Tutorial on Analysis with Multiple Thermal Loads using CAEPIPE

General

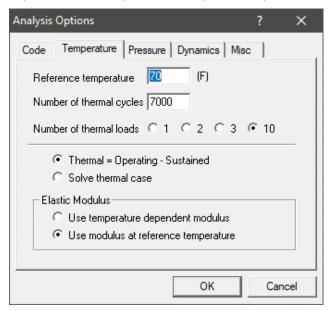
The Reference Temperature (can be defined through Layout window > Options > Analysis" is "the ambient temperature at which the pipe is to be/was initially installed". In other words, when the whole piping system is at Reference Temperature, the piping system is "stress free" and the involved pipe supports are "loads free", as long as there are NO cold springs introduced during the installation of the system. There is no need to input Reference Pressure, as at installation the pressure is zero.

T1, T2 etc. (tuned ON through the "Layout window > Loads > Load cases") refer to the temperatures prevailing during different operational states of the piping system. Please note that the value of T1 for the first operational state could be different for different portions of the piping system. In other words, you could input multiple values for T1 (by having at least that many "Loads") corresponding to different portions of the piping. In addition, the same element in the piping system can experience different temperatures T1, T2, T3 etc. during different operational states.

Hence, the Expansion (T1) case in the Results lists the "Range Solution" obtained for the temperature range from Reference Temperature to T1 [i.e., (T1 - Tref)], similarly for Expansion (T2), and so on. The Expansion (T1-T2) case in the Results lists the "Range Solution" obtained for the temperature range from T1 to T2, which is internally computed as [(T1 - Tref) – (T2 – Tref)], similarly for Expansion (T1-T3) and so on.

For the operating (W+P1+T1) case, CAEPIPE considers the weight, the pressure P1 corresponding to T1 and the expansion from Tref to T1.

The following are the Steps for performing Analysis with Multiple Thermal loads in CAEPIPE.


The attached stress system shows the layout of four (4) pipelines. These pipelines are connected to five (5) centrifugal pumps at one end (with one of them being the Spare) and four (4) tanks at the other end. Out of those 5 centrifugal pumps, Pump 2 is the Spare and will turn into operation when one of the other 4 pumps fails. In other words, at any point in time, 4 pumps are operating with 1 pump either on standby or not operational. To represent these, the following thermal load cases are required (see the attached model).

Cases	Description
Case 1	Pump 2 (the Spare) is "OFF" and the remaining Pumps are "ON"
Case 2	Pump 1 is "OFF" and the remaining Pumps (including Spare) are "ON"
Case 3	Pump 3 is "OFF" and the remaining Pumps (including Spare) are "ON"
Case 4	Pump 4 is "OFF" and the remaining Pumps (including Spare) are "ON"
Case 5	Pump 5 is "OFF" and the remaining Pumps (including Spare) are "ON"

