Tutorial on Pressure Design of Pipe and Pipe Fittings according to EN 13480-3 (2017)

Pressure Design of Pipe and Pipe Fittings can be performed using the modules built into CAEPIPE which are independent of the flexibility analysis.

These modules can be launched through Layout frame > Misc > Internal Pressure Design: EN 13480-3 and Layout frame > Misc > External Pressure Design: EN 13480-3 respectively.

Note:

These modules perform Pressure Design of Pipe and Pipe Fittings ONLY using the equations given in the EN 13480-3 (2017) Code irrespective of the Analysis Code selected for flexibility analysis in CAEPIPE.

In case the flexibility analysis is performed with an Analysis Code other than EN 13480-3 (2017), the Pressure Design modules will use the material allowable stresses corresponding to the maximum temperature T1 through T10 entered in the CAEPIPE stress model.

Tutorial on Internal Pressure Design of Pipe and Pipe Fittings

Step 1:

Snap shots shown below present a sample stress model developed to show the Internal Pressure Design calculations performed by CAEPIPE.

Þ0	4 Caep	ipe : Layo	out (70) -	[Internal	PressureD	esign		_			• Caepipe : Graphics - [InternalPressureDesign.mod (C:\Tutorials\Pres		×
Fil	e Edi	t View	Options	Loads	Misc V	Vindo	w ł	lelp			ile View Options Window Help		
] 🛛	j 🗖	4	-#-			fô	ð (۲,		ے ای کی 🕰 🎯 🕲 📷 🖉		
#	Node	Туре	DX (mm)	DY (mm)	DZ (mm)	Matl	Sect	Load	Data	^	r ·	Z	^
1	Title =	Pressure I	Design (Inte	ernal)								×√.	
2	10	From	1035	16705	116829				Anchor			_ Y ▲ >	
3	20	Bend	162		232	1	350	1					
4	30		282.987		2.69512	1	350	1	Flange				
5	40	Bend	1082.01		10.3049	1	350	1					
6	50			-2221.97	10.5412	1	350	1					
7	60			-606.993	2.87962	1	350	1	User hanger		•		
8	70	Bend		-1176.03	5.57918	1	350	1					
9	80	Bend	007.070		1479		350	1	C 1				
10	100		627.976		5.44625	1	350	1	Flange				
11	1100		400.001		7.91788	1	350	1	User nanger				
12	10	Mahar	433.381		4.33619	1	350	1					
1.0	120	valve	200 000		0.23070	1	250	1			• 2		
14	140	Value	233.303		0 220075	1	250	1					
16	140	vaive	1063.16		9.22046	1	350	1					
17	160	Beducer	355.76		28.51	1	400	1					
18	170		304.99		2.66	1	400	1	Welding tee				
19	180		304.99		2.66	1	400	1					
20	190	Reducer	356.8		-90.54	1	200	1					
21	200		769.949		-8.83096	1	200	1	Limit stop				
22	210	Bend	3415.05		-39.169	1	200	1					
23	220		1550	-1550	-19	1	200	1	Anchor				
24	1000	From	-1036	15545	116829				Anchor		Image: A start and a start a st start a start a sta		
25	1010	Bend	-162		232	1	350	1		\mathbf{v}			>
		1			1	1		1	1				

-0-	Саер	ipe : N	lateria	als (1)	- [ln	ternalP	ressure	eDes	ign.mo	od (C:\T	lutorials	\Pressur	eDesi	gn)]			-		×
File	e Edit	t Op	tions	Helj) 38 (주	0		Û	b –			>							
#	Name		escript	ion	<u>л</u> ~			¥≊ Ty	a Density	/ Nu	Joint	Tensile	#	Temp	E	Alpha	f	fCR	^
_	la la			10.0.10		10.0		pe	(kg/m3	0	factor	(N/mm2		(C)	(kN/mm2)	(mm/mm/C)	(N/mm2)	(N/mm2)	-
$\frac{1}{2}$		E	N TUZ	16-2 IU	JUrMos	FIUSea	miess	us	7850	0.3	0.80	229.8	2	20	211	11.51E-6	137.1		
-													3	100	205	12.10E-6	136.5		
													4	150	203	12.43E-6	132.8		
													5	200	199	12.75E-6	132.8		
													6	250	196	13.08E-6	132.8		
													7	300	192	13.22E-6	132.8		~
											1				,	1	1		
File	Caep	ipe:P t On	ipe Se tions	ctions Heli	; (8) -	[Inter	nalPre	ssure	eDesigi	n.mod ((C:\Tuto	rials\Pre	ssure	Desigr)]		-		×
				F	a (A	5			• 4		~								
-			C ala		<u>ш</u> ~		M Tel			na Thi		. I in Th	L Cal						
#	Name	Dia	scn	(mm)	тик (mm)	(mm)	M.TOI (%)	ins. (kg/	/m3) (ns. i nк mm)	(kg/m3)	s Lin. i n (mm)	K 50	_ ^ _					
2	25 50	25 50	3	33.7 60.2	2.6	1	12.5												
3	150	150	3	168.3	4.5	1	12.5	150		100	2700	1	_	- 11					
4	200	200	3	219.1	6.3	1	12.5	150		120	2700	1							
5	300	300	3	323.9	7.1	1	12.5	150		140	2700	1		-					
6	350	350	3	355.6	8	1	12.5	150	-	140	2700	1							
7	400	400	3	406.4	8.8	1	12.5	150	· ·	140	2700	1							
8	500	500	3	508	11	1	12.5	200		140	2700	1		- 🗸					
	⊫ Cae	epipe	e : Lo	ads	(1)	- [Int	ernal	Pre	ssure	Desig	n.mod	(C:\Tu	toria	als\02	2_Press	—		×	
E	le <u>E</u>	dit	View	N (<u>o</u> ptio	ns	<u>M</u> isc	V	Vindo	w <u>F</u>	lelp								
	╟				Ē	Ĵ	${}^{\bigcirc}$		Н										
#	Nan	ne T	1	P1	T2	P2	De	sg. 1	[De	sg.Pr.	Speci	fic Add	i.Wg	jt. W	ind W	ind Win	d Wir	d	
		(()	(bar)	(C)	(bar)	(C)		(ba	r)	gravit	kg (kg	/m)	Lo	ad 1 Lo	ad 2 Loa	d 3 Loa	d 4	
1	1	2	21	22.6	20	-1.0	22	1	22.	6	0.003								
2																			
															·		·	_	
File	Caep	ipe:B	ends tions	(17) - Heli	linte [rnalPre	ssurel)esig	n.mod	l (C:\Tu	torials\F	ressurel)esigi	n)]			-		X
				e A	- a (4	5													
						<u> </u>				<u> </u>	1								
#	Bend Node	Radiu (mm)	is Rai Typ	d. Thi be (mr	k Ben n) Ma	nd Flex tl	.F In F SIF	ln	Out PI SIF	n Int. Node	Angle (deg)	Int. A Node (d	ngle leg)	î					
1	20	356	Sho	ort															
2	40	533	Lor	ng	_														
3	70 00	533	Lor)g Va	_	_													
5	210	305	Lor	19 10	-														
6	1010	356	She	ort						-									
7	1030	533	Lor	ng 🗌															
8	1060	533	Lor	ng															
9	1070	533	Lor	ng										V					
110	11000	1005	11	- I					I		1								

