy		Fz		Mx	My	Mz
	noue	(N	I)	(N)	(N)	۱)	√-m)	(N-m)	(N-m)
CAEPIPE	10	-394	189	-12206	-7806	-1	545	1250	-1457
PIPESTRESS	10	-398	315	-12137	-7827	-1	528	1260	-1434
CAEPIPE	70	-172	211	-23858	11456	13	3258	515	42207
PIPESTRESS	70	-171	20	-24088	11176	12	2681	590	41913
CAEPIPE	1020	566	99	-8851	-3649	-2	3753	-24584	17346
PIPESTRESS	1020	569	35	-8441	-3349	-2	4630	-24638	16578
Frequencies (in	Hz)								
Mode Number	CAE	PIPE	PIP	ESTRESS	PIPESTRE	ESS			
			(MP=0)	(MP=33	5)			
1	8.0)30		8.079	8.082				
2	11.	139 ⁻		11.154	11.289				

16.635

19.076

22.030

Note:

3

4

5

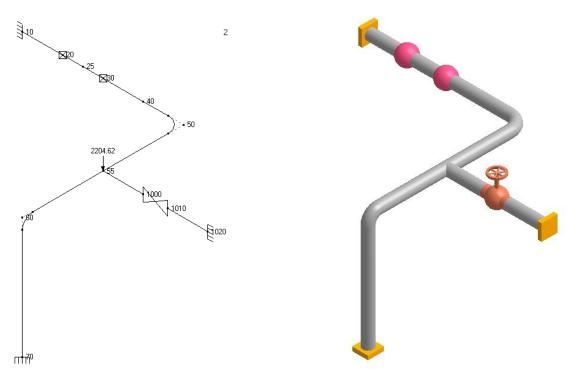
16.276

19.010

21.909

The difference in the support loads for this model is mainly due to the conceptual change in tee joint modeling between CAEPIPE and PIPESTRESS. i.e., PIPESTRESS models an "imaginary" element connecting the center line of the header pipe to the surface of the run pipe with zero flexibility when a welding tee is defined in the model. On the other hand, CAEPIPE do not create such imaginary element and includes the same as a part of branch pipe.

16.692


19.594

22.047

To confirm the above statement, another model had been created by removing the welding tee at node 55. The results thus obtained were compared against PIPESTRESS and are listed in the next model for reference.

About Model-015_a

This model shown below is the same as Model-015 without welding tee at Node 55.

Nan	ne of the Moo	del		Model – 015_a				
Ana	Analysis Options in CAEPIPE							
1	Code – B 3	1.3						
2	Reference 7	Γemperature = 20 ⁰	c					
3	Do not inclu	de bourdon effect						
4	Do not use	pressure correctio	n for bends					
5	Do not inclu	de missing mass o	correction					
6	Do not use	friction in dynamic	analysis					
7	Y – Vertical							
Tota	tal Weight (Kg)							
CAE	AEPIPE 3580							
PIP	PESTRESS 3580.329							

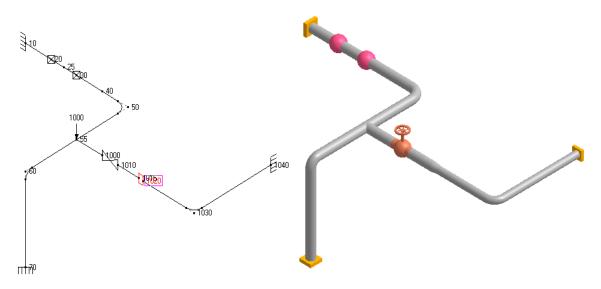
Support Load (S	Support Load (Sustained)											
	Node	Fx	Fy	Fz	Mx	My	Mz					
	Nouc	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)					
CAEPIPE	10	1227	-12108	-167	-886	69	-1258					
PIPESTRESS	10	1238	-12125	-168	-889	69	-1262					
CAEPIPE	70	1384	-10957	2933	1171	-1442	398					
PIPESTRESS	70	1393	-10931	2938	1166	-1452	403					
CAEPIPE	1020	-2611	-21849	-2766	-12288	-5465	37360					
PIPESTRESS	1020	-2630	-21862	-2770	-12179	-5459	37299					

Operating Case									
	Node	Node Fx (N)		Fy (N)	Fz (N)	Mx (N-m)		My (N-m)	Mz (N-m)
CAEPIPE	10	-394	89	-12206	-7806	-1	545	1250	-1457
PIPESTRESS	10	-394	28	-12230	-7810	-1	550	1252	-1464
CAEPIPE	70	-172	211	-23858	11456	1:	3258	515	42207
PIPESTRESS	70	-172	226	-23769	11438	1:	3201	494	42273
CAEPIPE	1020	566	99	-8851	-3649	-2	3753	-24584	17346
PIPESTRESS	1020	566	53	-8919	-3628	-2	3521	-24343	17419
Frequencies (in	Hz)								
Mode Number	CAE	PIPE	PIP	ESTRESS	PIPESTRE	SS			
			(MP=0)	(MP=33)			
1	8.0)30		8.018	8.080				
2	11.	139		11.135	11.271				
3	16.	276		16.275	16.350		1		
4	19.	010		19.017	19.508		1		
5	5 21.909				21.928		1		

CAEPIPE

PIPESTRESS

1040


1040

1432

1446

This model shown below is the same as Model-015 above with the following modifications.

- a. Long radius bend at node 1030.
- b. Reducer of length 128 mm between nodes 1015 and 1020.
- c. Horizontal pipe of length 3m in negative z direction and
- d. Rigid anchor at node 1040.

Name of the Mod	el			Model – 017			
Analysis Options	in CAEPI	PE					
1 Code – B 31	.3						
2 Reference T	emperatur	e = 20 ⁰ c					
3 Do not inclu	de bourdor	effect					
4 Do not use p	pressure co	prrection for	bends				
5 Do not inclu	de missing	mass corre	ction				
6 Do not use f	riction in dy	/namic anal	ysis				
7 Y – Vertical							
Total Weight (Kg)						
CAEPIPE	4227.40						
PIPESTRESS	4228.10	1					
Support Load (S	ustained)						
	Node	Fx	Fy	Fz	Mx	My	Mz
	Noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	10	132	-15540	-1301	-2328	545	-3432
PIPESTRESS	10	126	-15542	-1302	-2335	547	-3440
CAEPIPE	70	-1564	-23045	3815	-11302	-474	4093
PIPESTRESS	70	-1572	-23055	3818	-11344	-459	4062

-12679

-12673

-2514

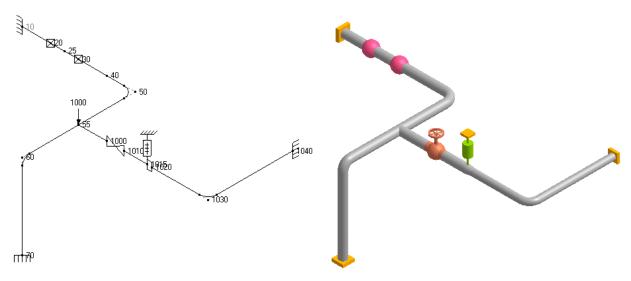
-2516

19075

19099

1256

1278

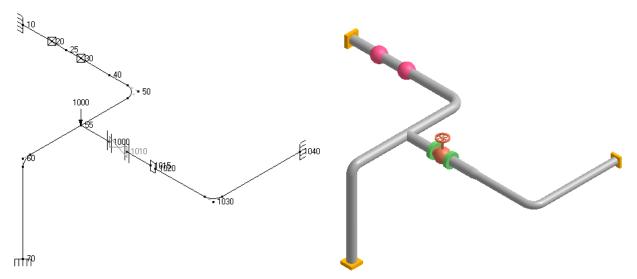

5799

5817

Operating Case									
	Node	-	Fx N)	Fy (N)	Fz (N)	M> (N-r	-	My (N-m)	Mz (N-m)
CAEPIPE	10	-11	1731	-14518	-5483	-267	76	1351	-3004
PIPESTRESS	10	-11	1725	-14521	-5483	-268	33	1352	-3011
CAEPIPE	70	-5	699	-25797	12178	606	7	-4176	13582
PIPESTRESS	70	-5	710	-25805	12184	604	.1	-4166	13569
CAEPIPE	1040	17	430	-10949	-6695	144	05	34186	4415
PIPESTRESS	1040	17	'435	-10944	-6701	144	32	34197	4427
Frequencies (in	Hz)								
Mode Number	CAEPIP	E	PIPE	STRESS	PIPESTR	RESS			
			1)	MP=0)	(MP=3	33)			
1	4.857		4	4.851	4.86	2			
2	7.941	7.941		7.937	8.08	2			
3	9.659	9.659		9.658	9.91	1			
4	10.692		1	0.693	11.26	64	1		
5	14.637		1	4.613	15.05	51	1		

This model shown below is the same as Model-017 above with the following modification.

a. Hanger at node 1015.


Nan	Name of the Model Model – 018											
Ana	Analysis Options in CAEPIPE											
1												
2	Reference Temperature = 20° c											
3	Do not include bourdon effect											
4	Do not use	pressure of	correctior	n for bends								
5	Do not incl	ude missin	g mass c	correction								
6	Do not use	friction in	dynamic	analysis								
7	Y – Vertica											
CAE	EPIPE	Hanger F	Report									
Nod	le	Spring	Hot									
		Rate	Load									
101	-	19.287	2430									
Refe	er Appendix	D for detai	ls									
Tota	al Weight (K	g)										
CAE	EPIPE	4227.4										
PIP	ESTRESS	4228.10	01									
Sup	port Load (Sustained)										
	-	Node	Fx	Fy	Fz	Mx	My	Mz				
		Noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)				
(CAEPIPE	10	-847	· 14942	-1015	-1470	340	-2319				
PII	PESTRESS	10	-891	-14908	-1000	-1411	327	-2247				
	CAEPIPE 70 869 -11859 1699 -7354 -1987 3970 DIDECTDECO 70 4004 44040 4500 7077 0000 4000											
	PESTRESS	70	1004	4 -11349	1590	-7077	-2093	4030				
	CAEPIPE	1040	-21	-629	-684	-7056	-935	2197				
	PESTRESS	1040	-113		-683	-7435	-1085	2037				

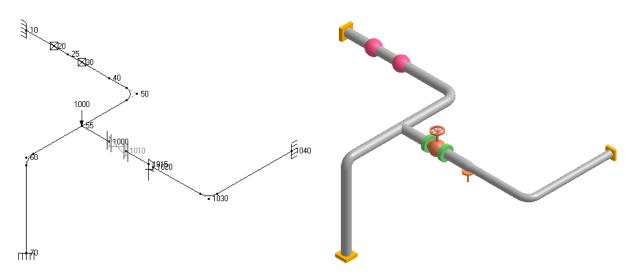
Operating Case									
	Node	F: (N	-	Fy (N)		Fz N)	Mx (N-m)	My (N-m)	Mz (N-m)
CAEPIPE	10	-127	' 10	-13920	-5	197	-1819	1146	-1890
PIPESTRESS	10	-126	655	-13893	-5	186	-1785	1136	-1848
CAEPIPE	70	-32		-14611		061	10015	-5689	13458
PIPESTRESS	70	-32	72	-14388	10	072	10329	-5754	13666
CAEPIPE	1040	159	76	1101	-4860		-11727	31995	813
PIPESTRESS	1040	159	26	1089	-4885		-11613	31903	732
Frequencies (in	Hz)								
Mode Number	CAEPIP	E	PIPESTRESS		S	S PIPESTRESS			
				(MP=0)		(MP=33)		
1	4.857			4.9			4.912		
2	7.941			7.94			8.084		
3	9.659			9.699			9.935	7	
4	10.692			10.832			11.441	7	
5	14.637			14.613			15.053	1	

Note : The value of spring constant and cold load for the hanger at node 1015 have been taken from CAEPIPE results are inserted manually in PIPESTRESS input file.