H0H	Caepi	pe : Layout	(186) - [N	AultipleTh	ermalLoad	s.mod (C:	_		🕬 Caepipe : Graphics - [MultipleThermalLoads.mod (C:\Tutorials\MultipleThermalLoads)] — 🗆 🗙
File	Edit	View C	ptions Lo	oads Mi	sc Winde	w He	elp			File View Options Window Help
	ר 🗅	2 🗖				ec@r				
		j 🔲		╫		tô	Q	•		
#			DX (ft'in'')	DY (ft'in'')	DZ (ft'in'')	Matl	Sect	Load	Data	Y
1	Title =	Multiple The	ermal Loads							
3	Refere	nces:						•		Z 🖍 🔥 Z 🖍 X
4	-	inate System	1:							
5	X = Ea	ast = 0 deg; '	Y = Up ; Z =	South = 27	0 Deg					
6				-		-		•		
7 8	From F	Pump 1 From		64.9400		1			Anchor	
9	10	Location				1			Flange	
10	20	Bellows			-0'9''	A778	12	C2	Flange	
11	25				-0'4-1/2"	A778	12	C2		
12 13	30 35	Reducer			-1'2" -0.4160	A778	16 16	C2 C2		
14	35	Location			0.4100	100	1		Flange	
15	Dual [)isc Wafer S	tyle Check \	/alve					_	
16			alve Length	= 7.5"	1		1		-	
17 18	40 Guida	Valve Support			-0'7-1/2''	A778	16	C2	Flange	
19	50				-1.0900	A778	16	C2	Guide	
20	60				-1.0900	A778	16	C2	Flange	
21		Type Butter								
22 23	Weigh	nt = 117 lb, H Valve	landle Lengt	th = 15.75" I	-0'3-1/2"	A778	16	CHL		
23	70	Location			-0.3-172	Arro	10	UNL	Flange	
25	80				-2.5570	A778	16	CHL	Welding tee	•
26	90	Bend			-6.3330	A778	16	CHL		
27	100	Bend		2.6700		A778	16	CHL		× < >
			o	(D) -		-				
	Cae							is.moo	d (C:\Tutoria	ls − □ ×
File	e Ed	it View	Option	s Misc	Windo	w H	lelp			
-#			1 6	10	н			5		
#	Name		= ==== ch OD			Taller	Dore		hk Lin Dovo	Lin.Thk Soil A
#	Name	Nom S Dia	(inch)		.or.AI м. inch) (%)		s.Dens /ft3)	(inch		(inch)
1	16		DS 16).04 12.	5				
2	12		DS 12.75).04 12					
3	6	6" 10	DS 6.625	0.134 0).04 12	5				
4										

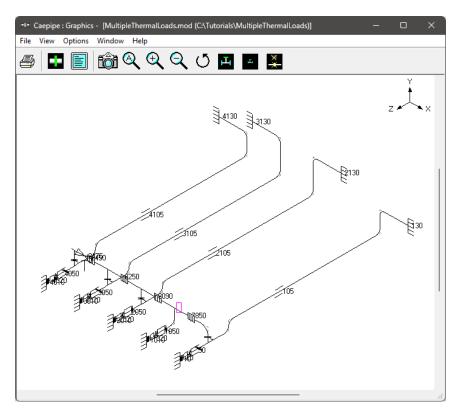
Step 1:

The above cases can be defined in CAEPIPE by defining the "Number of Thermal loads" as 10 through Layout window > Options > Analysis > Temperature.

Step 2:

Define the Pressures and Temperatures for different operating cases described above through CAEPIPE Layout window > Misc > Loads. Description corresponding to Loads C1 through CHL is given in the table below for clarity.

Cases	Description	Pressures and Temperatures											
Case 1	Spare Pump at Node 1010 is "OFF" and the remaining Pumps are "ON"	For C1, T1 = 70 degF; P1 = 0 psi. For others (C2 through C5), T1 = 250 degF and P1 = 10.1 psi											
Case 2	Pump 1 at Node 10 is "OFF" and the remaining Pumps are "ON"	For C2, T2 = 70 degF; P2 = 0 psi. For others, T2 = 250 degF and P2 = 10.1 psi											
Case 3	Pump 2 at Node 2010 is "OFF" and the remaining Pumps are "ON"	For C3, T3 = 70 degF; P3 = 0 psi. For others, T3 = 250 degF and P3 = 10.1 psi											
Case 4	Pump 3 at Node 3010 is "OFF" and the remaining Pumps are "ON"	For C4, T4 = 70 degF; P4 = 0 psi. For others, T4 = 250 degF and P4 = 10.1 psi											
Case 5	Pump 4 at Node 4010 is "OFF" and the remaining Pumps are "ON"	For C5, T5 = 70 degF; P5 = 0 psi. For others, T5 = 250 degF and P5 = 10.1 psi											
	Load with name "CHL" is defined to represent the portion of the piping that are always HOT irrespective of which pump is OFF. Hence, the T1 through T5 is 250 deg F and P1 through P5 is 10.1 psi.												
	d cases and Load combinations defined in the and Layout Window > Loads > Load cases res	e model can be seen using Layout window > Misc spectively.											


Define the loads C1 through CHL as shown in the snap shot below.