-0-	Саер	oipe : R	leduce	rs (5)	- [Inte	ernalPr	essureDesig	mod (C:\Tutorials\F	ressureDesign)]		×
File	e Edi	it Op	otions	Help							
╡				tô	10		← →				
#	From	To	OD1 (mm)	Thk1 (mm)	0D2 (mm)	Thk2 (mm)	Cone angle (deg)				
1	150	160	<mark>355.6</mark>	8	406.4	8.8	8				
2	180	190	406.4	8.8	219.1	6.3	46				
3	1140	1150	355.6	8	406.4	8.8	8				
4	1170	1180	406.4	8.8	219.1	6.3	46				
5	1620	1800	406.4	8.8	508	11	18				

Step 2:

Internal pressure design calculations of pipe and pipe fittings according to EN 13480-3 are independent of lengths of elements defined in the CAEPIPE stress model. Hence, these calculations can be performed directly from the existing stress model developed for flexibility analysis. *Equations used for performing Internal Pressure Design as per EN 13480-3 (2017) are provided at the end of this tutorial for reference.*

Once the layout of the stress model as shown in the above snap shots is completed, the internal pressure design is performed through Layout window > Misc > Internal Pressure Design: EN 13480-3.

When executed, CAEPIPE automatically performs the pressure design calculations for Pipes, Elbows, Miters, Bends and Reducers for the entire stress model and displays the results as shown below.

It is observed that the ratios Uf1 and Uf2 are all less than 1.0, confirming that the Internal Pressure Design requirements of EN 13480-3 (2017) code are met for this stress model.

1-8-	Caep	ipe : l	nternal Pr	essure Desi	gn: EN 134	80-3 (201	7) (74)	- [Int	ernalPro	essureDe	esign.mod (C:\Tuto	rials\Pre	ssureDe	sign)]			×
File	e Op	tions	Windov	v Help														
#	From	To	Element	Des.Temp	Des.Press	All.Stress	OD1	OD2	Cor.All	Radius	Cone Angle	ea1	ea2	ep1	ep2	Uff	Uf2	^
			Туре	(C)	(bar)	(N/mm2)	(mm)	(mm)	(mm)	(mm)	(deg)	(mm)	(mm)	(mm)	(mm)	(ep1/ea1)	(ep2/ea2)	
1	10	20	Elbow	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4417	4.4417	0.74	0.74	
2			Bend	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4824	2.4943	0.75	0.42	
3	20	30	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
4	30	40	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
5			Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
6	40	50	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
7	50	60	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
8	60	70	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
9			Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
10	70	80	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
11			Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
12	80	90	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
13	90	100	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
14	100	110	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
15	120	130	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
16	140	150	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	-
17	150	160	Reducer	221	22.6	132.8	406.4	355.6	1		8	6.7	6	3.4289	3.0003	0.51	0.50	
18	160	170	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
19	170	180	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
20	180	190	Reducer	221	22.6	132.8	406.4	219.1	1		46	6.7	4.5125	4.4882	2.9294	0.67	0.65	
21	190	200	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41	

See the attached model "InternalPressureDesign.mod" for more details.

Step 3:

The results shown above can also be printed to the printer or to a file using the option File > Print.