This model shown below is the same as Model-018 above with the following modifications.

- a. Two flanges on both sides of the valve with weight 495.32 kg each and
- b. Hanger removed from node 1015.

Nan	ne of the Model	Model – 019
Ana	Ilysis Options in CAEPIPE	
1	Code – B 31.3	
2	Reference Temperature = 20° c	
3	Do not include bourdon effect	
4	Do not use pressure correction for	or bends
5	Do not include missing mass corr	rection
6	Do not use friction in dynamic and	nalysis
7	Y – Vertical	
Tota	al Weight (Kg)	
CAE	EPIPE 5218.1	
CAL	EPIPE 5218.1	

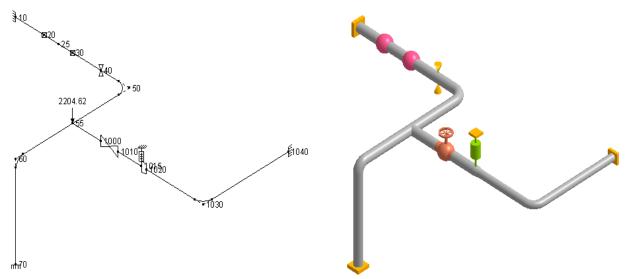

Support Load (Sustained)							
· · ·							
PIPESTRESS	5218.741						
CAEPIPE	5218.1						

Support Load (Sustained)								
	Node	Fx	Fy	Fz	Mx	My	Mz	
	Noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)	
CAEPIPE	10	372	-16429	-1535	-2733	663	-4054	
PIPESTRESS	10	365	-16431	-1536	-2743	665	-4065	
CAEPIPE	70	-2323	-28513	4793	-13669	-191	4652	
PIPESTRESS	70	-2334	-28528	4798	-13723	-169	4610	
CAEPIPE	1040	1950	-16036	-3258	25694	1919	7393	
PIPESTRESS	1040	1968	-16026	-3262	25716	1949	7421	

Operating Case								
	Node	Fx (N)	Fy (N)	F: (N		Mx (N-m)	My (N-m)	Mz (N-m)
CAEPIPE	10	-11491	-15407	-57	17	-3082	1468	-3625
PIPESTRESS	10	-11486	-15410	-57	17	-3091	1470	-3635
CAEPIPE	70	-6457	-31265	131	55	3700	-3893	14140
PIPESTRESS	70	-6472	-31278	131	64	3662	-3876	14117
CAEPIPE	1040	17947	-14306	-74	38 21023		34849	6008
PIPESTRESS	1040	17958	-14298	-74	46 21049		34869	6031
Frequencies (in	Hz)							
Mode Number	CAE	EPIPE	PIPESTRE (MP=0)			PESTRESS (MP=33)		
1	4.	403	4.395			4.406		
2	6.	978	6.972			7.067		
3	8.	342	8.339			8.500		
4	9.	626	9.627			9.975		
5	13	3.51	13.487			13.682		

This model shown below is the same as Model-019 above with the following modification.

a. Limit stop at node 1015 without friction coefficient.

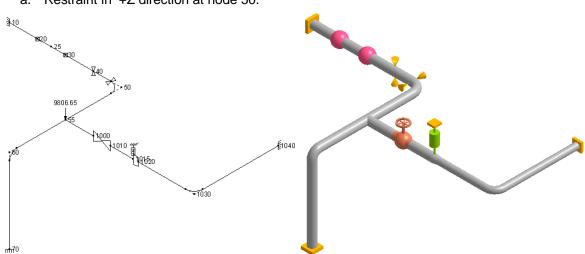

Nan	ne of the Mo	odel			Model	Model – 020						
Ana	Analysis Options in CAEPIPE											
1	Code – B 3	31.3										
2	Reference	Temper	ature = 20) ⁰ c								
3	Do not incl	ude bou	rdon effec	t								
4	Do not use	e pressur	e correcti	on for bends	S							
5	Do not incl	ude mis	sing mass	correction								
6	Do not use	e friction	in dynami	c analysis								
7	Y – Vertica	al										
Tota	al Weight (K	(g)										
CAE	EPIPE	5218.1										
PIP	ESTRESS	5218.7	41									
Sup	port Load (Sustain	ed)									
		Node	Fx	Fy	Fz	Mx	My	Mz				
		Noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)				
CAE	EPIPE	10	-925	-15637	-1156	-1597	391	-2578				
PIP	ESTRESS	10	-928	-15639	-1156	-1599	391	-2581				
-	PIPE	70	902	-13689	1988	-8436	-2195	4488				
PIP	ESTRESS	70	900	-13697	1989	-8451	-2191	4480				
0.45		1010	00	07	000	0000	000	0010				
		1040	23	-67	-832	-8936	-986	2619				
PIP	ESTRESS	1040	27	-67	833	8928	-979	-2612				

Operating Case									
	Node	Fx (N)		Fy (N)		Fz (N)	Mx (N-m)	My (N-m)	Mz (N-m)
CAEPIPE	10	-12440)	-14828	-	5439	-2251	1269	-2546
PIPESTRESS	10	-12433	3	-14830	-	5439	-2253	1270	-2549
CAEPIPE	70	-4099		-20424		1104	7527	-5359	14021
PIPESTRESS	70	-4104		-20419	1	1107	7522	 -5356	14021
CAEPIPE	1040	16538	3	-2627 -		5664	-4303	32725	2517
PIPESTRESS	1040	16536	\$	-2612	-	5668	-4317	32714	2510
Frequencies (in	Hz)								
Mode Number	CAE	PIPE	P	PIPESTRESS		PIPESTRESS			
				(MP=0)		(MP=33)			
1	5	.39		5.388		5	.422		
2	7.	127		7.121		7	.201		
3	8.	532		8.530		8	.667		
4	13	13.488		13.465		13	3.654		
5	17	.186		17.148		17	7.829		

Note: For the limit stop to behave properly (i.e. Non-linear behavior), the user has to define 'NCAS' cards separately. CPTOPS does not define 'NCAS' card.

This model shown below is the same as Model-020 above with the following modification.

- a. User hanger at node 1015 with spring rate = 19.287 kg/mm and hot load = 2430 and
- b. Flexible limit stop with stiffness=1000kg/mm in vertical direction at node 40 and without friction coefficient.

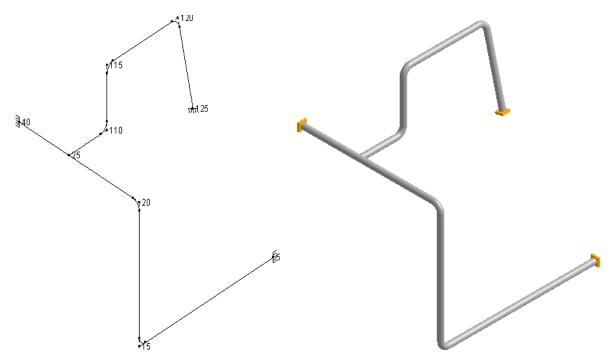

Nam	ne of the Moo	del			Мо	del – 021				
Ana	alysis Options in CAEPIPE									
1	Code – B 3	1.3								
2	Reference 7									
3	Do not inclu	ide bourdo	on effect							
4	Do not use									
5	Do not inclu									
6	Do not use		dynamic a	nalysis						
7	Y – Vertical									
Tota	al Weight (Kg	g)								
CAE	PIPE		4227.	4						
PIPE	ESTRESS		4228.1	01						
Sup	port Load (S	ustained)								
		Node	Fx (N)	Fy (N)	Fz (N)	Mx (N- mm)	My (N-mm)	Mz (N-mm)		
CAE	PIPE	10	-724	-7365	-253	306	39	-35		
PIPE	ESTRESS	10	-786	-7499	-258	303	38	-37		
CAE	PIPE	70	1344	-8608	-266	-1050	-1368	1409		
PIPE	ESTRESS	70	1451	-8272	-330	-1075	-1435	1398		
CAE	PIPE	1040	-620	3291	519	-11934	-1267	-1436		
PIPE	ESTRESS	1040	-665	3408	587	-12178	-1340	-1490		

Operating Case									
	Node	Fx (I	N)	Fy (N)	Fz	(lb)	Mx (N- mm)	My (N-mm)	Mz (N-mm)
CAEPIPE	10	-126	11	-7793	-4	581	-383	902	-43
PIPESTRESS	10	-125	73	-7858	-4	581	-386	899	-44
CAEPIPE	70	-288	32	-11982	84	173	15112	-5188	11388
PIPESTRESS	70	-289)7	-11835	84	199	15232	-5224	11522
CAEPIPE	1040	1549	93	4271	-3	892	-15671	31727	-2125
PIPESTRESS	1040	1547	71	4244	-3918		-15584	31684	-2155
Frequencies (in	Hz)								
Mode Number	CAEF	PIPE	Р	PIPESTRESS		PIP	ESTRESS		
				(MP=0)		(MP=33)		
1	7.6	25		7.623			7.777		
2	9.5	99		9.658			9.910		
3	10.5	574		10.718			11.287		
4	14.6	637		14.613			15.053		
5	18.2	212		18.210			18.608		

Note: The user has to read the cold load for the hanger from the CAEPIPE result files and input that value fin the 'FO' field for the 'VSUP' card in the PIPESTRESS input files.

About Model-023a

This model shown below is the same as Model-022a above with the following modification.


a. Restraint in +Z direction at node 50.