H	Caepipe	Caepipe : Loads (6) - [MultipleThermalLoads.mod (C:\Tutorials\MultipleThermalLoads)] - 🗆 🗙																								-	×
Fil	e Edit	Edit View Options Misc Window Help																									
#	Name		P1 (psi)	T2 (F)	P2 (psi)	Т3 (F)	P3 (psi)		P4 (psi)	T5 (F)	P5 (psi)	Т6 (F)	P6 (psi)		P7 (psi)		P8 (psi)	T9 (F)	P9 (psi)		P10 (psi)		Desg.Pr. (psi)		Add.Wgt. (lb/ft)		Wind Load 4
1	<mark> </mark> 21	70	0	250	10.1	250	10.1	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
2	C2	250	10.1	70	0	250	10.1	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
3	C3	250	10.1	250	10.1	70	0	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
4	C4	250	10.1	250	10.1	250	10.1	70	0	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
5	C5	250	10.1	250	10.1	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
6	CHL	250	10.1	250	10.1	250	10.1	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
7																											

Step 3:

Assign the Loads C1 through CHL to different portions of stress system as required while creating the stress layout. After modeling the stress system, one can review the loads assigned to different portions using the Highlight feature through "Loads List window".

From the attached model, to review the loads assigned, place the highlight on each load (C1 through CHL) and press "Ctrl+H" or select option "Highlight" under List window >View to highlight only that portion of the model that is using that specific load. The snap shot below highlight only that portion of the model that is using the Load C1.

Step 4:

Select the load cases and load combinations required for analysis through Layout window > Loads > Load cases.

Load cases (29)			×
 Empty Weight (W) ✓ Sustained (W+P) ✓ Sustained (W+P1) ✓ Sustained (W+P2) ✓ Sustained (W+P3) ✓ Sustained (W+P4) ✓ Sustained (W+P5) Sustained (W+P6) Sustained (W+P7) Sustained (W+P8) Sustained (W+P9) Sustained (W+P9) Sustained (W+P10) ✓ Expansion (T1) ✓ Expansion (T2) ✓ Expansion (T3) ✓ Expansion (T4) ✓ Expansion (T6) Expansion (T7) Expansion (T8) Expansion (T9) Expansion (T10) OK Cancel 	 Expansion (T1 - T2) Expansion (T1 - T3) Expansion (T1 - T4) Expansion (T1 - T5) Expansion (T1 - T6) Expansion (T1 - T6) Expansion (T1 - T7) Expansion (T1 - T8) Expansion (T1 - T9) Expansion (T1 - T10) Expansion (T2 - T3) Expansion (T2 - T3) Expansion (T2 - T4) Expansion (T2 - T5) Expansion (T2 - T6) Expansion (T2 - T6) Expansion (T2 - T6) Expansion (T2 - T7) Expansion (T2 - T8) Expansion (T2 - T10) Expansion (T3 - T4) Expansion (T3 - T6) Expansion (T3 - T7) Expansion (T3 - T8) All None 	 Expansion (T3 - T9) Expansion (T3 - T10) ✓ Expansion (T4 - T5) Expansion (T4 - T6) Expansion (T4 - T7) Expansion (T4 - T7) Expansion (T4 - T9) Expansion (T4 - T9) Expansion (T4 - T10) Expansion (T4 - T10) Expansion (T5 - T6) Expansion (T5 - T7) Expansion (T5 - T8) Expansion (T5 - T9) Expansion (T5 - T10) Expansion (T5 - T10) Expansion (T5 - T10) Expansion (T6 - T7) Expansion (T6 - T8) Expansion (T6 - T9) Expansion (T7 - T8) Expansion (T7 - T9) Expansion (T8 - T9) Expansion (T8 - T9) Expansion (T8 - T10) 	 Expansion (T9 - T10) Operating (W+P1+T1) Operating (W+P2+T2) Operating (W+P3+T3) Operating (W+P4+T4) Operating (W+P5+T5) Operating (W+P6+T6) Operating (W+P7+T7) Operating (W+P9+T9) Operating (W+P9+T9) Operating (W+P9+T9) Operating (W+P0+T10) Design (W+P0+T10) Static seismic (g's) Wind 2 Modal analysis

Step 5:

Save the model and perform analysis through Layout window > File > Analyze.