Print Pressure Design	- Internal Pressure	?	×
Printer			
	Text Printer		
Printer setup	HP Officejet Pro 8620 [614	\34B]	
Page setup	Orientation : Portrait		
Font	Arial, 10 point		
Print Can	cel Preview Print	to File	

Caep	ipe							Pr	essure l	Design (Intern	nal)						Page 1
							Interna	al Press	ure Des	ign: EN 1348	0-3 (201	7) (74)					
From	То	Element	Des.Temp	Des.Press	All.Stress	OD1	OD2	Cor.All	Radius	Cone Angle	ea1	ea2	ep1	ep2	Uf1	Uf2	
		Туре	(C)	(bar)	(N/mm2)	(mm)	(mm)	(mm)	(mm)	(deg)	(mm)	(mm)	(mm)	(mm)	(ep1/ea1)	(ep2/ea2)	
10	20	Elbow	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4417	4.4417	0.74	0.74	
		Bend	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4824	2.4943	0.75	0.42	
20	30	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
30	40	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
40	50	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
50	60	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
60	70	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
70	80	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
80	90	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
90	100	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
100	110	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
120	130	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
140	150	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
150	160	Reducer	221	22.6	132.8	406.4	355.6	1		8	6.7	6	3.4289	3.0003	0.51	0.50	
160	170	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
170	180	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
180	190	Reducer	221	22.6	132.8	406.4	219.1	1		46	6.7	4.5125	4.4882	2.9294	0.67	0.65	
190	200	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41	
200	210	Elbow	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3634	1.6025	0.52	0.36	
210	220	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41	
1000	1010	Elbow	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4417	4.4417	0.74	0.74	
		Bend	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4824	2.4943	0.75	0.42	
1010	1020	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
1020	1030	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
1030	1040	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	

Version 10.40

InternalPressureDesign

Jun 23,2021

Caep	ipe							Pr	ressure l	Design (Interr	nal)						Page 2
							Interna	al Press	ure Des	ign: EN 1348	0-3 (201	7) (74)					
From	То	Element	Des.Temp	Des.Press	All.Stress	OD1	OD2	Cor.All	Radius	Cone Angle	ea1	ea2	ep1	ep2	Uf1	Uf2	
		Туре	(C)	(bar)	(N/mm2)	(mm)	(mm)	(mm)	(mm)	(deg)	(mm)	(mm)	(mm)	(mm)	(ep1/ea1)	(ep2/ea2)	
1040	1050	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
1050	1060	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
1060	1070	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
1070	1080	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
1080	1090	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
1090	1100	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
1110	1120	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
1130	1140	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
1140	1150	Reducer	221	22.6	132.8	406.4	355.6	1		8	6.7	6	3.4289	3.0003	0.51	0.50	
1150	1160	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
1160	1170	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
1170	1180	Reducer	221	22.6	132.8	406.4	219.1	1		46	6.7	4.5125	4.4882	2.9294	0.67	0.65	
1180	1190	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41	
1190	1200	Elbow	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3634	1.6025	0.52	0.36	
1200	1210	Elbow	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3634	1.6025	0.52	0.36	
1210	1220	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41	
170	1600	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
1600	1610	Elbow	221	22.6	132.8	406.4	406.4	1	610		6.7	6.7	4.2629	4.2629	0.64	0.64	
		Bend	221	22.6	132.8	406.4	406.4	1	610		6.7	6.7	4.2803	2.9976	0.64	0.45	
1610	1620	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
1160	1850	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
1620	1800	Reducer	221	22.6	132.8	508	406.4	1		18	8.625	6.7	4.2861	3.7079	0.50	0.55	
1800	1810	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50	
1810	1820	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50	
1820	1830	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50	
1830	1840	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50	

Version 10.40

InternalPressureDesign

Jun 23,2021

Caepi	ре							Pr	essure [Design (Intern	al)						Page 3
							Interna	al Press	ure Desi	gn: EN 13480	0-3 (201	7) (74)					
From	То	Element Type	Des.Temp (C)	Des.Press (bar)	All.Stress (N/mm2)	OD1 (mm)	OD2 (mm)	Cor.All (mm)	Radius (mm)	Cone Angle (deg)	ea1 (mm)	ea2 (mm)	ep1 (mm)	ep2 (mm)	Uf1 (ep1/ea1)	Uf2 (ep2/ea2)	
1840	1850	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50	
1850	1860	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50	
1860	1870	Elbow	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
		Bend	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1870	1880	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50	
1880	1890	Elbow	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
		Bend	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1890	1900	Elbow	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
		Bend	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1900	1910	Elbow	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
		Bend	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1910	1920	Elbow	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
		Bend	221	22.6	132.8	508	508	1	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1920	1930	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50	

Version 10.40

InternalPressureDesign

Jun 23,2021

Tutorial on External Pressure Design of Pipe and Pipe Fittings

External Pressure Design module will function ONLY when the stress layout is defined with negative pressure (such as vacuum pressure).

This module first calculates collapse pressure (same as buckling pressure), which is a function of span length "L" between the stiffeners placed on the piping (shown in figures below). Since the collapse (buckling) mode of deformation for a pipe element between two adjacent stiffeners is restrained by these stiffeners, shorter the span length L between the stiffeners, higher the collapse (buckling) pressure.

The External Pressure Design module <u>assumes</u> that a stiffener is located at each node of the CAEPIPE model. Hence, ensure that nodes are defined in CAEPIPE model <u>only</u> at locations where the stiffeners are attached to the piping. Even nodes where flanges or certain types of supports that restrain the collapse (buckling) mode of deformation should be included as "stiffener locations". All other nodes at which the collapse (buckling) mode of deformation is not restrained (such as resting supports) should not be included in the CAEPIPE model for external pressure design calculations. In other words, the CAEPIPE stress model (that was developed for flexibility analysis) needs to be edited before performing the external pressure design.