Nan	ne of the Moo	lel			Model -	Model – 023a					
Ana	lysis Options	s in CAEP	IPE								
1	Code – B 31										
2	Reference T	emperatu	$re = 20^{\circ}c$								
3	Do not inclu	de bourdo	n effect								
4	Do not use p	oressure c	orrection for	or bends							
5	Do not inclu	de missing	g mass cor	rection							
6	Do not use f	riction in c	lynamic an	alysis							
7	Y – Vertical										
Tota	al Weight (Kg	I)									
	EPIPE	4227.4									
PIP	ESTRESS	4228.10	1								
Sup	port Load (S	ustained)									
		Node	Fx (N)	Fy (N)	Fz (N)	Mx (N-	My (N-	Mz (N-mm)			
			· · /	,	· · /	mm)	mm)	· · · · ·			
(CAEPIPE	10	-205	-5431	83	322	-3	3			
PIF	PESTRESS	10	-221	-5495	77	318	-3	2			
-		70	281	-14568	1888	1946	-236	86			
PIF	PESTRESS	70	312	-14341	1828	1887	-261	100			
		1040	-76	-2699	80	2161	-146	-420			
	PESTRESS	1040	-91	-2620	98	1979	-173	-445			
Ope	rating Case						· ·				
		Node	Fx (N)	Fy (N)	Fz N)	Mx (N- mm)	My (N-mm)	Mz (N-mm)			
CAE	PIPE	10	-13276	-6374	-1167	-580	47	-15			
PIP	ESTRESS	10	-13331	-6391	-1159	-585	47	-16			
	PIPE	70	-1172	-21057	27499 27460	56663	-3637	3196			
	IPESTRESS 70 -1100 -20921					56616	-3625	3014			

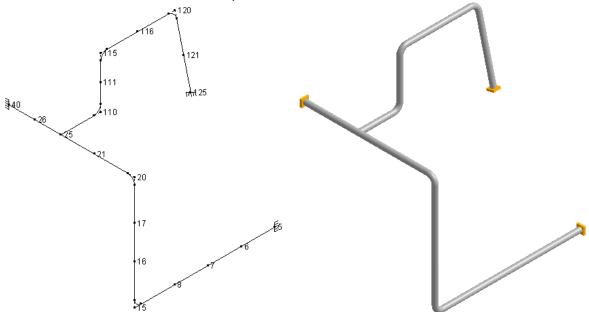
	1								
CAEPIPE	1040	14448	-1660	-111	7	-1814		31865	-1305
PIPESTRESS	1040	14431	-1652	-104	4	-1838	e.,	31868	-1317
Frequencies (in l	Hz)								
Mode Number	CAEP	IPE	PIPESTRE	SS	Р	IPESTRES	S		
			(MP=0)		(MP=33)				
1	9.58	9	9.613			9.874			
2	10.53	36	10.596		11.145				
3	14.535		14.516		14.876				
4	17.29	98	17.289			17.636			
5	18.62	23	18.611			18.796			

Note: The user has to read the cold load for the hanger from the CAEPIPE result files and input that value fin the 'FO' field for the 'VSUP' card in the PIPESTRESS input files.

The model contains static seismic load in X, Y and Z-direction.

Nai	ne of the Model	Model – 025
Ana	alysis Options in CAEPIPE	
1	Code – B 31.1	
2	Reference Temperature = 21.11 ^o c	
3	Do not include bourdon effect	
4	Do not use pressure correction for bends	
5	Include missing mass correction	
6	Do not use friction in dynamic analysis	
7	Y – Vertical	
T - 4	al Mainhat (Kar)	

Total Weight (Kg	
CAEPIPE	3857.8
PIPESTRESS	3858.772


Support Load (Sustained)

Support Load (Sustained)											
	Node	Fx (N)	Fy (N)	Fz (N)	Mx (N-	My (N-	Mz (N-mm)				
					mm)	mm)					
CAEPIPE	5	-1510	-11395	-1507	44747	-11150	-1394				
PIPESTRESS	5	-1510	-11398	-1508	-44758	-11152	1394				
CAEPIPE	40	67	-17330	1124	-2644	-4982	-57026				
PIPESTRESS	40	67	17335	1125	2645	4983	57040				
CAEPIPE	125	1442	-9106	383	7789	3986	-1851				
PIPESTRESS	125	1443	-9109	383	7791	3987	-1851				

Static Seismic C	ase								
	Node	Fx (N)	Fy (N)	Fz I	N)	Mx (N- mm)	My (N-mm)	Mz (N-mm)
CAEPIPE	5	9777	,	5832	1432	28	22863	38304	5721
PIPESTRESS	5	9780)	5834	143	31	22869	38314	5723
CAEPIPE	40	20502	2	8944	1293	33	2084	36755	29495
PIPESTRESS	40	2050		8947	129		2085	36765	29503
CAEPIPE	125	7881		4713	106	16	25651	9585	20666
PIPESTRESS	125	7883		4715	106		25657	9587	20671
Frequencies (in Hz)									
Mode Number	CAEP	IPE	F	PIPESTRESS (MP=0)		F	PIPESTRES (MP=33)	S	
1	1.99)1		1.99			2.267		
2	2.68	9		2.688		3.166			
3	3.37	'8		3.377		3.726			
4	5.42	24		5.423		5.663			
5	7.15	i6		7.155		7.414			
6	7.69)7		7.696			8.099		
7	9.61	1		9.61		11.662			
8	13.7	63		13.762			13.306		
9	18.9	44		18.942			13.901		
10	19.13	32	19.1				15.261		
11							17.937		
12							20.206		
13							20.607		
14							21.482		

Note: The user can see that when the automatic mass modeling is turned on ('MP=33' in 'FREQ' card), not only natural frequencies are different but also numbers of modes are different. To get identical results in CAEPIPE the user can create additional nodes in the CAEPIPE model. The next model (Model-026) is created with additional nodes (as created internally by PIPESTRESS). The information about the additional nodes can be found in the *.prd file, after running the *.fre file.

About Model-026 The model is same as Model-025, except for the additional nodes created.

Nan	ne of the Moo	del			Model	- 026					
Ana	lysis Option	s in CAEP	IPE								
1	Code – B 31	1.1									
2	Reference Temperature = 21.11 ^o c										
3	Do not include bourdon effect										
4	Do not use pressure correction for bends										
5	Include miss										
6	Do not use f		lynamic ar	nalysis							
7	Y – Vertical										
Total Weight (Kg)											
	EPIPE	3857.8									
PIP	ESTRESS	3858.772	2								
Sup	port Load (S	ustained)									
		Node	Fx (N)	Fy (N)) Fz (N)	Mx (N- mm)	My (N- mm)	Mz (N-mm)			
(CAEPIPE	5	-1510	-11395	5 -1507	44747	-11150	-1394			
PIF	PESTRESS	5	-1510	-11398	3 -1508	-44758	-11152	1394			
	CAEPIPE	40	67	-17330		-2644	-4982	-57026			
PIF	PESTRESS	40	67	17335	5 1125	2645	4983	57040			
(CAEPIPE	125	1442	-9106	383	7789	3986	-1851			
PIF	PESTRESS	125	1443	-9109		7791	3987	-1851			

Static Seismic C	ase							
	Node	Fx (N)	Fy (N)	Fzl	۷)	Mx (N- mm)	My (N-mm)	Mz (N-mm)
CAEPIPE	5	9777	5832	143	28	22863	38304	5721
PIPESTRESS	5	9780	5834	143	31	22869	38314	5723
CAEPIPE	40	20502	8944	129	33	2084	36755	29495
PIPESTRESS	40	20507	8947	129	36	2085	36765	29503
CAEPIPE	125	7881	4713	106	16	25651	9585	20666
PIPESTRESS	125	7883	4715	106	18	25657	9587	20671
Frequencies (in	Hz)							
Mode Number	CAEP	IPE		PIPESTRESS (MP=33)				
1	2.26	8	2.267	1 /				
2	3.16	6	3.166					
3	3.72	27	3.726					
4	5.66	64	5.663					
5	7.41	5	7.414					
6	8.10	0	8.099					
7	11.60	63	11.662					
8	13.30	08	13.306					
9	13.90	03	13.901					
10	15.20	63	15.261					

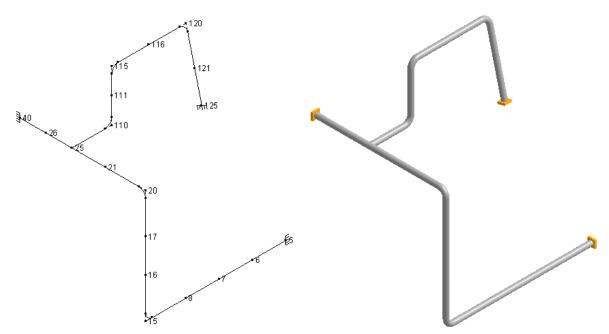
17.937

20.206 20.607 21.482

17.939

20.209

20.610


21.484

11 12

13

14

About Model-027 The model is same as Model-026, spectrums are defined and applied.

Nan	ne of the Moo	del			Model	- 027					
Ana	Analysis Options in CAEPIPE										
1	Code – B 31	1.1									
2	Reference Temperature = 21.11 ^o c										
3	Do not include bourdon effect										
4	Do not use p										
5	Include miss										
6	Do not use f	friction in c	lynamic ar	nalysis							
7	Y – Vertical										
Tota	Total Weight (N)										
CAE	CAEPIPE 3857.8										
PIP	ESTRESS	3858.772	2								
Sup	port Load (S	ustained)									
	· · ·	Node	Fx (N)	Fy (N)	Fz (N)	Mx (N- mm)	My (N- mm)	Mz (N-mm)			
(CAEPIPE	5	-1510	-11395	-1507	44747	-11150	-1394			
PIF	PESTRESS	5	-1510	-11398	-1508	-44758	-11152	1394			
	CAEPIPE	40	67	-17330	1124	-2644	-4982	-57026			
PIF	PESTRESS	40	67	17335	1125	2645	4983	57040			
(125	1442	-9106	383	7789	3986	-1851			
	PESTRESS	125	1443	-9109	383	7791	3987	-1851			

Response Case								
	Node	Fx (N)) Fy (N)	Fzľ	۷)	Mx (N- mm)	My (N-mm)	Mz (N-mm)
CAEPIPE	5	5299	4630	403	8	22015	28395	5004
PIPESTRESS	5	5295	4612	382	2	22018	28399	5005
CAEPIPE	40	5367	6934	568	0	3514	23764	26378
PIPESTRESS	40	5205	6926	567	8	3515	23769	26382
045005	105	4500		454	_	40005		45700
CAEPIPE	125	4508		451		13035	6280	15729
PIPESTRESS	125	4496	2001	451	1	13037	6281	15734
Frequencies (in	Hz)							
Mode Number	CAEP	IPE	PIPESTRE	SS				
			(MP=33	5)				
1	2.26	68	2.267					
2	3.16	6	3.166					
3	3.72	27	3.726					
4	5.66	64	5.663					
5	7.41	5	7.414					
6	8.10	00	8.099					
7	11.66	63	11.662					
8	13.30	08	13.306					
		~ ~						

13.901

15.261

17.937

20.206

20.607

21.482

9

10

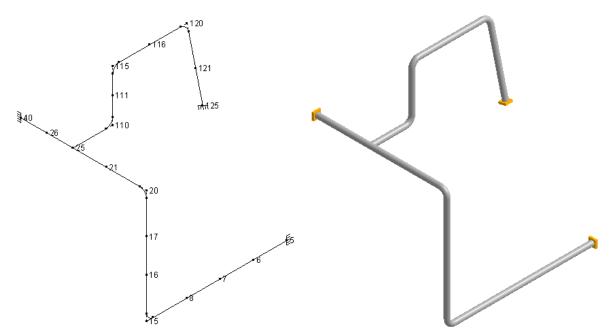
11 12

13

14

13.903

15.263

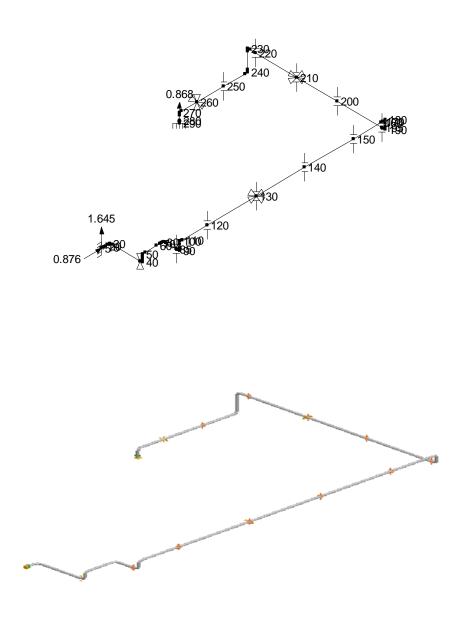

17.939

20.209

20.610

21.484

About Model-028 The model is same as Model-026, spectrums are defined and applied.

