Tutorial on Pressure Design of Pipe and Pipe Fittings according to EN 13480-3 (2017)

Pressure Design of Pipe and Pipe Fittings can be performed using the modules built into CAEPIPE which are independent of the flexibility analysis.
These modules can be launched through Layout frame > Misc > Internal Pressure Design: EN 13480-3 and Layout frame > Misc > External Pressure Design: EN 13480-3 respectively.

Note:

These modules perform Pressure Design of Pipe and Pipe Fittings ONLY using the equations given in the EN 13480-3 (2017) Code irrespective of the Analysis Code selected for flexibility analysis in CAEPIPE.

In case the flexibility analysis is performed with an Analysis Code other than EN 13480-3 (2017), the Pressure Design modules will use the material allowable stresses corresponding to the maximum temperature T1 through T10 entered in the CAEPIPE stress model.

Tutorial on Internal Pressure Design of Pipe and Pipe Fittings

Step 1:

Snap shots shown below present a sample stress model developed to show the Internal Pressure Design calculations performed by CAEPIPE.

-llt Caepipe : Loads (1) - [InternalPressureDesign.mod (C:\Tutorials\02_Press...												-	\square	\times
Eile Edit View Options Misc Window Help														
-														
\#	Name	$\begin{aligned} & T 1 \\ & (C) \\ & (C) \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { (bar) } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 2 \\ & (\mathrm{C}) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { P2 } \\ \text { (bar) } \end{array} \end{aligned}$	$\begin{array}{\|l} \hline \text { Desg.T } \\ \text { (C) } \\ \hline \end{array}$	$\begin{aligned} & \text { Desg. } \mathrm{Pr} . \\ & \text { (bar) } \end{aligned}$	Specific gravity	$\begin{aligned} & \text { Add.Wgt. } \\ & (\mathrm{kg} / \mathrm{m}) \end{aligned}$	Wind Load 1	Wind Load 2	Wind Load 3	Wind Load 4	
1	1	221	22.6	20	-1.00	221	22.6	0.003						
2														

게= Caepipe : Bends (17) - [InternalPressureDesign.mod (C:\Tutorials\PressureDesign)]													-	\square	\times
File Edit Options Help															
-11						\square									
\#	Bend Node	Radius (mm)	Rad. Type	$\left.\begin{array}{\|l\|l} \text { Thk } \\ (\mathrm{mm}) \end{array} \right\rvert\,$	Bend Matl	Flex.F	$\begin{aligned} & \ln \mathrm{Pln} \\ & \mathrm{SIF} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Out Pln } \\ \text { SIF } \end{array}$	Int. Node	Angle (deg)	Int. Node	Angle (deg)			
1	20	B56	Short												
2	40	533	Long												
3	70	533	Long												
4	80	533	Long												
5	210	305	Long												
6	1010	356	Short												
7	1030	533	Long												
8	1060	533	Long												
9	1070	533	Long									\checkmark			
	1700		$\|1 \ldots-\|$												

Step 2:

Internal pressure design calculations of pipe and pipe fittings according to EN 13480-3 are independent of lengths of elements defined in the CAEPIPE stress model. Hence, these calculations can be performed directly from the existing stress model developed for flexibility analysis. Equations used for performing Internal Pressure Design as per EN 13480-3 (2017) are provided at the end of this tutorial for reference.

Once the layout of the stress model as shown in the above snap shots is completed, the internal pressure design is performed through Layout window > Misc > Internal Pressure Design: EN 13480-3.
When executed, CAEPIPE automatically performs the pressure design calculations for Pipes, Elbows, Miters, Bends and Reducers for the entire stress model and displays the results as shown below.

It is observed that the ratios Uf1 and Uf2 are all less than 1.0, confirming that the Internal Pressure Design requirements of EN 13480-3 (2017) code are met for this stress model.