Pipe with bend or elbow with 'L' measured on extrados

Pipe with mitre with 'L' measured on extrados

Step 1:

The procedure given below will help in retaining ONLY those nodes of the CAEPIPE stress model (originally developed for flexibility analysis) prior to External Pressure Design calculations.

- Create a copy of the existing CAEPIPE stress model (developed for flexibility analysis).
- At whichever node the collapse (buckling) mode of deformation is NOT restrained, navigate to that element node in the layout window and use the option "Combine..." through Layout window > Edit. This action will remove that node by combining the two adjacent elements.
- Repeat Step 2 above and remove all other nodes where there are NO stiffeners or flanges or supports [that restrain the collapse (buckling) mode] defined.
- Upon completion, save the model.

Snap shots shown below present a sample model developed to show the External Pressure Design calculations performed by CAEPIPE. As stated above, a copy of the original stress model was made and the model has been edited to include only those nodes on pipe where stiffeners, flanges and supports (that are equivalent to stiffeners from the point of view of restraining collapse mode of deformation) are attached.

File	Caepi Edit	ipe:P	ipe Se tions	ctions Help	(3) - [E	ternall	Pressur	eDesig	n.mod	(C:\Tı	utorials\l	Pressu	reDes	ign)]			-		×
-#				tê:		Н				⇒									
#	Name	Nom Dia	Sch	OD (mm)	Thk (mm)	Cor.Al (mm)	M.Tol (%)	Ins.Dei (kg/m3	ns Ins. 3) (mn	Thk L	in.Dens (g/m3)	Lin.Th (mm)	ik So	il					
1 2	<mark>6</mark> 8	6'' 8''	STD STD	168.27 219.07	7.112 8.1788			176.2 176.2	65 65										
3 4	10	10''	STD	273.05	9.271			176.2	65										
Eile	Cae	pipe	Load	ds (2)	- [Exte	ernalPr Nisc	essure	eDesig	n.mo	d (C:\ ⁻	Tutoria	ls\02_	Pres	sureDes	sign)]		-		×
					ân (A)				4									
#	Name	<u>е</u> Т1	P1] Ц Т2	P2	∽ Des	a.TD	esa.Pr	. Spe		Add.Wa	t Wi	nd	Wind	Wind	Wind	_	_	_
1	L1	(C)	(ba	ar) (C) .0 21.1	(bar)	(C) 185	j (t 1	oar) 0.0	grav 0.1	/ity (kg/m)	Lo	ad 1	Load 2	Load 3	Load 4			
2	L2	26	32	.0 21.1	11 -1.0	0 260	3	2.0	0.1			Y							
-	Carri		1	Ja. (1)		-10				T								_	~
File	Edit	t Op	tions	Help	Extern	aiPress	ureDes	ign.mo	oa (C:\	Tutoria	is\Press	ureDe	sign)]				_		^
-#				iĝi		Н	ţ,	a 🧧			⇒								
#	Name	D	escript	ion Ty pe	/ Densit (kg/m.	y Nu 3)	Joint facto	r # '	Temp (C)	E (MPa)	Alpha (mm/m	m/C)	Allowa (MPa)	able ^					
1 2	B12	A	312 TF	2316 AS	8027	0.3	1.00	1	28.89 37.78	19767: 19395(3 14.90E	-6 -6	137.9 137.9						
								3 9	93.33 148.9	189606 186159	6 16.02E 3 16.56E	-6 -6	119.3 107.6	-11					
								5	204.4 260	182022 178574	2 17.10E 4 17.46E	E-6 E-6	98.60 91.70						
								7	315.6 343.3	17443) 172714	7 17.82E 4 17.91E	2-6 2-6	86.87 84.81	-1					
								9 10	371.1 398.9	170990 168573) 18.00E 7 18.09E	E-6 E-6	83.43 82.05	- 1					
								11	426.7 454.4	166164 16409	4 18.18E 5 18.27E	-6 -6	81.36 79.98	- 1					
								13	482.2 510	162023 159614	7 18.36E 1 18.45E	-6 -6	79.29 78.60	- 1					
								10	7 0	15700-		- c	77.01	- ¥				_	
File	Caepi Edit	ipe:B t Op	ends tions	(5) - [E Help	xternalP	ressure	Design	n.mod ((C:\Tut	orials\	Pressure	Desig	n)]				-		×
-#				tô				\succ											
#	Bend Node	Radiu (mm)	is Rac Typ	i. Thk e (mm)	Bend F Mati	lex.F S	IF Int. No	Ang de (deg	le Int.)) Noc	Ang Je (deg	le j)								
1 2	60 110	<mark>381</mark> 381	Lon Lon	9 9															
3 4	230 260	228.6 228.6	Lon Lon	g g															
5	300	228.6	Lon	g															
-8-1	Caepi	ipe : R	educe	rs (1) -	[Extern	alPress	ureDes	ign.mo	od (C:\`	Tutoria	ls\Press	ureDe	sign)]	l			-		×
File	Edit	: Op	tions	Help															
#	From	E] [To]	0D1	Thk1	OD2	Thk2	Cone	angle											
1	170	180	(mm) <mark>273.05</mark>	(mm) 5 9.271	(mm) 219.07	(mm) <mark>8.1788</mark>	(deg)												

Step 2:

Once the layout of the stress model as shown in the above snap shots is completed, the external pressure design is performed through Layout window > Misc > External Pressure Design: EN 13480-3.