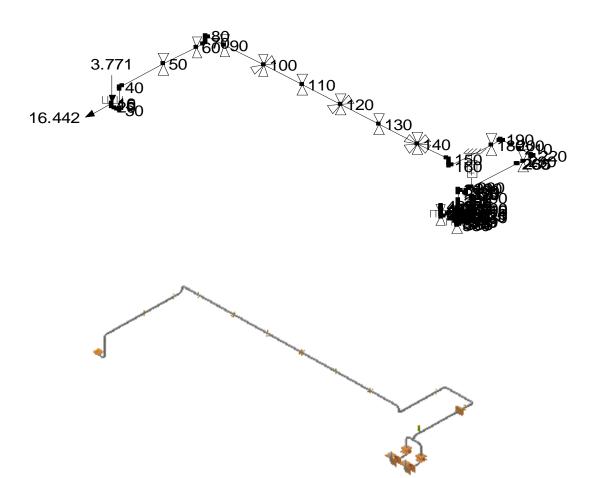


Nar	ne of the Moc	lel	Model – 027							
Ana	Analysis Options in CAEPIPE									
1	Code – B 31.1									
2	Reference Temperature = 21.11 ^o c									
3	Do not inclu	de bourdon effect								
4	Do not use pressure correction for bends									
5	Include miss	sing mass correction								
6	Do not use f	riction in dynamic analysis								
7	Y – Vertical									
Tota	al Weight (N)									
CA	CAEPIPE 3857.8									
PIP	PIPESTRESS 3858.772									

6.3 Live Project Models

About Model- 7509002_D69

This model is an 8" nominal diameter carbon steel (A106 Grade B) insulated 150 lb class piping system between LP Amine Absorber and LP Amine Absorber KO Drum in a Oil Refinery Expansion Project. Operating temperature is 135^o C. The model consists of straight pipes and elbows. The piping system is of welded construction with 12 limit stops and 3 lateral restraints. Cases considered are sustained, operating and seismic. Cut-off frequency is 33Hz. Friction at supports is considered in dynamic analysis. Piping code used is ASME B31.3.

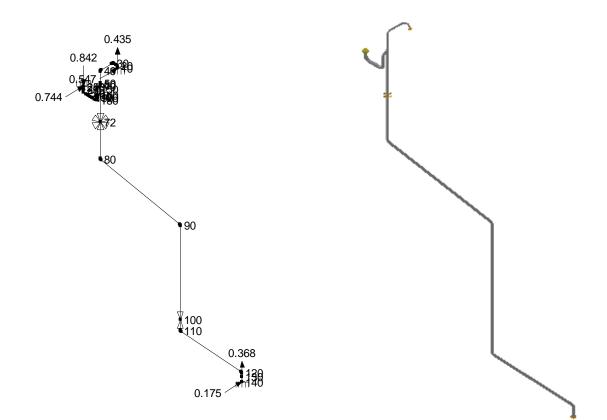


Nan	ne of the Mod	el				Мо	odel – 75	09002_D69				
Ana	lysis Options	in CAEPI	PE									
1	Code – B 31	.3										
2	Reference T											
3	Number of T	hermal Cy	cles = 7	000								
4	Use modulus	s at referer	nce temp	bera	ature							
5		Do not include bourdon effect										
6	Use pressure correction for bends											
7	Include missing mass correction											
8	Do not use fr			anal	ysis							
9	Include Hang	ger Stiffnes	SS									
10	Y – Vertical											
	al Weight (Kg)											
	EPIPE	4463.5										
PIPESTRESS 4464.724												
Sup	port Load (Su	istained)										
	• •	Node	Fx		Fy		Fz	Mx	My		Mz	
		Node	(N)		(Ň)		(N)	(N-m)	(N-m)		(N-m)	
	CAEPIPE	5	13		-2389		38	-2080	-228		-133	
PI	PESTRESS	5	13		-2390		38	-2080	-228		-133	
	CAEPIPE	290	-114		-1588		-15	-82	-15		217	
PI	PESTRESS	290	- 114		- 1588		-15	-82	-15		217	
Sun	port Load (Op	orating (360)									
oup			Fx		Fy		Fz	Mx	M	,	Mz	
		Node	(N)		(N)		(N)	(N-m)	(N-i		(N-m)	
	CAEPIPE	5	-517		-2570	<u>ר</u>	1134	-1878	-24		-780	
	PESTRESS	5	-517		-2570		1134	-1878	-24		-780	
		, v			2010		1.04	1070	2-10		100	
(CAEPIPE	290	1223	3	-4393	3	1010	-591	-43	3	-775	
	PESTRESS	290	1233		-4392		1010	-591	-43		-774	
Free	quencies (in H	lz)			•				·		-	
1	Mode Number	CA	EPIPE				RESS	PIPES				
		Image: Margin ber CALIFIFIC (MP=0) (MP=33) 1 2.291 2.225										
	<u>1</u> 2		2.291 3.276			2.29 3.27				-		
	3				3.27 1.03			3.373				
	3 4.039 4 5.256					1.03 5.25			4.106 5.419			
	5		5.287			5.25 5.28		5.5		1		
	0		0.201		i i	0.20	5	5.5	47]		

About Model- 7510016_D77

This model is a 10" nominal dia carbon steel (A53 Grade B) 300 lb class piping between MHC stripper Bottom Pumps and Atmospheric Distillation Feed Bottom Exchanger ina Oil Refinery Expansion Project. The model conists of straight pipes, elbows, tees and flanges. There are limit stops, lateral restraints and concentrated masses such as valves. The system is of welded construction. Cases considered for analysis are sustained, operating, and seismic. Cut-off frequency is 33 Hz. Piping code used is ASME B31.3

Diagram

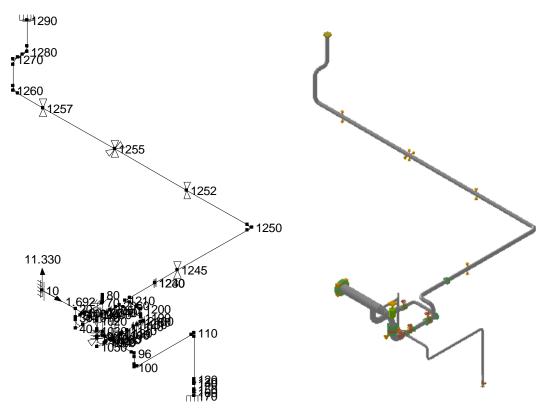

Nan	ne of the Model	Model - 7510016_D77								
Ana	Analysis Options in CAEPIPE									
1	Code – B 31.3									
2	Reference Temperature = 20 [°] c									
3	Number of Thermal Cycles = 7000									
4	Use modulus at reference temperature									
5	Do not include bourdon effect									
6	Do not use pressure correction for bends									
7	Include missing mass correction									
8	Do not use friction in dynamic analysis									
9	Include Hanger Stiffness									
10	Y – Vertical									

Total Weight (Kg)							
CAEPIPE	11569						
PIPESTRESS	11530.594						
Support Load (Su							
		Fx	Fy	Fz	Mx	My	Mz
	Node	(N)	(Ň)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	10	-66	-7683	81	-321	263	-5742
PIPESTRESS	10	-66	-7681	80	-321	263	-5744
CAEPIPE	480	551	-3067	-132	-26	-243	-737
PIPESTRESS	480	545	-2906	-137	-20	-243	-634
FIFESTRESS	400	545	-2900	-137	-23	-244	-034
CAEPIPE	630	-604	-2006	-10	-637	343	-542
PIPESTRESS	630	-599	-1847	-9	-579	340	-445
Support Load (O	perating)						
	Node	Fx	Fy	Fz	Mx	My	Mz
		(N)	(N)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	10	-2398	-9805	3538	2803	8856	-2892
PIPESTRESS	10	-2394	-9803	3535	2801	8830	-2892
CAEPIPE	480	-1068	-3345	-411	-1311	655	131
PIPESTRESS	480	-1061	-3181	-415	-1257	644	215
	100	1001			1201	011	210
CAEPIPE	630	1649	-1769	801	-2367	-2397	-2525
PIPESTRESS	630	1640	-1628	801	-2295	-2383	-2412
Frequencies (in H							
Mode Number	CAEPIP		ESTRESS (MP=0)	PIPEST (MP=			
1	1.546		1.545	1.60			
2	2.585		2.586	2.61	4		
3	2.974		2.972	2.97			
4	3.325		3.331	3.30			
5	3.439		3.437	3.46	62		

About Model- 7522029_D105

This model is a carbon steel (A53 Grade B) insulated 150 lb class piping system connected to a Dryer Overhead Receiver and operating at 41[°] C in a Oil Refinery Expansion Project. The model has line sizes of nominal diameter 2", 3" and 4" and comprises of straight pipes, elbows, tees, reducers and WN flanges. The system is of welded constructions and has 2 limit stops and 1 lateral restraint. Cases considered for analysis are sustained, operating and seismic. Cut-off frequency is 33 Hz. Piping code used is ASME B31.3

Diagram


Nan	me of the Model Model – 7522029_D105								
Ana	lysis Option	s in CAEPIPE							
1	Code – B 31.3								
2	Reference Temperature = 20°c								
3	Number of	Number of Thermal Cycles = 7000							
4	Use modulu	is at reference tem	perature						
5	Do not inclu	Do not include bourdon effect							
6	Do not use	pressure correctio	n for bends						
7	Include mis	sing mass correcti	on						
8	Do not use	friction in dynamic	analysis						
9	Include Har	nger Stiffness							
10	Y – Vertical								
Tota	Total Weight (Kg)								
CAE	EPIPE 309.65								
PIP	ESTRESS	309.668]						