File Options Window Help																		
\#	From	To	Element Type	Des. Temp (C)	Des.Press (bar)	$\begin{array}{\|l\|} \hline \text { All. Stress } \\ (\mathrm{N} / \mathrm{mm} 2) \end{array}$	$\begin{aligned} & \hline 0 \mathrm{D} 1 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{OD} 2 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { Cor.All } \\ & (\mathrm{mm}) \end{aligned}$	Radius (mm)	Cone Angle (deg)	$\begin{aligned} & \mathrm{ea} 1 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{ea} 2 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{ep} 1 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{ep} 2 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { Uf1 } \\ & \text { (ep 1/ea1) } \end{aligned}$		\wedge
1	10	20	Elbow	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4417	4.4417	0.74	0.74	
2			Bend	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4824	2.4943	0.75	0.42	
3	20	30	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
4	30	40	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
5			Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
6	40	50	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
7	50	60	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
8	60	70	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
9			Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
10	70	80	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
11			Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
12	80	90	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
13	90	100	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
14	100	110	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
15	120	130	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
16	140	150	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
17	150	160	Reducer	221	22.6	132.8	406.4	355.6	1		8	6.7	6	3.4289	3.0003	0.51	0.50	
18	160	170	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
19	170	180	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
20	180	190	Reducer	221	22.6	132.8	406.4	219.1	1		46	6.7	4.5125	4.4882	2.9294	0.67	0.65	
21	190	200	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41	\checkmark

See the attached model "InternalPressureDesign.mod" for more details.

Step 3:

The results shown above can also be printed to the printer or to a file using the option File > Print.

aepipe Pressure Design (Internal)																	Page 1
Internal Pressure Design: EN 13480-3 (2017) (74)																	
From	To	Element Type	Des.Temp (C)	Des.Press (bar)	All.Stress ($\mathrm{N} / \mathrm{mm} 2$)	$\begin{aligned} & \text { OD1 } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \mathrm{OD2} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { Cor.All } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { Radius } \\ & (\mathrm{mm}) \end{aligned}$	Cone Angle (deg)	$\begin{aligned} & \text { ea1 } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { ea2 } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \mathrm{ep1} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{ep} 2 \\ & (\mathrm{~mm}) \end{aligned}$	Uf1 (ep1/ea1)	Uf2 (ep2/ea2)	
10	20	Elbow	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4417	4.4417	0.74	0.74	
		Bend	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4824	2.4943	0.75	0.42	
20	30	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
30	40	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
40	50	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
50	60	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
60	70	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
70	80	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
80	90	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
90	100	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
100	110	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
120	130	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
140	150	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
150	160	Reducer	221	22.6	132.8	406.4	355.6	1		8	6.7	6	3.4289	3.0003	0.51	0.50	
160	170	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
170	180	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51	
180	190	Reducer	221	22.6	132.8	406.4	219.1	1		46	6.7	4.5125	4.4882	2.9294	0.67	0.65	
190	200	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41	
200	210	Elbow	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3634	1.6025	0.52	0.36	
210	220	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41	
1000	1010	Elbow	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4417	4.4417	0.74	0.74	
		Bend	221	22.6	132.8	355.6	355.6	1	356		6	6	4.4824	2.4943	0.75	0.42	
1010	1020	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	
1020	1030	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62	
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44	
1030	1040	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50	