When executed, CAEPIPE automatically performs the external pressure design calculations for Pipes, Miters, Elbows, Bends and Reducers for the entire stress model and displays the results as shown below.

It is observed that the ratio $[P_r/(KP_c)]$ is much higher than 1.0 throughout the stress model, confirming that the collapse (buckling) pressures P_r calculated for all segments of the stress model are much higher than the corresponding peak negative pressures specified in the CAEPIPE model. In other words, the potential for any segment of this piping system to collapse (buckle) is very minimal.

H	Саер	ipe : E	xternal Pr	essure	Design: EN	13480-3	(2017)	(35) - [8	Externall	Pressure	Design.	mod (C	:\Tutori	als\Pres	sureDesig	jn)]						×
Fil	e Op	tions	Window	/ Hel	р																	
#	From	To	Element	Temp	Press (Pc)	All.Stress	Yield	E	OD1	OD2	Thk1	Thk2	Cor.All	Radius	Length	Cone Angle	Pr	K.Pc		lx	lxa	^
			Туре	(C)	(bar)	(MPa)	(MPa)	(MPa)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(deg)	(bar)	(bar)	(Pr/K.Pc)	(mm4)	(mm4)	
1	10	20	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		200		111	1.50	74.33			
2	20	30	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		2500		79.8	1.50	53.23			
3	30	40	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		2500		79.8	1.50	53.23			
4	40	50	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		2500		79.8	1.50	53.23			
5	50	60A	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		219		111	1.50	74.33			
6	60A	60B	Elbow	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0	381	812.926		97.3	1.50	64.88			
7	60B	70	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		219		111	1.50	74.33			
8	70	80	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		1800		81.1	1.50	54.05			
9	80	90	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		1800		81.1	1.50	54.05			
10	90	100	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		1800		81.1	1.50	54.05			
11	100	110A	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		219		111	1.50	74.33			
12	110A	110B	Elbow	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0	381	812.926		97.3	1.50	64.88			
13	110B	120	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		219		111	1.50	74.33			
14	120	130	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		1820		81.0	1.50	54.00			
15	130	140	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		1820		81.0	1.50	54.00			
16	150	160	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		300		111	1.50	74.33			
17	160	170	Pipe	185	1.00	101.7	165.5	183470	273.05	273.05	9.271	9.271	0		300		111	1.50	74.33			
18	170	180	Reducer	185	1.00	101.7	165.5	183470	273.05	219.07	9.271	8.1788	0		530		129	1.50	85.97	748.545	4.0901E+6	5
19	180	190	Pipe	185	1.00	101.7	165.5	183470	219.07	219.07	8.1788	8.1788	0		2100		94.5	1.50	63.02			
20	160	200	Pipe	185	1.00	101.7	165.5	183470	168.27	168.27	7.112	7.112	0		1000		118	1.50	78.44			
21	200	210	Pipe	185	1.00	101.7	165.5	183470	168.27	168.27	7.112	7.112	0		400		136	1.50	90.35			
22	220	230A	Pipe	260	1.00	91.70	165.5	178574	168.27	168.27	7.112	7.112	0		26.3999		140	1.50	93.33			
23	230A	230B	Elbow	260	1.00	91.70	165.5	178574	168.27	168.27	7.112	7.112	0	228.6	491.243		128	1.50	85.43			
24	230B	240	Pipe	260	1.00	91.70	165.5	178574	168.27	168.27	7.112	7.112	0		271.4		140	1.50	93.33			
25	240	250	Pipe	260	1.00	91.70	165.5	178574	168.27	168.27	7.112	7.112	0		1800		115	1.50	76.74			
26	250	260A	Pipe	260	1.00	91.70	165.5	178574	168.27	168.27	7.112	7.112	0		271.4		140	1.50	93.33			
27	260A	260B	Elbow	260	1.00	91.70	165.5	178574	168.27	168.27	7.112	7.112	0	228.6	491.243		128	1.50	85.43			\mathbf{v}

Step 3:

The results shown above can also be printed to the printer or to a file using the option File > Print.

Print External Pressure [Design: EN 13480-3 (? ×
Printer		
	Text Printer	
Printer setup	HP Officejet Pro 8620 [61A34]	3]
Page setup	Orientation : Portrait	
Font	Arial, 10 point	
Print Cancel	Preview Print to F	ïle