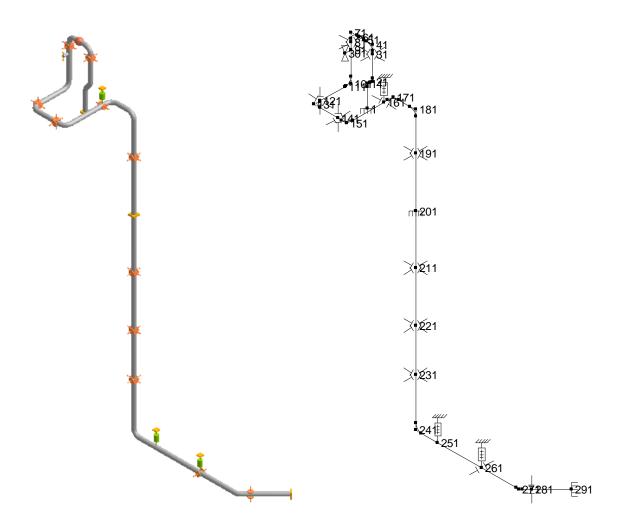
Support Load (Su	stained)							
	Node		-x	Fy	Fz	Mx	My	Mz
			N)	(N)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	10		-3	-573	6	1	1	4
PIPESTRESS	10		-3	-573	6	1	1	4
CAEPIPE	140		4	-372	-3	68	6	29
PIPESTRESS	140		4	-372	-3	68	6	29
CAEPIPE	250	2	42	-254	-33	8	18	1
PIPESTRESS	250	2	42	-254	-33	8	17	2
Support Load (Op	perating)							
		F	-x	Fy	Fz	Mx	My	Mz
	Node	(N)	(Ň)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	10	2	79	1607	-1032	-845	-128	-333
PIPESTRESS	10	2	56	1430	-946	-776	-118	-304
CAEPIPE	140	-	04	0700	754	4000	202	102
-	140		91	-2708	-754	1299	362	-192
PIPESTRESS	140	5	46	-2526	-695	1204	334	-174
CAEPIPE	250	-1	309	5030	1435	461	-883	2876
PIPESTRESS	250		241	4687	1337	412	-818	2651
Frequencies (in H	z)							
Mode Number	CAEPIF	ΡE		ESTRESS	PIPEST			
			(MP=0)	(MP=	=33)		
1	1.991			1.987	2.0	49		
2	3.662			3.653	4.5	38		
3	6.041			6.030	5.6			
4	8.686			8.664	8.8	50		

About Model- 7521020_d54

This model is a carbon steel (A53 Grade B), 150 lb class insulated piping system connected to a Dryer and operating at 120⁰ C in an Oil Refinery Expansion Project. The model has line sizes of nominal diameter 4", 6", 8", 10", 16" and 24" and comprises of straight pipes, elbows, reducers, tees and welding neck flanges. There are concentrated masses such as valves. The system is of welded construction and has 2 spring hangers, 4 limit stops and 2 lateral restraints. Cases considered for analysis are sustained, operating, seismic and wind. Cut-off frequency is 33Hz. Friction at support is considered in dynamic analysis. Piping code used is ASME B31.3.

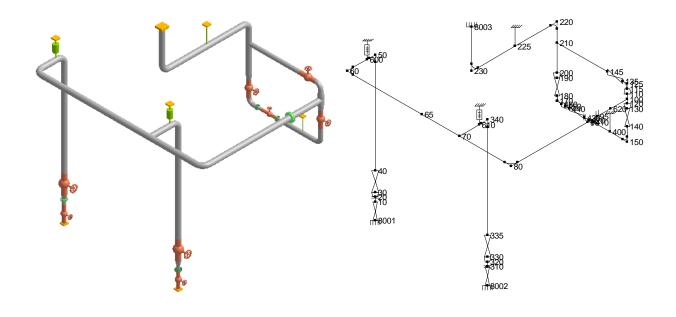
Diagram

Nam	e of the Model	Model – 7521020_d54
Ana	lysis Options in CAEPIPE	
1	Code – B 31.3	
2	Reference Temperature = 20 [°] c	
3	Number of Thermal Cycles = 7000	
4	Use modulus at reference temperature	
5	Do not include bourdon effect	
6	Do not use pressure correction for bends	
7	Include missing mass correction	
8	Do not use friction in dynamic analysis	
9	Include Hanger Stiffness	
10	Y – Vertical	
Tota	l Weight (Kg)	
CAE	PIPE 7606.7	
PIPE	STRESS 7615.16	
FIFE	ISTRESS 1015.10	


Support Load (Su	istained)						
	Node	Fx (N)	Fy (N)	Fz (N)	Mx (N-m)	My (N-m)	Mz (N-m)
CAEPIPE	10	64	-8975	-407	-21152		8014
PIPESTRESS	10	63	-9039	-408	-21156		7902
CAEPIPE	170	17	-4141	-58	-74	22	-130
PIPESTRESS	170	17	-4144	-59	-75	19	-128
CAEPIPE	1290	-81	-2717	-15	529	-15	-145
PIPESTRESS	1290	-80	-2719	-15	531	-14	-141
Support Load (O	perating)						
· · · ·	Node	Fx (N)	Fy (N)	Fz (N)	Mx (N-m)	My (N-m)	Mz (N-m)
CAEPIPE	10	862	-11574	-1554	-21545	· · ·	-2965
PIPESTRESS	10	813	-11761	-1479	-21904	939	-3437
CAEPIPE	170	246	-4637	-591	-1153	299	-977
PIPESTRESS	170	192	-4541	-479	-920	220	-814
CAEPIPE	1290	-1108	8 3392	375	-6663	-354	-1416
PIPESTRESS	1290	-100	5 2789	336	-5957	-317	-1286
Frequencies (in F	z)						
Mode Number	CAEPIPE		PIPESTRESS (MP=0)		PIPESTRESS (MP=33)		
1	2.340		2.328	2.4	14		
2	2.442		2.435	2.43			
3	2.575		2.550	2.58			
4	2.781		2.774	2.79	94		

3.194

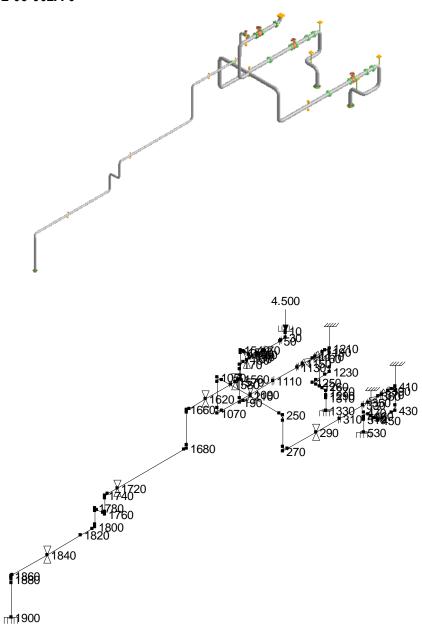
5


3.157

3.662

Nan	ne of the Mode	el		Model – PRUEBA_original	
Ana	lysis Options	in CAEPIPE			
1	Code – B 31.	3			
2	Reference Te	emperature = 20°	с		
3	Number of Th	nermal Cycles = 7	7000		
4	Use modulus	at reference tem	perature		
5	Include bourd	don effect			
6	Do not use pr	ressure correction	n for bends		
7	Do not includ	e missing mass o	correction		
8	Use friction in	n dynamic analysi	is		
9	Include Hang	er Stiffness			
10	Y – Vertical				
Tota	al Weight (Kg)				
CAE	EPIPE	31627			
PIP	ESTRESS	31486.387			

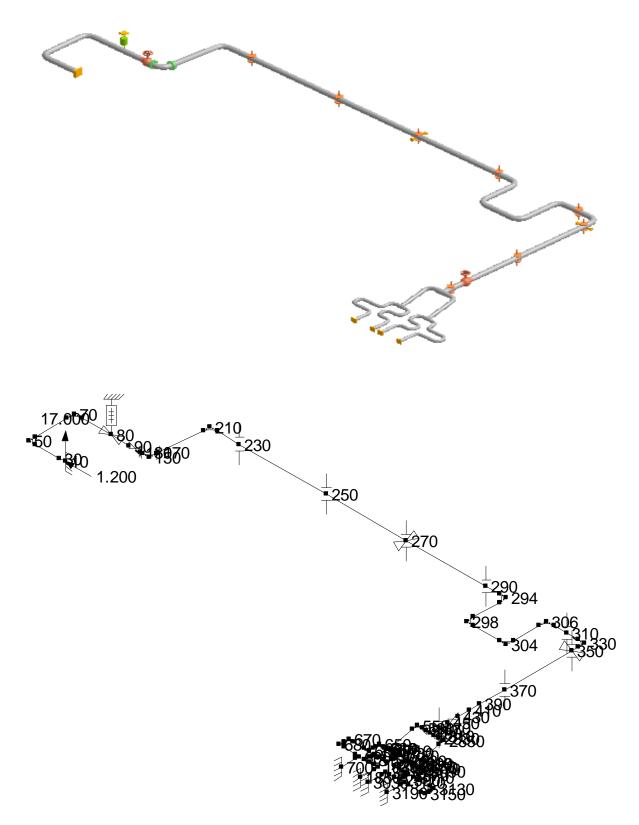
Support Load (Su	ustained)						
	Node	Fx	Fy	Fz	Mx	Му	Mz
	Noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	1	-3388	36362	1485	3739	-982	4209
PIPESTRESS	1	-3219	35702	1440	3605	-981	3760
CAEPIPE	201	-608	-126939	1150	2989	-2219	1715
PIPESTRESS	201	-610	-126962	1167	3015	-2271	1770
CAEPIPE	291	857	-6375	-175	5168	2375	1659
PIPESTRESS	291	1029	-6392	-235	5236	2717	1847
Support Load (O	perating)						
	Node	Fx	Fy	Fz	Mx	My	Mz
		(N)	(N)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	1	4385	-33319	3863	9234	-9259	-23011
PIPESTRESS	1	4382	-32501	3818	9134	-9172	-22752
CAEPIPE	201	6272	-129585	-8580	-20597	19569	-29191
PIPESTRESS	201	6320	-129614	-8650	-20777	19589	-28753
CAEPIPE	291	-32976	-13665	11559	24633	-65110	-3119
PIPESTRESS	291	-32935	-13692	11562	24716	-64749	-3075
Frequencies (in H	lz)						
Mode Number	CAEPIF	PIP	ESTRESS	PIPEST	RESS		
		- ((MP=	33)		
1	2.188		2.187	2.24	13		
2	2.823		2.818	3.15			
3	3.924		3.902	4.03			
4	4.281		4.277	4.19			
5	4.389		4.386	4.61			
6	4.474		4.470	4.723			
7	5.869		5.857	6.37			
8	11.817		11.993				
9	12.499		12.413	12.343			
10	12.555		12.540	12.679			
11	13.354		13.335	13.110			
12	13574		13.535	14.413			
13	14.303		14.342	15.067			
14	15.484		15.497	16.0			
15	16.225		16.456	17.1			
16	17.738		17.488	17.5	76		
17	20.950		20.382	17.8			
18	22.996		22.976	18.1			
19	23.445		23.600	20.1			
20	25.897	7	25.288	20.8	23		