Pressure Design (Internal)																
Internal Pressure Design: EN 13480-3 (2017) (74)																
From	To	Element Type	Des.Temp (C)	Des.Press (bar)	All.Stress ($\mathrm{N} / \mathrm{mm} 2$)	$\begin{aligned} & \text { OD1 } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \mathrm{OD} 2 \\ & (\mathrm{~mm}) \end{aligned}$	Cor.All (mm)	Radius (mm)	Cone Angle (deg)	ea1 (mm)	$\begin{aligned} & \mathrm{ea2} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { ep1 } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { ep2 } \\ & (\mathrm{mm}) \end{aligned}$	Uf1 (ep1/ea1)	Uf2 (ep2/ea2)
1040	1050	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50
1050	1060	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44
1060	1070	Elbow	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7316	3.7316	0.62	0.62
		Bend	221	22.6	132.8	355.6	355.6	1	533		6	6	3.7468	2.6225	0.62	0.44
1070	1080	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50
1080	1090	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50
1090	1100	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50
1110	1120	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50
1130	1140	Pipe	221	22.6	132.8	355.6	355.6	1			6	6	3.0003	3.0003	0.50	0.50
1140	1150	Reducer	221	22.6	132.8	406.4	355.6	1		8	6.7	6	3.4289	3.0003	0.51	0.50
1150	1160	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51
1160	1170	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51
1170	1180	Reducer	221	22.6	132.8	406.4	219.1	1		46	6.7	4.5125	4.4882	2.9294	0.67	0.65
1180	1190	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41
1190	1200	Elbow	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3525	2.3525	0.52	0.52
		Bend	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3634	1.6025	0.52	0.36
1200	1210	Elbow	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3525	2.3525	0.52	0.52
		Bend	221	22.6	132.8	219.1	219.1	1	305		4.5125	4.5125	2.3634	1.6025	0.52	0.36
1210	1220	Pipe	221	22.6	132.8	219.1	219.1	1			4.5125	4.5125	1.8486	1.8486	0.41	0.41
170	1600	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51
1600	1610	Elbow	221	22.6	132.8	406.4	406.4	1	610		6.7	6.7	4.2629	4.2629	0.64	0.64
		Bend	221	22.6	132.8	406.4	406.4		610		6.7	6.7	4.2803	2.9976	0.64	0.45
1610	1620	Pipe	221	22.6	132.8	406.4	406.4				6.7	6.7	3.4289	3.4289	0.51	0.51
1160	1850	Pipe	221	22.6	132.8	406.4	406.4	1			6.7	6.7	3.4289	3.4289	0.51	0.51
1620	1800	Reducer	221	22.6	132.8	508	406.4	1		18	8.625	6.7	4.2861	3.7079	0.50	0.55
1800	1810	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50
1810	1820	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50
1820	1830	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50
1830	1840	Pipe	221	22.6	132.8	508	508	1			8.625	8.625	4.2861	4.2861	0.50	0.50

Version 10.40
InternalPressureDesign
Jun 23,2021

Tutorial on External Pressure Design of Pipe and Pipe Fittings

External Pressure Design module will function ONLY when the stress layout is defined with negative pressure (such as vacuum pressure).
This module first calculates collapse pressure (same as buckling pressure), which is a function of span length "L" between the stiffeners placed on the piping (shown in figures below). Since the collapse (buckling) mode of deformation for a pipe element between two adjacent stiffeners is restrained by these stiffeners, shorter the span length L between the stiffeners, higher the collapse (buckling) pressure.
The External Pressure Design module assumes that a stiffener is located at each node of the CAEPIPE model. Hence, ensure that nodes are defined in CAEPIPE model only at locations where the stiffeners are attached to the piping. Even nodes where flanges or certain types of supports that restrain the collapse (buckling) mode of deformation should be included as "stiffener locations". All other nodes at which the collapse (buckling) mode of deformation is not restrained (such as resting supports) should not be included in the CAEPIPE model for external pressure design calculations. In other words, the CAEPIPE stress model (that was developed for flexibility analysis) needs to be edited before performing the external pressure design.

Single Pipe

Pipe with bend

Pipe with flange connections

Pipe with bend or elbow with ' L ' measured on extrados

Pipe with mitre with ' L ' measured on extrados

Step 1:

The procedure given below will help in retaining ONLY those nodes of the CAEPIPE stress model (originally developed for flexibility analysis) prior to External Pressure Design calculations.

- Create a copy of the existing CAEPIPE stress model (developed for flexibility analysis).
- At whichever node the collapse (buckling) mode of deformation is NOT restrained, navigate to that element node in the layout window and use the option "Combine..." through Layout window > Edit. This action will remove that node by combining the two adjacent elements.
- Repeat Step 2 above and remove all other nodes where there are NO stiffeners or flanges or supports [that restrain the collapse (buckling) mode] defined.
- Upon completion, save the model.