Caepip	ЭС										Samp	le Prob	lem 2				Pagi	age 1
		-								External P	ressure De	sign: EN	13480-3 (2017)	(35)				
From	⊡ ́≏	Iement Ti	emp Press (F ;) (bar)	oc) All.Stres (MPa)	s Yield (MPa)	(MPa) (mr	1 OD2 (mm)	(mm)	(mm) (m	or.All Radi	us Length	ncyl O	Cone Angle Pr dea) (bar)	K.Pc (bar)	Pr/K.Pc)	k b mm4) (i	lxa (mm4)	
10	20 Pi	pe 15	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		200	4	82.3	1.50	54.83		· · · · · · · · · · · · · · · · · · ·	
20	30 Pi	pe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		2500	2	65.5	1.50	13.70			
30	40 Pi	pe 15	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		2500	2	65.5	1.50	13.70			
40	50 Pi	pe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		2500	2	65.5	1.50	13.70			
50	60A Pi	ipe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		219	4	82.3	1.50	54.83			
60A	60B EI	bow 18	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0	381	812.926	2	75.7	1.50	50.45			
60B	70 Pi	pe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		219	4	82.3	1.50	54.83			
20	80 Pi	pe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		1800	2	66.3	1.50	14.21			
80	90 Pi	pe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		1800	2	66.3	1.50	14.21			
06	100 Pi	pe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		1800	2	66.3	1.50	14.21			
100	110A Pi	pe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		219	4	82.3	1.50	54.83			
110A	110B EI	bow 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0	381	812.926	2	75.7	1.50	50.45			
110B	120 Pi	pe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		219	4	82.3	1.50	54.83			
120	130 Pi	pe 16	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		1820	2	66.3	1.50	14.18			
130	140 Pi	pe 15	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		1820	2	66.3	1.50	14.18			
150	160 Pi	pe 15	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		300	e	82.3	1.50	54.83			
160	170 Pi	pe 15	35 1.00	101.7	122.1	183470 273	.05 273.05	5 9.271	9.271 0		300	e	82.3	1.50	54.83			
170	180 Rt	educer 16	35 1.00	101.7	122.1	183470 273	.05 219.07	7 9.271	8.1788 0		530	2	97.9	1.50	35.27	48.545 4	4.0901E+6	
180	190 Pi	De 15	35 1.00	101.7	122.1	183470 219	07 219.07	7 8.1788	8.1788 0		2100	2	76.2	1.50	50.83			
160	200 Pi	De 15	35 1.00	101.7	122.1	183470 168	.27 168.27	7 7.112	7.112 0		1000	2	92.5	1.50	31.65			
200	210 Pi	De 15	35 1.00	101.7	122.1	183470 168	.27 168.27	7 7.112	7.112 0		400	2	103	1.50	38.85			
220	230A Pi	pe 26	30 1.00	91.70	110.0	178574 168	27 168.27	7 7.112	7.112 0		26.3999	4	93.1	1.50	\$2.06			
230A	230B EI	bow 26	30 1.00	91.70	110.0	178574 168	.27 168.27	7.112	7.112 0	228.6	3 491.243	2	90.6	1.50	\$0.43			
230B	240 Pi	pe 26	30 1.00	91.70	110.0	178574 168	.27 168.27	7 7.112	7.112 0		271.4	e	93.1	1.50	\$2.06			
240	250 Pi	pe 26	30 1.00	91.70	110.0	178574 168	.27 168.27	7 7.112	7.112 0		1800	2	83.7	1.50	55.80			
250	260A Pi	De 26	30 1.00	91.70	110.0	178574 168	27 168.27	7.112	7.112 0		271.4	6	93.1	1.50	32.06			
260A	DADR FL	Pow Mod	100	01 7U	110.0	178574 168	77 168 2	7 112	7 112 0	228.6	401 245	0 0	ana	1 50	20.43			
- anac	270 Di	20 DF	100	01.70	110.0	178574 168	77 168 7	7 110	7 110 0	1044	1 1 1 1 1	4 0	1 20	04 1	anca			
0107		ad	00.1	91.10	0.011	001 +/00/1	17.001 12.	211.7	0 211.7		+.1.12	0 0		00.1	00.20			
2/0	280 PI	ipe 2(00 1.00	91.70	110.0	1/85/4 168	.2/ 168.2/	211.7	0 2117	-	1800	N	83.7	1.50	09.60			
280	290 Pi	pe 2(50 1.00	91.70	110.0	178574 168	.27 168.27	7.112	7.112 0		1490	2	83.8	1.50	55.87			
290	300A Pi	ipe 2t	50 1.00	91.70	110.0	178574 168	.27 168.27	7 7.112	7.112 0		321.278	e	93.1	1.50	\$2.06			
300A	300B EI	bow 2t	30 1.00	91.70	110.0	178574 168	.27 168.27	7 7.112	7.112 0	228.6	3 415.032	2	93.1	1.50	32.06			
300B	310 Pi	ipe 2t	30 1.00	91.70	110.0	178574 168	.27 168.27	7 7.112	7.112 0		321.278	3	93.1	1.50	32.06			
310	320 Pi	ipe 2(30 1.00	91.70	110.0	178574 168	.27 168.27	7.112	7.112 0		1635.72	2	83.7	1.50	55.83			
320	330 Pi	ipe 26	50 1.00	91.70	110.0	178574 168	.27 168.27	7.112	7.112 0		1635.72	2	83.7	1.50	55.83			
Version	n 10.40										External	Pressur	eDesign				Jun 23,20	3,2021

10

Design of pipe and pipe fittings under internal pressure according to EN 13480-3 (2017)

Straight Pipes

The minimum required wall thickness for a straight pipe without allowances and tolerances, ep, is calculated from equation 6.1-1 and 6.1-3 depending on the ratio between inner and outer diameter as follows: For $D_0/D_i \le 1.7$

 $ep = \frac{P_c D_0}{2fz + P_c}$

For $D_0/D_i > 1.7$

$$ep = \frac{D_o}{2} \left[1 - \sqrt{\frac{fz - p_c}{fz + p_c}} \right]$$

where,

 D_o = outside diameter of pipe

 D_i = inside diameter of pipe = $Do - 2 \times e_n$

 e_n = nominal wall thickness of pipe

f = Allowable stress for material at maximum temperature

z = weld efficiency factor = 1.0

 p_c = maximum internal pressure = maximum of CAEPIPE input pressures P1 through P10

ep = minimum required wall thickness

Elbows

The minimum required wall thickness of the intrados and the extrados of the elbow without allowances and tolerances, ep1 / ep2, is calculated from equation B.4.1-3

ep1 = ep2 = e.B
$$B = \frac{D_0}{2e} - \frac{R}{e} + \sqrt{\left[\frac{D_0}{2e} - \frac{R}{e}\right]^2 + 2\frac{R}{e} - \frac{D_0}{2e}}$$

where

D_o = outside diameter of elbow

e = minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3

R = radius of the elbow

ep1 = ep2 = minimum required wall thickness of the elbow

Bends (formed by cold bending of straight pipes)