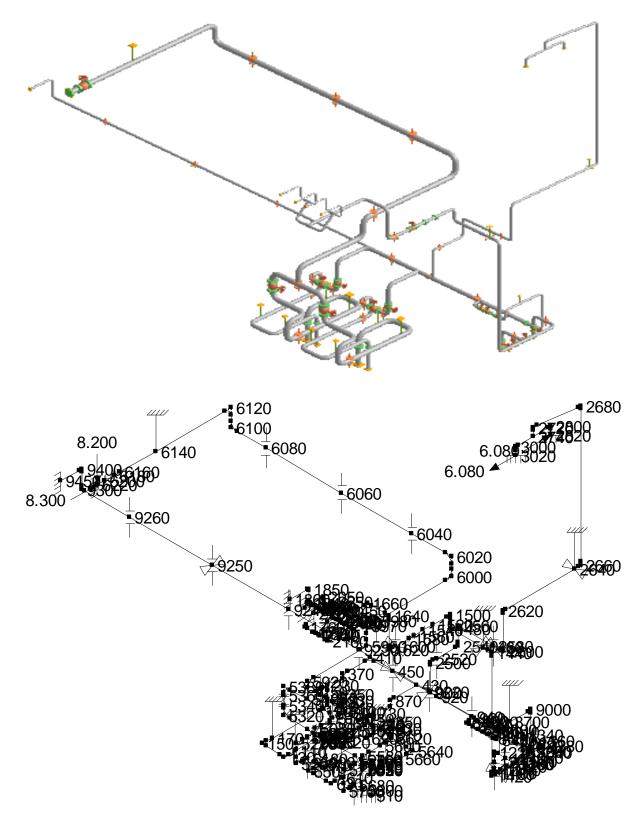
Name of the M	Node	el			Model – B	SFW-SPI				
Analysis Opti	ons	in CAEPI	PE							
1 Code – E	3 31.	1						·		
2 Reference	Reference Temperature = 20° c									
3 Number	Number of Thermal Cycles = 7000									
4 Use mod	lulus	at referen	ce tempe	erature						
5 Do not in	clud	e bourdon	effect							
6 Use pres	sure	correctior	n for bena	ds						
		ng mass c								
8 Do not u	se fri	ction in dy	namic ar	nalysis						
9 Include H	Include Hanger Stiffness									
10 Y – Verti										
Total Weight	(Kg)									
CAEPIPE		1623.8								
PIPESTRESS		1619.408								
Support Load	l (Su	stained)								
		Node	Fx	Fy	Fz	Mx	My	Mz		
			(N)	(N)	(N)	(N-m)	(N-m)	(N-m)		
CAEPIPE		8001	18	-2451	5	-6	-5	-50		
PIPESTRES	S	8001	17	-2433	6	-4	-6	-44		
CAEPIPE	-	8002	-16	-284	36	52	-14	-17		
PIPESTRES	S	8002	-15	-275	33	44	-13	-16		
			-			4.07				
CAEPIPE	_	8003	-2	897	-41	167	24	34		
PIPESTRES	S	8003	-1	914	-39	168	21	33		

	Nodo	Fx	Fy	Fz	Mx	My	Mz
	Node	(N)	(Ň)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	8001	-221	-2477	3	-69	-49	545
PIPESTRESS	8001	-184	-2462	5	-62	-40	426
CAEPIPE	8002	196	-868	20	-44	37	-553
PIPESTRESS	8002	155	-851	22	-37	27	-426
CAEPIPE	8003	25	2076	-23	1063	16	273
PIPESTRESS	8003	28	2081	-27	1066	14	273

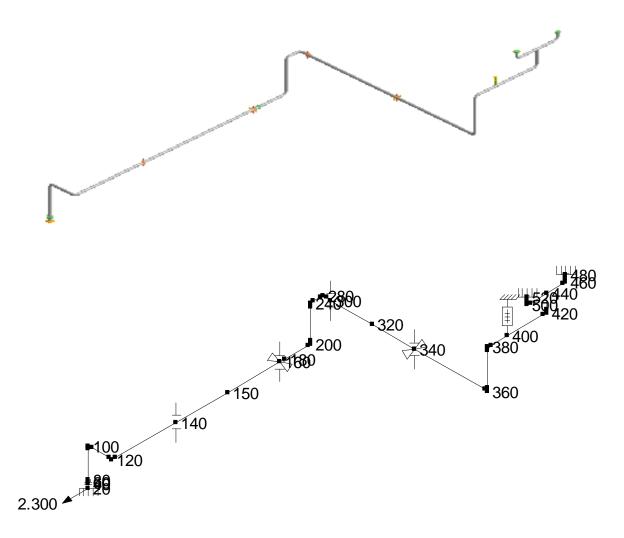
Frequencies (in Hz)


I requencies (in r			
Mode Number	CAEPIPE	PIPESTRESS	PIPESTRESS
		(MP=0)	(MP=33)
1	2.041	1.999	2.004
2	4.231	4.045	4.071
3	5.245	4.801	4.941
4	6.323	6.147	6.210
5	8.155	7.941	8.114
6	14.184	14.151	14.167
7	16.089	16.001	16.054
8	20.126	19.736	19.613
9	23.838	23.556	22.197
10	25.362	25.197	24.825
11	28.664	28.186	26.568
12	31.363	30.549	29.000
13	32.991	30.902	30.243

Nan	ne of the Model	Model – EGTL-05-002A-0	
Ana	lysis Options in CAEPIPE		
1	Code – B 31.3		
2	Reference Temperature = 20°c		
3	Number of Thermal Cycles = 7000		
4	Use modulus at reference temperature		
5	Do not include bourdon effect		
6	Do not use pressure correction for bends		
7	Include missing mass correction		
8	Do not use friction in dynamic analysis		
9	Include Hanger Stiffness		
10	Y – Vertical		


Total Weight (Kg)								
CAEPIPE	10757								
PIPESTRESS	10758.69	91							
Support Load (St		· ·							
		Fx	Fy		Fz	Mx	My		Mz
	Node	(N)	(N)		(N)	(N-m)	(N-m)		(N-m)
CAEPIPE	10	-67	-3249		-81	645	-303		566
PIPESTRESS	10	-67	-3248		-83	647	-302		563
0.455155	=		0.5.4.7		00.40	10.50			100
CAEPIPE	530	-112	-3547		3240	-4052	3553		189
PIPESTRESS	530	-112	-3546	-	3251	-4066	3566		189
CAEPIPE	1330	133	-3690		-3264	-4092	-3467	_	-204
PIPESTRESS	1330	133	-3688		·3275	-4092	-3480		-204
	1000	100	0000		5215	4100	0400		204
CAEPIPE	1900	46	-1793		-231	-352	-379		600
PIPESTRESS	1900	46	-1793		-231	- 351	-379		601
Support Load (O									
		Fx	Fy		Fz	Mx	M	/	Mz
	Node	(N)	(N)		(N)	(N-m)	(N-r		(N-m)
CAEPIPE	10	944	-298	5	1434	-2914	57		-8960
PIPESTRESS	10	941	-2998	8	1435	-2904	56	2	-8891
CAEPIPE	530	-114	-2136		2906	-4158	-463		-17769
PIPESTRESS	530	-113	-2136	64	2904	-4159	-462	24	-17779
CAEPIPE	1330	-559	-2170	0	3556	-2490	177	78	20705
PIPESTRESS	1330	-557	-2170		3550	-2503	178		20705
	1000	001	2170	/ 1	0000	2000			20100
CAEPIPE	1900	-271	-297	2	4399	9073	131	2	1331
PIPESTRESS	1900	-271	-2972	2	4395	9065	131	2	1331
Frequencies (in H	łz)								
Mode Number	C.A	EPIPE			RESS	PIPES			
			· ·	MP=	/	(MP=			
1		0.743).74		0.7			
2		1.563		1.56		1.5			
3		1.923 2.754		1.92 2.75		2.0 2.8			
4 5		2.754 3.050		2.75 3.04		2.8		-	
6		3.903		3.90		3.9		-	
7		4.242		1.24		4.2		1	
8		4.832		1.83		4.9		1	
9		4.914		1.91		5.0		1	
10		5.341		5.34		5.4		1	
11	Ę	5.601		5.59		5.5	67]	
12		5.666		5.65		5.7			
13		5.002		5.00		6.1			
14		6.047		5.04		6.2		-	
15		5.420		5.41		6.7		4	
16		<u>5.740</u>		5.74		6.9		-	
17 18		3.083		3.08		8.3		-	
18		3.541 9.294		3.53 9.29		8.7		-	
20		9.294		9.29		9.8		1	
20			1 8		0	9.0	1	J	

Nam	ne of the Mod	el			Мс	odel – EG	TL-05-0027	A-0	
Ana	lysis Options	in CAEPII	ΡE						
1	Code – B 31								
2	Reference To	emperature	$e = 20^{\circ}c$						
3	Number of T			0					
4	Use modulus								
5	Do not incluc								
6	Do not use p	ressure co	rrection fo	r bends					
7	Include missi								
8	Do not use fr			alysis					
9	Include Hang								
10	Y – Vertical								
Tota	l Weight (Kg)								
	PIPE	21385							
	ESTRESS	21180.12	6						
	port Load (Su								
Jup		· · ·	Fx	Fy		Fz	Mx	My	Mz
		Node	(N)	(N)		(N)	(N-m)	(N-m)	(N-m)
(CAEPIPE	10	-47	-6614		-28	10678	-45	5867
	PESTRESS	10	-39	-6097		-30	11251	-50	5886
	LOINLOO	10	00	0001		00	11201	00	0000
	CAEPIPE	700	63	-7499		-44	-9474	-193	4344
PIF	PESTRESS	700	63	-7510		-43	-9501	-191	4345
(CAEPIPE	1850	47	-6362		501	-7868	55	2822
PIF	PESTRESS	1850	47	-6387		500	7921	55	2827
	CAEPIPE	3030	-76	-6541		-303	-7707	272	-1970
PIF	PESTRESS	3030	-76	-6569		-306	-7767	272	-1976
	CAEPIPE	3190	-99	-6148		-179	-6566	290	-2939
	PESTRESS	3190	-99	-6164		-178	-6601	288	-2943
Sup	port Load (Op	perating C	ase)						
	· · · ·		Fx	Fy		Fz	Mx	My	Mz
		Node	(N)	(Ň)		(N)	(N-m)	(N-m)	(N-m)
(CAEPIPE	10	7699	-8176	6	9072	4408	15744	5399
PI	PESTRESS	10	7666	- 820	0	9071	4889	15755	5422
	CAEPIPE	700	-5350	-7880)	894	-10657	10114	4528
PI	PESTRESS	700	-5336	-7887	7	891	-10676	10087	4528
		40.55	0055						
		1850	3858	-6934		-944	-9446	-7333	3004
PI	PESTRESS	1850	3855	-6952	2	-941	-9485	-7333	3007
		2020	2402	-774	7	2114	10202	2277	2616
	PESTRESS	3030 3030	-2423 -2426	-7769		2114 2112	-10283	2277	-2616 -2620
	LUINEUU	3030	-2420	-7703	J	2112	-10332	2200	-2020
(CAEPIPE	3190	7860	-7269	9	6730	-8988	-18934	-3624
	PESTRESS	3190	7847	-7282		6726	-9017	-18908	-3627


Frequencies (in Hz)			
Mode Number	CAEPIPE	PIPESTRESS (MP=0)	PIPESTRSS (MP=33)
1	1.582	1.582 1.599	
2	1.951	1.954	1.984
3	2.712	2.722	2.793
4	2.799	2.821	2.844
5	3.451	3.488	3.550
6	3.585	3.664	3.752
7	4.952	4.963	4.974
8	5.156	5.159	5.345
9	5.685	5.700	5.726
10	7.469	7.505	7.411
11	9.363	9.392	9.489
12	9.974	9.978	9.977
13	11.237	11.237	11.303
14	11.780	11.761	11.758
15	11.975	11.995	11.954
16	13.079	13.062	12.315
17	13.359	13.308	13.103
18	14.211	14.191	13.351
19	16.059	16.097	14.189
20	16.223	16.197	15.660