Snap shots shown below present a sample model developed to show the External Pressure Design calculations performed by CAEPIPE. As stated above, a copy of the original stress model was made and the model has been edited to include only those nodes on pipe where stiffeners, flanges and supports (that are equivalent to stiffeners from the point of view of restraining collapse mode of deformation) are attached.

Eile Edit View Options Misc Window Help

\#	Name	T1 (C)	P1 (bar)	T2 (C)	P2 (bar)	Desg. T (C)	Desg.Pr. (bar)	Specific gravity	Add.Wgt. (kg/m)	Wind Load 1	Wind Load 2	Wind Load 3	Wind Load 4
1	L1	185	10.0	21.11	-1.00	185	10.0	0.1		Y			
2	L2	260	32.0	21.11	-1.00	260	32.0	0.1		Y			
3													

Step 2:

Once the layout of the stress model as shown in the above snap shots is completed, the external pressure design is performed through Layout window > Misc > External Pressure Design: EN 13480-3.
When executed, CAEPIPE automatically performs the external pressure design calculations for Pipes, Miters, Elbows, Bends and Reducers for the entire stress model and displays the results as shown below.
It is observed that the ratio $\left[P_{d} /\left(\mathrm{KP}_{\mathrm{c}}\right)\right]$ is much higher than 1.0 throughout the stress model, confirming that the collapse (buckling) pressures P_{r} calculated for all segments of the stress model are much higher than the corresponding peak negative pressures specified in the CAEPIPE model. In other words, the potential for any segment of this piping system to collapse (buckle) is very minimal.

Step 3:

The results shown above can also be printed to the printer or to a file using the option File > Print.

Design of pipe and pipe fittings under internal pressure according to EN 13480-3 (2017)

Straight Pipes

The minimum required wall thickness for a straight pipe without allowances and tolerances, ep, is calculated from equation 6.1-1 and 6.1-3 depending on the ratio between inner and outer diameter as follows:
For $D_{0} / D_{i}<=1.7$

$$
e p=\frac{P_{c} D_{0}}{2 f z+P_{c}}
$$

For $D_{0} / D_{i}>1.7$

$$
e p=\frac{D_{o}}{2}\left[1-\sqrt{\frac{f z-p_{c}}{f z+p_{c}}}\right]
$$

where,
$D_{0}=$ outside diameter of pipe
$D_{i}=$ inside diameter of pipe $=D o-2 \times e_{n}$
$e_{\mathrm{n}}=$ nominal wall thickness of pipe
$f=$ Allowable stress for material at maximum temperature
$z=$ weld efficiency factor $=1.0$
$\mathrm{p}_{\mathrm{c}}=$ maximum internal pressure $=$ maximum of CAEPIPE input pressures P1 through P10
$e_{p}=$ minimum required wall thickness

Elbows

The minimum required wall thickness of the intrados and the extrados of the elbow without allowances and tolerances, ep1 / ep2, is calculated from equation B.4.1-3

$$
\begin{gathered}
\mathrm{ep} 1=\mathrm{ep} 2=\mathrm{e} . \mathrm{B} \\
B=\frac{D_{0}}{2 e}-\frac{R}{e}+\sqrt{\left[\frac{D_{0}}{2 e}-\frac{R}{e}\right]^{2}+2 \frac{R}{e}-\frac{D_{0}}{2 e}}
\end{gathered}
$$

where
$D_{0}=$ outside diameter of elbow
$\mathrm{e}=$ minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3
$R=$ radius of the elbow
$e p 1=e p 2=$ minimum required wall thickness of the elbow

Bends (formed by cold bending of straight pipes)