In order to understand the loads and load combinations used for analysis, review the CAEPIPE results file for Support Loads (loads acting on the supports by the piping for each load case), Element Forces & Moments (local/global forces and moments on each element for each load case) and Support Load Summary (listing support loads at particular support for all <u>relevant</u> load cases and load combinations).

File				-	-	1) - [Multip	leThermalLo	oads.res (C:\	Tutorials\MultipleThermalLoa — 🗆 🗙
4	_			6	\ E		¢∣≡] 🗲 =	
#	Node	Tag	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)	Load cases X
1	10		-18	-162	886	-22	5	278	C Sustained (W+P) C Operating (W+P2+T2)
2	130		77	-646	-970	3790	-6385	4481	C Sustained (W+P1) C Operating (W+P3+T3)
3	1010		-11	0	154	39	4	-142	
4	2010		8	-164	734	-23	-4	68	- · · · · · · · · · · · · · · · · · · ·
5	2130		80	-703	-800	4828	-4928	4987	· · · · · · · · · · · · · · · · · · ·
6	3010		75	-177	754	-28	-27	-450	C Sustained (W+P4) C Seismic 1 (g)
7	3130		-72	-721	-744	4477	4652	-5260	C Sustained (W+P5) C Wind
8	4010		33	-227	836	-45	-12	35	C Expansion (T1) C Wind 2
9	4130		-152	-682	-1259	5063	8095	-4688	C Expansion (T2)
									C Expansion (T3)
									C Expansion (T4)
									C Expansion (T5)
									C Expansion (T1-T2)
									C Expansion (T1-T3)
									C Expansion (T1-T4)
									C Expansion (T1-T5)
									C Expansion (T2-T3)
									C Expansion (T2-T4)
									C Expansion (T2-T5)
									C Expansion (T3-T4)
									C Expansion (T3-T5)
									C Expansion (T4-T5)
									Operating (W+P1+T1)
									OK Cancel

III Caepipe : Support loa	id summary	for anchor	at node 10 -	[MultipleT	hermalLoad	s.res (—	o x
File Results View Op	otions Win	idow Help)				
		 ∕_ [E (-	-] (-		
Load combination	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)	
Sustained+Wind	-180	15	3	44	63	-5692	
Operating1+Wind	-18	-162	886	-22	5	278	
Operating2+Wind	-246	44	752	55	87	-5730	
Operating3+Wind	-238	2	842	39	84	-5718	
Operating4+Wind	-238	2	842	39	84	-5719	
Operating5+Wind	-238	2	842	39	84	-5719	
Sustained+Wind 2	-180	15	3	44	63	-5692	
Operating1+Wind 2	-18	-162	886	-22	5	278	
Operating2+Wind 2	-246	44	752	55	87	-5730	
Operating3+Wind 2	-238	2	842	39	84	-5718	
Operating4+Wind 2	-238	2	842	39	84	-5719	
Operating5+Wind 2	-238	2	842	39	84	-5719	
Sustained+Seismic1	-174	15	56	47	66	-5649	
Sustained-Seismic 1	-186	14	-50	41	60	-5734	
Operating1+Seismic1	-12	-161	939	-19	8	321	
Operating1-Seismic1	-24	-162	833	-25	2	236	
Operating2+Seismic1	-240	45	805	58	90	-5687	
Operating2-Seismic 1	-252	44	699	52	84	-5772	
Operating3+Seismic1	-232	3	895	42	87	-5675	
Operating3-Seismic 1	-244	2	789	36	81	-5760	
Operating4+Seismic1	-232	3	895	42	87	-5676	
Operating4-Seismic 1	-244	2	789	36	81	-5761	
Operating5+Seismic1	-232	3	895	42	87	-5676	
Operating5-Seismic 1	-244	2	789	36	81	-5761	
Maximum	-12	45	939	58	90	321	
Minimum	-252	-162	-50	-25	2	-5772	
Allowables	0	0	0	0	0	0	

The Sorted Stresses in CAEPIPE lists the maximum of Expansion stresses for all thermal range cases at <u>each node</u> as well as the maximum of Sustained + Occasional stresses for all Occasional cases at <u>each</u> <u>node</u>. On the other hand, for the Sustained case, it always uses the maximum pressure among the input pressures (P1 through P10) while computing Sustained Stress at <u>each node</u>.