Name of the Mod	Name of the Model					Model – EGTL-05-045A-0					
Analysis Options	in CAEPI	PE									
1 Code – B 31											
2 Reference T		$e = 20^{\circ}c$									
3 Number of T			00								
	Use modulus at reference temperature										
5 Do not includ			raturo								
6 Do not use p			or bends								
7 Include missi											
8 Do not use fr	<u> </u>		alvsis								
9 Include Hang											
10 Y – Vertical											
Total Weight (Kg)											
	32875										
PIPESTRESS	32870.88	20									
		50									
Support Load (Su	istaineu)	F	E	-	D.4	N 4					
	Node	Fx	Fy	Fz	Mx (Num)	My (Num)	Mz				
CAEPIPE		(N)	(N)	(N)	(N-m)	(N-m)	<u>(N-m)</u>				
-	10	-33	-3007	40	135	8	100				
PIPESTRESS	10	-34	-3008	41	136	8	101				
CAEPIPE	510	-45	-3019	9	79	-23	118				
PIPESTRESS	510	-46	-3013	9	80	-23	119				
FIFLOINLOO	510	-40	-3021	3	00	-23	119				
CAEPIPE	1860	-82	-2149	678	-2938	109	-63				
PIPESTRESS	1860	-82	-2149	676	-2936	109	-63				
FIFESTRESS	1000	-79	-2152	070	-2945	105	-03				
CAEPIPE	2060	-145	-2362	80	-3001	319	15				
PIPESTRESS	2060	-145	-2362	82	-3007	323	16				
FIFESTRESS	2000	-147	-2304	02	-3007	323	10				
CAEPIPE	2260	-150	-1223	-52	1224	252	-41				
PIPESTRESS	2260	-130	-1225	-52	-1334 -1337	252	-41				
FIFESTRESS	2200	-149	-1225	-00	-1337	201	-41				
CAEPIPE	2460	-209	-1277	-510	-1243	323	-32				
PIPESTRESS	2460	-209	-1277	-508	-1243	325	-32 -31				
FIFESTRESS	2400	-210	-1270	-508	-1243	525	-51				
CAEPIPE	2820	-10	-1675	-1466	-402	-6	-19				
PIPESTRESS	2820	-10	-1675	-1466	-402	-0 -6	-19 -19				
FIFEOIREOO	2020	-10	-10/5	-1407	-402	-0	-19				
CAEPIPE	3020	15	-1391	1406	417	1	-31				
PIPESTRESS	3020	15	-1391	1407	417	1	-31				
2011(200	0020	.0	1001	1 101		· · ·					
CAEPIPE	5000	169	-4379	71	168	196	-472				
PIPESTRESS	5000	170	-4381	72	168	195	-474				
	0000	170	-1001	14	100	100	717				
CAEPIPE	5500	-185	-4323	-33	-26	26	299				
PIPESTRESS	5500	-185	-4327	-33	-27	25	300				
2011/200	0000	100	1021		<i></i> /		000				
CAEPIPE	6220	16	-10008	-39	-4094	312	1837				
PIPESTRESS	6220	15	-10005	-39	-4156	312	1837				
	0220	10	10010	00			1007				
CAEPIPE	9450	30	-1922	-5	-2656	-9	76				
PIPESTRESS	9450	30	-1922	-5	-2657	-10	76				
	0-00	50	1020	0	2007	10	10				

Support Load (Op	erating C	ase)					
• •	Node	Fx	Fy	Fz	Mx	My	Mz
	Noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	10	-327	-6327	-107	4317	95	629
PIPESTRESS	10	-329	-6329	-107	4308	96	631
CAEPIPE	510	100	-6556	566	3723	-465	657
PIPESTRESS	510	190 187		-566			-657
PIPESTRESS	510	107	-6557	-558	3728	-458	-653
CAEPIPE	1860	-1854	-1085	1614	-1890	2166	-989
PIPESTRESS	1860	-1844	-1089	1610	-1899	2156	-989
CAEPIPE	2060	-253	-2690	599	-3689	369	-228
PIPESTRESS	2060	-256	-2692	598	-3695	375	-225
CAEPIPE	2260	-739	-611	641	-672	1121	-208
PIPESTRESS	2260	-735	-615	634	-678	1118	-208
	2200	700	010	004	0/0	1110	200
CAEPIPE	2460	842	-752	-657	-371	-845	-458
PIPESTRESS	2460	837	-754	-650	-374	-838	-458
A + == · · · =							
CAEPIPE	2820	-145	2003	-310	-557	7	305
PIPESTRESS	2820	-145	2003	-310	-557	7	305
CAEPIPE	3020	53	-2855	75	-346	-44	205
PIPESTRESS	3020	53	-2855	75	-346	-44	205
	0020				0.0		
CAEPIPE	5000	241	-16551	-853	-13572	-85	-5203
PIPESTRESS	5000	262	-16592	-910	-13756	-25	-5318
CAEPIPE	5500	1400	15200	1349	7260	1017	9606
PIPESTRESS	5500 5500	1408 1395	-15290 -16163	1349	-7369 -8610	-1347 -1326	-8606 -9612
FIFESTRESS	5500	1395	-10103	1405	-0010	-1320	-9012
CAEPIPE	6220	-1649	2713	-495	46260	17148	-80
PIPESTRESS	6220	-1657	2518	-495	45350	17241	-79
	0450	E4 40	407	100	-217	7040	2220
CAEPIPE PIPESTRESS	9450 9450	-5142 -5125	-437 -441	130 130	-217 -224	7812 7786	-3329
Frequencies (in H		-3123	-441	130	-224	1100	-3317
•	, i		PIPESTR	RESS	PIPEST	225	
Mode Number	CA	EPIPE	(MP=		(MP=3		
1	().843	0.84		0.851		
2	().926	0.92	5	0.977	7	
3).960	0.97		0.986		
4		.083	1.10		1.108		
5		.334	1.334		1.413		
6		.401	1.40		1.420		
7 8		.513	<u>1.51</u> 1.79		1.526		
9		1.799 2.031	2.03		1.814		
10		2.238	2.03		2.077		
10		2.381	2.38		2.430		
12		2.472	2.49		2.469		
13		2.515	2.51		2.535		
14		2.582	2.58		2.588		
15	2	2.627	2.62	5	2.675	5	

16	2.801	2.800	2.790
17	2.894	2.914	2.962
18	2.960	2.959	3.127
19	3.045	3.043	3.186
20	3.126	3.151	3.247

Nan	ne of the Mo	ne of the Model Model – EGTL-50-46H-0								
Ana	lysis Option	s in CAEPIPE								
1	Code – B 31.3									
2	Reference	Temperature = 20 ⁰	c							
3	Number of	Thermal Cycles =	7000							
4	Use modulu	is at reference tem	perature							
5	Do not include bourdon effect									
6	Use pressu	re correction for be	ends							
7	Include mis	sing mass correcti	on							
8	Do not use	friction in dynamic	analysis							
9	Include Har	nger Stiffness								
10	Y – Vertical									
Tota	al Weight (Ke	g)								
CAE	EPIPE	2567.1								
PIP	PIPESTRESS 2567.745									

Support Load (Su	ustained)						
<u> </u>	Node	Fx	Fy	Fz	Мх	Му	Mz
		(N)	(N)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	20	-10	-3541	66	444	-20	-1552
PIPESTRESS	20	-10	-3542	67	445	-20	-1551
CAEPIPE	480	-78	-1326	869	-185	-17	-28
PIPESTRESS	480	-78	-1325	873	-187	-17	-29
CAEPIPE	520	0.0	002	-760	197	-17	40
	520	82	-983				40
PIPESTRESS	520	83	-989	-764	197	-17	39
Support Load (O	perating)						
	Node	Fx	Fy	Fz	Mx	My	Mz
	Noue	(N)	(N)	(N)	(N-m)	(N-m)	(N-m)
CAEPIPE	20	-4	-3537	39	380	3	-1564
PIPESTRESS	20	-4	-3538	39	380	3	-1563
CAEPIPE	480	-76	-1304	854	-183	-15	-38
PIPESTRESS	480	-76	-1304	855	-183	-15	-38
	400	-70	-1304	000	-105	-15	-30
CAEPIPE	520	74	-999	-766	197	-16	25
PIPESTRESS	520	74	-1000	-767	197	-16	25
Frequencies (in H							
Mode Number			ESTRESS	PIPEST	RESS		
	0,12111	-	(MP=0)	(MP=			
1	1.282		1.288	1.29	,		
2	1.876		1.944	1.973			
3	2.044		2.185	2.389			
4	2.963		2.963	3.00	05		
5	4.056		4.126	4.518			
6	5.166		5.159	5.57	73		
7	5.535		5.534	5.86	60		
8	5.586		5.590	6.0	16		
9	7.483		7.482	7.78	36		
10	7.926		7.920	8.27	72		
11	9.897		9.894	10.2	:41		
12	10.531		10.525	11.0	81		
13	10.655		10.641	11.5	87		
14	12.047		12.043	12.6	94		
15	12.725		12.723	13.3	38		
16	13.634		13.621	14.0	66		
17	15.325		15.341	15.1	46		
18	17.220		17.174	17.8	514		
19	23.197		23.195	18.1			
20	26.109		26.241	18.3	57		

Appendix A

Units used in CAEPIPE and PIPESTRESS

ELEMENT	Equivalent PS Card(s)	Field	USA1	Metric	USA2
Pipe	TANG	DX, DY, DZ	Feet	meter	inch
Bend	TANG		See TANG ca	rd under Pipe	
Denu	BRAD	RA	Feet	meter	inch
		DX, DY, DZ	Feet	meter	inch
Valve	VALV	MA	Kips	1000 kg	Lbs
		BX, BY, BZ	Feet	meter	inch
Reducer	CRED, ERED	DX, DY, DZ	Feet	meter	Inch
		DX, DY, DZ	Feet	meter	Inch
		11, 21, 22, 31, 32, 33	Kips/inch	KN/mm	lbs/inch
Bellows	MTXS	41, 42, 43, 51, 52, 53, 61, 62, 63	Ft kips/in	kN m/mm	ft lbs/in
		44, 54, 55, 64, 65, 66	Ft Kips/rad	kN m/rad	ft lbs/rad
	FORC	FX, FY, FZ	Kips	KN	lbs
			I	ſ	
Rigid Element	RIGD	DX, DY, DZ	Feet	meter	inch
Flootio					
Elastic Element	MTXS		See MTXS card	d under Bellows	
Cold spring (Cut pipe)	CLDS	DL	Inch	mm	inch
			Faat		lash
		DX, DY, DZ	Feet 2	meter 2	Inch 2
Bacm	BEAM	AR	In	mm	in _
Beam		EC	10 ⁶ psi	10^3 N/mm ²	10 ⁶ psi
		IX, IY, TO	4 In	4 mm	4 in
	ANCH	KX, KY, KZ	Kips/in	KN/mm	lbs/in
Anchor		MX,MY,MZ	ft Kips/radian	m KN/radian	ft lbs/radian
	AMVT	DX,DY,DZ	inch	mm	inch
		RX,RY,RZ	Radian	Radian	radian
Concentrated Mass	LUMP	МА	Kips	100 kg	lbs
Constant Support	CSUP	FO	Kips	KN	lbs

Flange	LUMP	See LUMP card under Concentrated Mass			
Force	FORC	See FORC card under Bellows			
Rod Hanger	HANG	SP	Kips/in	KN/mm	lbs/in
			•		•
Hoor Hongor	VSUP	SP	KN/mm	lbs/in	Kips/in
User Hanger		FO	Kips	KN	lbs
Limit Cton	NRST	D1,D2	inch	mm	inch
Limit Stop	INKOT	K1,K2,K3,K4	Kips/in	KN/mm	lbs/in
Skewed	RSTN	SP	Kips/in	KN/mm	lbs/in
Restraint	ROTR	SP	ft Kips/rad	KN m/rad	ft lbs/rad
Snubber	SNUB	SP	Kips/in	KN/mm	lbs/in

Appendix B

Weight Calculations

The following paragraphs explain how CPTOPS calculates the weight of pipe and valve.