Wall thickness of the intrados of the bend

The minimum required wall thickness of the intrados of the bend without allowances and tolerances, ep1, is calculated from equation B.4.1-1

 $ep1 = e \cdot B_{int}$

$$B_{int} = \frac{D_0}{2e} + \frac{r}{e} - \left[\frac{D_o}{2e} + \frac{r}{e} - 1\right] \sqrt{\frac{\left(\frac{r}{e}\right)^2 - \left(\frac{D_o}{2e}\right)^2}{\left(\frac{r}{e}\right)^2 - \frac{D_o}{2e}\left(\frac{D_o}{2e} - 1\right)}}$$

r/e is calculated from

$$\frac{r}{e} = \sqrt{\frac{1}{2} \left\{ \left(\frac{D_o}{2e}\right)^2 + \left(\frac{R}{e}\right)^2 \right\}} + \sqrt{\frac{1}{4} \left(\left(\frac{D_o}{2e}\right)^2 + \left(\frac{R}{e}\right)^2 \right)^2 - \frac{D_o}{2e} \left(\frac{D_o}{2e} - 1\right) \left(\frac{R}{e}\right)^2}$$

where

 D_o = outside diameter of bend

 D_i = inside diameter of bend = $Do - 2 x e_n$

e = minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3

R = radius of the bend

 e_{p1} = minimum required wall thickness of the intrados

Wall thickness of the extrados of the bend

The minimum required wall thickness of the extrados of the bend without allowances and tolerances, ep2, is calculated from equation B.4.1-8

ep2 = e . B_{ext}
$$B_{ext} = \frac{D_0}{2e} - \frac{r}{e} - \left[\frac{D_o}{2e} - \frac{r}{e} - 1\right] \sqrt{\frac{\left(\frac{r}{e}\right)^2 - \left(\frac{D_o}{2e}\right)^2}{\left(\frac{r}{e}\right)^2 - \frac{D_o}{2e}\left(\frac{D_o}{2e} - 1\right)}}$$

r/e is calculated from

$$\frac{r}{e} = \sqrt{\frac{1}{2} \left\{ \left(\frac{D_o}{2e}\right)^2 + \left(\frac{R}{e}\right)^2 \right\}} + \sqrt{\frac{1}{4} \left(\left(\frac{D_o}{2e}\right)^2 + \left(\frac{R}{e}\right)^2 \right)^2 - \frac{D_o}{2e} \left(\frac{D_o}{2e} - 1\right) \left(\frac{R}{e}\right)^2$$

where

D_o = outside diameter of bend

 D_i = inside diameter of bend = $Do - 2 x e_n$

e = minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3

R = radius of the bend

 e_{p2} = minimum required wall thickness of the extrados

Reducers

Junction between the large end of a cone and a cylinder without a knuckle

The minimum required wall thickness (e_1) of the larger cylinder adjacent to the junction is calculated from Subsection 6.4.6.2 as the greater of e_{cyl} and e_i where e_i is determined from

$$\beta = \frac{1}{3} \sqrt{\frac{D_c}{e_j} \frac{\tan \alpha}{1 + \frac{1}{\sqrt{\cos \alpha}}}} - 0.15 \qquad (Eq. 6.4.6 - 2)$$
$$e_j = \frac{p_{c\beta D_c}}{2f} \qquad (Eq. 6.4.6 - 1)$$

The value of e_j is acceptable, if the value given by Eq. 6.4.6-1 is not less than that assumed in Eq. 6.4.6-2

$$\begin{split} e_{con} &= \frac{p_c D_e}{2fZ + p_c} \frac{1}{COS(\alpha)} \quad (Eq. \, 6.4.4 - 2) \\ e_{cyl} &= \frac{p_c D_{01}}{2fZ + p_c} \\ e_1 &= thickness \ of \ larger \ cylinder = max(e_j, e_{cyl}) \\ e_3 &= thickness \ of \ cone \ shell = max(e_j, e_{con}) \end{split}$$

where

D_e = outside diameter of the cone

D₀₁ = outside diameter of the larger cylinder

D₀₂ = outside diameter of the small cylinder

 D_c = mean diameter of the larger cylinder at the junction with the cone = D_{01} - e_n

en = nominal wall thickness of the larger cylinder at the junction with the cone

e₁ = minimum required wall thickness for larger cylinder adjacent to the junction.

 e_3 = minimum required wall thickness at cone.

f = Allowable stress for material at maximum temperature

 p_c = maximum internal pressure = maximum of CAEPIPE input pressures P1 through P10

Z = weld efficiency factor = 1.0

Junction between the small end of a cone and a cylinder without a knuckle

The minimum required wall thickness (e₂) of the small cylinder adjacent to the junction is calculated according to Subsection 6.4.8.2 as follows.