Wall thickness of the intrados of the bend

The minimum required wall thickness of the intrados of the bend without allowances and tolerances, ep1, is calculated from equation B.4.1-1

$$
\mathrm{ep} 1=\mathrm{e} \cdot \mathrm{~B}_{\text {int }}
$$

$$
B_{i n t}=\frac{D_{0}}{2 e}+\frac{r}{e}-\left[\frac{D_{o}}{2 e}+\frac{r}{e}-1\right] \sqrt{\frac{\left(\frac{r}{e}\right)^{2}-\left(\frac{D_{o}}{2 e}\right)^{2}}{\left(\frac{r}{e}\right)^{2}-\frac{D_{o}}{2 e}\left(\frac{D_{o}}{2 e}-1\right)}}
$$

r / e is calculated from

$$
\frac{r}{e}=\sqrt{\frac{1}{2}\left\{\left(\frac{D_{o}}{2 e}\right)^{2}+\left(\frac{R}{e}\right)^{2}\right\}+\sqrt{\frac{1}{4}\left(\left(\frac{D_{o}}{2 e}\right)^{2}+\left(\frac{R}{e}\right)^{2}\right)^{2}-\frac{D_{o}}{2 e}\left(\frac{D_{o}}{2 e}-1\right)\left(\frac{R}{e}\right)^{2}}}
$$

where
$D_{0}=$ outside diameter of bend
$D_{i}=$ inside diameter of bend $=D o-2 \times e_{n}$
$\mathrm{e}=$ minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3
$R=$ radius of the bend
$e_{p 1}=$ minimum required wall thickness of the intrados

Wall thickness of the extrados of the bend

The minimum required wall thickness of the extrados of the bend without allowances and tolerances, ep2, is calculated from equation B.4.1-8

$$
\begin{gathered}
\mathrm{ep} 2=\mathrm{e} \cdot \mathrm{~B}_{\mathrm{ext}} \\
B_{\text {ext }}=\frac{D_{0}}{2 e}-\frac{r}{e}-\left[\frac{D_{o}}{2 e}-\frac{r}{e}-1\right] \sqrt{\frac{\left(\frac{r}{e}\right)^{2}-\left(\frac{D_{o}}{2 e}\right)^{2}}{\left(\frac{r}{e}\right)^{2}-\frac{D_{o}}{2 e}\left(\frac{D_{o}}{2 e}-1\right)}}
\end{gathered}
$$

r/e is calculated from

$$
\frac{r}{e}=\sqrt{\frac{1}{2}\left\{\left(\frac{D_{o}}{2 e}\right)^{2}+\left(\frac{R}{e}\right)^{2}\right\}+\sqrt{\frac{1}{4}\left(\left(\frac{D_{o}}{2 e}\right)^{2}+\left(\frac{R}{e}\right)^{2}\right)^{2}-\frac{D_{o}}{2 e}\left(\frac{D_{o}}{2 e}-1\right)\left(\frac{R}{e}\right)^{2}}}
$$

where
$D_{0}=$ outside diameter of bend
$D_{i}=$ inside diameter of bend $=D o-2 \times e_{n}$
$e=$ minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3
$R=$ radius of the bend
$e_{p 2}=$ minimum required wall thickness of the extrados

Reducers

Junction between the large end of a cone and a cylinder without a knuckle

The minimum required wall thickness (e_{1}) of the larger cylinder adjacent to the junction is calculated from Subsection 6.4.6.2 as the greater of $e_{\text {cyl }}$ and e_{j} where e_{j} is determined from

$$
\begin{align*}
& \beta=\frac{1}{3} \sqrt{\frac{D_{c}}{e_{j}}} \frac{\tan \alpha}{1+\frac{1}{\sqrt{\cos \alpha}}}-0.15 \tag{Eq.6.4.6-2}\\
& e_{j}=\frac{p_{c \beta D_{c}}}{2 f} \tag{Eq.6.4.6-1}
\end{align*}
$$

The value of e_{j} is acceptable, if the value given by Eq. 6.4.6-1 is not less than that assumed in Eq. 6.4.6-2

$$
\begin{aligned}
& e_{c o n}=\frac{p_{c} D_{e}}{2 f Z+p_{c}} \frac{1}{\operatorname{COS}(\alpha)} \\
& \mathrm{e}_{\mathrm{cyl}}=\frac{\mathrm{p}_{\mathrm{c}} \mathrm{D}_{01}}{2 \mathrm{fZ}+\mathrm{p}_{\mathrm{c}}} \\
& e_{1}=\text { thickness of larger cylinder }=\max \left(e_{j}, e_{c y l}\right) \\
& e_{3}=\text { thickness of cone shell }=\max \left(e_{j}, e_{c o n}\right)
\end{aligned}
$$