Pipe

The following equation is used to calculate the mass of the pipe per unit length. The mass includes mass of the pipe and mass of the insulation.

 $W = \Pi \ \times (D - T_P) \ \times \ T_P \ \times \ \gamma_I \ + \ \Pi \ \times \ (D + \gamma_T) \ \times \ T_I \ \times \ \gamma_I$

Where

Π	=	Pi
W	=	Mass of pipe per unit length
D	=	Outer diameter of pipe
Τ _Ρ	=	Wall thickness of pipe
Tı	=	Insulation thickness
Y٩	=	Density of pipe material
γı	=	Density of insulation material

Valve

The following equation is used to calculate the mass of valve. The mass of valve consists of the mass of the valve alone and mass of the insulation material.

$\textbf{W} = \textbf{W}_{v} + \textbf{T} ~~ \textbf{X} ~~ (\textbf{D} + \textbf{T}_{i}) ~~ \textbf{X} ~~ \textbf{T}_{i} ~~ \textbf{X} ~~ \textbf{Y}_{i} ~~ \textbf{X} ~~ \textbf{I.F} ~~ \textbf{X} ~~ \textbf{L}$

Where

Π	=	Pi
W	=	Mass of the valve
$\mathbf{W}_{\mathbf{v}}$	=	Empty weight of valve (From CAEPIPE mod file)
D	=	Outer diameter of previous pipe section
T ₁	=	Insulation thickness of previous pipe section
γı	=	Density of insulation material of previous pipe section
I.F	=	Thickness factor for insulation
L	=	Length of valve

Appendix C

The following tables give information about CAEPIPE elements and data types and the equivalent data cards used by CPTOPS to model them for PIPESTRESS.

ETYPES

Table C.1					
CAEPIPE	PIPESTRESS	CAEPIPE	PIPESTRESS	CAEPIPE	PIPESTRESS
From	JUNC	Location	Taken care of through DTYPEs	Pipe	TANG/ BRAN
Bend	TANG + BRAD / BEND	Miter Bend	MITC / MITW	Jacketed Pipe	Not allowed
Jacketed Bend	Not allowed	Valve	VALV + LUMP	Reducer	CRED / ERED
Bellows	MTXS + FORC	Slip Joint	Not allowed	Hinge Joint	MTXS
Ball Joint	MTXS	Rigid Element	RIGD	Elastic Element	MTXS
Cut Pipe	CLDS	Beam	BEAM		

DTYPES

Table C.2

CAEPIPE	PIPESTRESS	CAEPIPE	PIPESTRESS	CAEPIPE	PIPESTRESS
Anchor	ANCH + AMVT	Branch SIF	(1)	Concentrated Mass	LUMP
Constant Support	CSUP	Flange	LUMP	Force	FORC/ MOMT
Guide	Not transferred	To-be- Designed Hanger	VSUP	Jacket End Cap	Not allowed
Limit Stop	NRST	Nozzle	NOZZ + AMVT	Restraint	MULR
Rod Hanger	NRST	Skewed Restraint	RSTN / ROTR	Snubber	SNUB
Spider	Not allowed	Threaded Joint	(2)	User Hanger	VSUP
User SIF	INDI	Weld	(2)		
(1) See table C.3.					
(2) Translate to weld codes (EW, LW and TA fields) for corresponding piping components. See table C.4.					

Branch SIFs

Table C.3

Corresponding TE and PD field				
TE = 1				
TE = 3, PD = Pad thickness				
TE = 3, PD = Pad thickness				
TE = 6				
TE = 7				
TE = 4				
TE = 0				

Welds

Table C.4

Weld in CAEPIPE	Corresponding TA, LW, EW and MM field
Butt Weld	LW = 2, MM = Mismatch
Fillet Weld, Concave Fillet Weld	EW = 3
Tapered Transition	TA =2, MM = Mismatch
Threaded Joint	TA = 3

Appendix D

The following table lists the case numbers used by 'CPTOPS, to define 'LCAS', 'CCAS' and 'CSTR' cards and brief description about the cards

Casa number	Description			
Case number	(P = Pressure, T = Temperature, RF = Reference case)			
'LCAS' cards	·			
1	Empty weight case (P = 0, T= Ambient)			
2	Operating weight case (P = 0, T= Ambient)			
3	Hydrotest case (P = Hydrotest pressure, T = Ambient)			
11	Pure pressure case (P = P1, T = Ambient)			
12	Pure pressure case (P = P2, T = Ambient)			
13	Pure pressure case (P = P3, T = Ambient)			
14	Pure pressure case (P = Max (P1, P2, P3), T = Ambient)			
21	Pure thermal case ($P = 0, T = T1$)			
22	Pure thermal case ($P = 0, T = T2$)			
23	Pure thermal case ($P = 0, T = T3$)			
31	Cold spring case (RF = 1)			
41	Settlement case (RF = 1)			
51	Pure X-Seismic (g) case (RF = 1)			
52	Pure Y-Seismic (g) case (RF = 1)			
53	Pure Y-Seismic (g) case (RF = 1)			
54	Seismic Displacement case (RF = 1)			
61	Wind load case (RF = 1)			
'RCAS' card	•			
71	Response case (RF =1)			
'CCAS' cards				
102	Sustained case - Operating weight + Max (P1, P2, P3) (RF = 14)			
111	Operating 1 - Operating weight + P1 + T1 (RF = 11)			
112	Operating 2 - Operating weight + P2 + T2 (RF = 12)			
113	Operating 3 - Operating weight + P3 + T3 (RF = 13)			
121	Expansion case – T1 – T2			
122	Expansion case – T1 – T3			
123	Expansion case – T2 – T3			
124	Thermal range case			

'CCAS' cards	
131	Operating weight + P1 + T1 + Cold spring
132	Operating weight + P2 + T2 + Cold spring
133	Operating weight + P3 + T3 + Cold spring
134	Operating weight + Sustained + Cold spring
151	Seismic case – X-g + Y-g + Z-g
152	Seismic + Seismic Displacement
153	Sustained + Seismic
154	Sustained - Seismic
155	Operating1 + Seismic
156	Operating1 - Seismic
157	Operating2 + Seismic
158	Operating2 - Seismic
159	Operating3 + Seismic
160	Operating3 - Seismic
161	Sustained + Wind
162	Operating1 + Wind
163	Operating2 + Wind
164	Operating3 + Wind
171	Response + Seismic Displacement
172	Sustained + Response
173	Sustained - Response
174	Operating1 + Response
175	Operating1 - Response
176	Operating2 + Response
177	Operating2 - Response
178	Operating3 + Response
179	Operating3 - Response
'CSTR' cards	
211	Sustained + Seismic
221	Sustained + Response
231	Sustained + Wind

Appendix E

Errors and Descriptions

a. "Enter all the Necessary Data and Proceed"

User has to enter the CAEPIPE mod file name and PIPESTRESS free format file name.

b. "CAEPIPE mod file does not exist"

The CAEPIPE model file name entered is not a valid .mod file.

c. "Jacketed pipe is not transferred. The program will be aborted"

The CAEPIPE mod file contains jacketed pipe. 'CPTOPS' does not transfer jacketed pipe. Refer error log file for more information.

d. "Jacketed bend is not transferred. The program will be aborted"

The CAEPIPE mod file contains jacketed bend. 'CPTOPS' does not transfer jacketed bend. Refer error log file for more information.

e. "Slip joint is not transferred. The program will be aborted"

The CAEPIPE mod file contains slip joint. 'CPTOPS' does not transfer slip joint. Refer error log file for more information.

f. "ERROR : At node number <Node Number> pipe cross-section does not change after reducer."

Either OD1 and OD2 for reducer are not chosen from section profiles defined in CAEPIPE or there is no change in the cross-section of preceeding and succeeding pipe for the reducer.

Messages in Log file

a. "At node number= <Node Number> enter spring constant and cold load for the To-Be-Designed hanger"

To-be-designed hanger is present at node number = /Node Number/ in the free format file. The hanger is transferred as a 'VSUP' card but is commented. Get the spring rate and cold load from CAEPIPE result file and enter the spring rate multiplied by number of hangers, in the 'SP' field and hot load in the 'FO' field. The user has to convert the values to proper units.

b. "At node number= <Node Number> enter cold load for user hanger"

User hanger is present at node number = <Node Number> in the free format file. The hanger is transferred as a 'VSUP' card but is commented. In the CAEPIPE mod file either cold load is specified or hot load is zero. If cold load is indeed zero uncomment the 'VSUP' card. If hot load is specified, get cold load from CAEPIPE result file and enter the value in the 'FO' field with proper unit conversion.

c. "At node number= <Node Number> a constant support is present. Enter FO = Cold load"

Constant support is present at node number = <Node Number> in the free format file. The constant support is transferred as a 'CSUP' card but is commented. Get cold load from CAEPIPE result file and enter the value in the 'FO' field with proper unit conversion.

d. "ERROR : Miter bend at Element number: <Element Number> in CAEPIPE-mod file is of wrong type."

In CAEPIPE mod file at element number= <Element Number> more than one widely spaced miter bend with different radius are present or widely spaced miter bend is proceeded/succeeded by closely spaced miter bend. PIPESTRESS does not allow kind of arrangement for miter bends.

e. "ERROR : At node number <Node Number> pipe cross-section does not change after reducer."

PIPESTRESS requires the pipe cross-section to be changed after a reducer.

f. "For spectral data, modal superposition is 'ABSOLUTE' and spatial superposition is 'SRSS'. PIPESTRESS does not have a combination for this case"

Refer table 5.1

g. "For spectral data, modal superposition is 'SRSS' and spatial superposition is 'ABSOLUTE'. PIPESTRESS does not have a combination for this case"

Refer table 5.1

h. "For spectral data, modal superposition is 'CLOSELY SPACED' and spatial superposition is 'ABSOLUTE'. PIPESTRESS does not have a combination for this case"

Refer table 5.1