$$s = \frac{e_3}{e_{j2}}$$

With e_3 already determined in the earlier section, assume value of e_{j2} and calculate the values of s, τ and β_H When s < 1.0, then

$$\tau = s \sqrt{\frac{s}{\cos \alpha}} + \sqrt{\frac{1+s^2}{2}}$$

When s >= 1.0, then

$$\tau = 1 + \sqrt{s \frac{1+s^2}{2\cos\alpha}}$$

$$\beta_{H} = 0.4 \sqrt{\frac{D_{c}}{e_{j2}}} \frac{tan \propto}{\tau} + 0.5 \qquad (Eq. \ 6.4.8 - 4)$$
$$e_{j2} = \frac{p_{c} D_{c} \beta_{H}}{2fZ} \qquad (Eq. \ 6.4.8 - 5)$$

The value of e_{j2} is acceptable, if the value given by Eq. 6.4.8-5 is not less than that assumed for Eq. 6.4.8-4

$$e_{cyl} = \frac{p_c D_{02}}{2fZ + p_c}$$
$$e_2 = max(e_{j2}, e_{cyl})$$

where

 D_{02} = outside diameter of the small cylinder at the junction with the cone

 D_c = mean diameter of the small cylinder at the junction with the cone = D_{02} - e_n

 e_n = nominal wall thickness of the small cylinder at the junction with the cone

 \propto = cone angle

e₂ = minimum required wall thickness of the small cylinder at the junction with the cone

f = Allowable stress for material at maximum temperature

 p_c = maximum internal pressure = maximum of CAEPIPE input pressures P1 through P10

Z = weld efficiency factor = 1.0

Design of pipe and pipe fittings under external pressure according to EN 13480-3 (2017)

Pipes, Elbows, Mitre Bends and Reducers

Interstiffener collapse

The thickness of the pipe within the unstiffened length L shall not be less than that determined by the following.

$$P_r \ge k. P_c$$

$$P_y = \frac{Se_a}{R_m}$$

$$P_m = \frac{E_t e_a \varepsilon}{R_m}$$

$$\varepsilon = \frac{1}{n_{cyl^2} - 1 + \frac{Z^2}{2}} \left\{ \frac{1}{\left(\frac{n_{cyl^2}}{Z^2} + 1\right)^2} + \frac{e_{a^2}}{12R_{m^2(1-v^2)}} \left(n_{cyl^2} - 1 + Z^2\right)^2 \right\}$$

$$Z = \frac{\pi R_m}{L}$$

using the calculated value of Pm/Py, Pr/Py is determined from Table 9.3.2.1 of Subsection 9.3.2 where

 n_{cyl} = integer >= 2 to minimize the value of P_m

 R_m = mean radius of the pipe

L = length between the stiffener, is calculated from CAEPIPE input as follows

for Pipe, L = length of pipe (= distance between the "From" and "To" node of CAEPIPE)

for Elbow and Miter bend, L = arc length measured on extrados of elbow and miter bend

for Reducer, L = Length of the reducer

Et = Young's modulus of material at design temperature (max of CAEPIPE Temperature T1 through T10)

 e_a = analysis thickness of reducer at smaller end = e_n – corr.all – mill tolerance

 e_n = nominal thickness of reducer at smaller end

k = factor = 1.5

Pc = external pressure = maximum negative CAEPIPE input pressures P1 through P10

S = elastic stress limits for pipe and stiffener

- = $R_{p0.2,t}$ for non-austenitic steels
- = (R_{p0.2,t} / 1.25) for austenitic steels

R_{p0.2,t} = minimum 0.2% proof strength at temperature of pipe

= 'f' for EN 13480 code and

= "Allowable stress" at temperature of pipe for other codes

Additional check for Reducers

In addition to the above, as stated in Subsection 9.4.2 of EN 13480-3, the moment of inertia, I_x taken parallel to the axis of the cylinder, of the part of the cone and cylinder with a distance of $\sqrt{D_{eq} \cdot e}$ on either side of the junction is not less than:

$$I_x = 0.18 D_{eq} L D_s^2 \frac{p_c}{E_t} \le I_{xa}$$

where

 $D_{eq} = equivalent \ diameter = \frac{\frac{D_1 + D_2}{2}}{\cos(\alpha)}$

D1 = outside diameter of larger end of reducer

D2 = outside diameter of smaller end of reducer

 α = cone angle of reducer input in CAEPIPE

 I_{xa} = moment of inertia of reducer at smaller end

Ds = diameter of the centroid of the moment of inertia of the stiffening cross section calculated as shown below

$$I_{cone} = \left(\sqrt{D_{eq}e_1} \cdot e_1\right) \left(\frac{D_{mcon}}{2}\right)^2 = (A_{cone}) \left(\frac{D_{mcon}}{2}\right)^2$$
$$I_{Cyl} = \left(\sqrt{D_{eq}e_2} \cdot e_2\right) \left(\frac{D_{mcyl}}{2}\right)^2 = (A_{cyl}) \left(\frac{D_{mcyl}}{2}\right)^2$$
$$I_{stiff} = \left(A_{cone} + A_{cyl}\right) \left(\frac{D_s}{2}\right)^2$$

From the above,

$$I_{cone} + I_{Cyl} = I_{stiff}$$

and

.....

$$D_s = 2 \sqrt{\frac{l_{stiff}}{\left(A_{cone} + A_{cyl}\right)}}$$

e1 = analysis thickness of reducer at larger end = $e_{n1} - corr.all - mill tolerance$ e2 = analysis thickness of reducer at smaller end = $e_{n2} - corr.all - mill tolerance$ e_{n1} = nominal thickness of reducer at larger end

 e_{n2} = nominal thickness of reducer at smaller end