where
$D_{\mathrm{e}}=$ outside diameter of the cone
$\mathrm{D}_{01}=$ outside diameter of the larger cylinder
$\mathrm{D}_{02}=$ outside diameter of the small cylinder
$D_{c}=$ mean diameter of the larger cylinder at the junction with the cone $=D_{01}-e_{n}$
$\mathrm{e}_{\mathrm{n}}=$ nominal wall thickness of the larger cylinder at the junction with the cone
$\alpha=$ cone angle
$\mathrm{e}_{1}=$ minimum required wall thickness for larger cylinder adjacent to the junction.
$e_{3}=$ minimum required wall thickness at cone.
$\mathrm{f}=$ Allowable stress for material at maximum temperature
$\mathrm{p}_{\mathrm{c}}=$ maximum internal pressure $=$ maximum of CAEPIPE input pressures P1 through P10
$Z=$ weld efficiency factor $=1.0$

Junction between the small end of a cone and a cylinder without a knuckle

The minimum required wall thickness $\left(\mathrm{e}_{2}\right)$ of the small cylinder adjacent to the junction is calculated according to Subsection 6.4.8.2 as follows.

$$
s=\frac{e_{3}}{e_{j 2}}
$$

With e_{3} already determined in the earlier section, assume value of $\mathrm{e}_{\mathrm{j} 2}$ and calculate the values of s, τ and β_{H} When s < 1.0 , then

$$
\tau=s \sqrt{\frac{s}{\cos \alpha}}+\sqrt{\frac{1+s^{2}}{2}}
$$

When $s>=1.0$, then

$$
\tau=1+\sqrt{s \frac{1+s^{2}}{2 \cos \alpha}}
$$

$\beta_{H}=0.4 \sqrt{\frac{D_{c}}{e_{\mathrm{j} 2}}} \frac{\tan \alpha}{\tau}+0.5$
$e_{j 2}=\frac{p_{c} D_{c} \beta_{H}}{2 f Z}$
The value of $\mathrm{e}_{\mathrm{j} 2}$ is acceptable, if the value given by Eq. 6.4.8-5 is not less than that assumed for Eq. 6.4.8-4

$$
\begin{gathered}
e_{c y l}=\frac{p_{c} D_{02}}{2 f Z+p_{c}} \\
e_{2}=\max \left(e_{j 2}, e_{c y l}\right)
\end{gathered}
$$

where
$\mathrm{D}_{02}=$ outside diameter of the small cylinder at the junction with the cone
$D_{c}=$ mean diameter of the small cylinder at the junction with the cone $=D_{02}-e_{n}$
$\mathrm{e}_{\mathrm{n}}=$ nominal wall thickness of the small cylinder at the junction with the cone
$\alpha=$ cone angle
$e_{2}=$ minimum required wall thickness of the small cylinder at the junction with the cone
$f=$ Allowable stress for material at maximum temperature
$\mathrm{p}_{\mathrm{c}}=$ maximum internal pressure $=$ maximum of CAEPIPE input pressures P1 through P10
$Z=$ weld efficiency factor $=1.0$

Design of pipe and pipe fittings under external pressure according to EN 13480-3 (2017)

Pipes, Elbows, Mitre Bends and Reducers

Interstiffener collapse

The thickness of the pipe within the unstiffened length L shall not be less than that determined by the following.

$$
\begin{gathered}
P_{r} \geq k . P_{c} \\
P_{y}=\frac{S e_{a}}{R_{m}} \\
P_{m}=\frac{E_{t} e_{a} \varepsilon}{R_{m}} \\
\varepsilon=\frac{1}{n_{c y l^{2}}-1+\frac{Z^{2}}{2}}\left\{\frac{1}{\left(\frac{n_{c y l^{2}}}{Z^{2}}+1\right)^{2}}+\frac{e_{a^{2}}}{12 R_{m^{2}\left(1-v^{2}\right)}}\left(n_{c y l^{2}}-1+Z^{2}\right)^{2}\right\} \\
Z=\frac{\pi R_{m}}{L}
\end{gathered}
$$