HIH (🗝 Caepipe : B31.1 (2022) Code compliance (Sorted stresses) - [MultipleTherm — 🗆 🗙														
File	Results	View	Optior	ns W	indow	Help									
4															
	Sustained Expansion Occasional														
#	Node	SL (psi)	SH (psi)	SL SH	Node	SE (psi)	SA (psi)	<u>SE</u> SA	Node	SO (psi)	1.2SH (psi)	SO 1.2SH			
1	7700A	4638	13450	0.34	120A	7165	34103	0.21	90A	4806	16140	0.30			
2	90A	4523	13450	0.34	7700A	6793	33752	0.20	7700A	4685	16140	0.29			
3	120A	4294	13450	0.32	4110A	7377	37940	0.19	120A	4596	16140	0.28			
4	120B	3710	13450	0.28	120B	5932	30551	0.19	120B	3960	16140	0.25			
5	90B	3703	13450	0.28	2110A	7069	37785	0.19	90B	3852	16140	0.24			
6	100A	3701	13450	0.28	2120A	6866	37718	0.18	100A	3849	16140	0.24			
7	105	3378	13450	0.25	3110A	6736	37812	0.18	105	3631	16140	0.22			
8	25	3116	13450	0.23	90A	5176	29720	0.17	25	3141	16140	0.19			
9	20	3109	13450	0.23	3120A	6487	37984	0.17	20	3133	16140	0.19			
10	80	2932	13450	0.22	4120A	6080	37528	0.16	80	2975	16140	0.18			
11	110B	2581	13450	0.19	110A	5452	37323	0.15	110B	2703	16140	0.17			
12	2105	2468	13450	0.18	4090A	5214	36692	0.14	2105	2698	16140	0.17			
13	3105	2328	13450	0.17	20	4248	31164	0.14	2090A	2607	16140	0.16			
14	140	2298	13450	0.17	90B	4004	30557	0.13	3105	2554	16140	0.16			

Similarly, Code Compliance report lists the Stresses <u>element-wise</u> following the same procedure as done for Sorted Stresses.

F (1)	Desults									(C:\Tu				×	
File	File Results View Options Window Help														
4															
#	Node	Press. Allow.	SL	ustained SH	3 SL SH	SE	(pansio SA	n SE SA	SO	ccasion	nal <u>SO</u> 1.2SH				
· ·	20 25	(psi) 10.1 250	(psi) 3109 3116	(psi) 13450 13450	0.23 0.23	(psi) 4248 3269	(psi) 31164 31157	0.14 0.10	(psi) 3133 3140	(psi) 16140 16140	0.19 0.19 0.19				
	25 30	10.1	3116 1927	13450 13450	0.23 0.14	3272 1988	31157 32371	0.11 0.06	3141 1946	16140 16140	0.19 0.12				
-	30 35	10.1 211	1925 1940	13450 13450	0.14 0.14	1980 1984	32374 32359	0.06 0.06	1944 1961	16140 16140	0.12 0.12				
	40 50	10.1 211	1981 2119	13450 13450	0.15 0.16	1991 2007	32316 32176	0.06 0.06	2007 2165	16140 16140	0.12 0.13				
-	50 60	10.1 211	2119 1985	13450 13450	0.16 0.15	2007 2005	32176 32313	0.06 0.06	2165 2008	16140 16140	0.13 0.12				
-	70 140	10.1 211	1970 2298	13450 13450	0.15 0.17	2045 2297	32327 31993	0.06 0.07	1994 2325	16140 16140	0.12 0.14				
	140 80	10.1 211	2298 2844	13450 13450	0.17 0.21	2297 2744	31993 31435	0.07 0.09	2325 2895	16140 16140	0.14 0.18				
-	80 150	10.1 211	2363 2137	13450 13450	0.18 0.16	2138 1908	31927 32157	0.07 0.06	2436 2213	16140 16140	0.15 0.14				