using the calculated value of $\mathrm{Pm} / \mathrm{Py}, \mathrm{Pr} / \mathrm{Py}$ is determined from Table 9.3.2.1 of Subsection 9.3.2 where
$\mathrm{n}_{\mathrm{cyl}}=$ integer $>=2$ to minimize the value of P_{m}
$R_{m}=$ mean radius of the pipe
$\mathrm{L}=$ length between the stiffener, is calculated from CAEPIPE input as follows
for Pipe, L = length of pipe (= distance between the "From" and "To" node of CAEPIPE)
for Elbow and Miter bend, $L=$ arc length measured on extrados of elbow and miter bend
for Reducer, $L=$ Length of the reducer
$E_{t}=$ Young's modulus of material at design temperature (max of CAEPIPE Temperature T 1 through T10)
$e_{a}=$ analysis thickness of reducer at smaller end $=e_{n}-$ corr.all - mill tolerance
$e_{n}=$ nominal thickness of reducer at smaller end
$\mathrm{k}=$ factor $=1.5$
$\mathrm{P}_{\mathrm{c}}=$ external pressure $=$ maximum negative CAEPIPE input pressures P 1 through P10
$S=$ elastic stress limits for pipe and stiffener
$=R_{\text {p0.2,t }}$ for non-austenitic steels
$=\left(R_{p 0.2, t} / 1.25\right)$ for austenitic steels
$R_{p 0.2, t}=$ minimum 0.2% proof strength at temperature of pipe
= 'f' for EN 13480 code and
= "Allowable stress" at temperature of pipe for other codes

Additional check for Reducers

In addition to the above, as stated in Subsection 9.4.2 of EN 13480-3, the moment of inertia, I_{x} taken parallel to the axis of the cylinder, of the part of the cone and cylinder with a distance of $\sqrt{D_{e q} \cdot e}$ on either side of the junction is not less than:

$$
I_{x}=0.18 D_{e q} L D_{s}^{2} \frac{p_{c}}{E_{t}} \leq I_{x a}
$$

where
$\mathrm{D}_{\text {eq }}=$ equivalent diameter $=\frac{\frac{D_{1}+D_{2}}{2}}{\cos (\alpha)}$
D1 = outside diameter of larger end of reducer
D2 = outside diameter of smaller end of reducer
$\alpha=$ cone angle of reducer input in CAEPIPE
$I_{\mathrm{xa}}=$ moment of inertia of reducer at smaller end
Ds = diameter of the centroid of the moment of inertia of the stiffening cross section calculated as shown below
$I_{\text {cone }}=\left(\sqrt{D_{\text {eq }} e_{1}} \cdot e_{1}\right)\left(\frac{D_{\text {mcon }}}{2}\right)^{2}=\left(A_{\text {cone }}\right)\left(\frac{D_{\text {mcon }}}{2}\right)^{2}$
$I_{C y l}=\left(\sqrt{D_{e q} e_{2}} \cdot e_{2}\right)\left(\frac{D_{m c y l}}{2}\right)^{2}=\left(A_{c y l}\right)\left(\frac{D_{m c y l}}{2}\right)^{2}$
$I_{\text {stiff }}=\left(A_{\text {cone }}+A_{\text {cyl }}\right)\left(\frac{D_{s}}{2}\right)^{2}$
From the above,
$I_{\text {cone }}+I_{C y l}=I_{\text {stiff }}$
and
$D_{s}=2 \sqrt{\frac{I_{\text {stiff }}}{\left(A_{\text {cone }}+A_{\text {cyl }}\right)}}$
e1 = analysis thickness of reducer at larger end $=e_{n 1}-$ corr.all - mill tolerance
$e 2=$ analysis thickness of reducer at smaller end $=e_{n 2}-$ corr.all - mill tolerance
$\mathrm{e}_{\mathrm{n} 1}=$ nominal thickness of reducer at larger end
$e_{n 2}=$ nominal thickness of reducer at smaller end

