Tutorial on Refrigeration Piping using CAEPIPE

Steps to perform Analysis of Refrigeration Piping with ASME B31.5 Code using CAEPIPE:

The snap shot below shows the sample layout of a refrigeration piping system. The system experiences two (2) different temperatures during its operation (from -50 deg. F to 200 deg. F) with installation temperature as 70 deg. F. Being refrigeration piping, the analysis code is selected as ASME B31.5 for this system.

-0-	Caepip	e : Layout (14) - [refrig	erationpipin	ıg.mod (c:∖tı	utori	-	D	×	HIN C	aepipe : Grap	phics ·	–	_ [⊐ _	×	HIN (aepipe	: Graphic	s	-		×
File	e Edit	View Opt	ions Load	s Misc V	Vindow H	elp				File	View Opti	ons	Window	Help			File	View	Ontions	Windo	w H	ln	
	ڪ (3		T 68	1 🕲							~	<u> </u>	~	~	1.112				~	~	~
							`		11				16 (A I	θ (Q	昼			6	Q	Ð	Q
#	Node	Type	DX (tt'in")	DY (tt'in")	DZ (tt'in")	Mati	Sect	Load	Data					•	<u>`</u>	<u>`</u>		_ <u> </u>				<u>``</u>	<u>`</u>
2	nne =	From	i Kemgera	tion Piping					Anchor		լլլեթս				Y	^						Ý	^
3	20	Beducer	-0'11"			A53	6	11	7 silcilor		1 Jan				Ť							Ť	
4	30	Bend	-0'10"			A53	6	L1			720			Z 🌶	\sim	××			1		z		××
5	40			-5'2"		A53	6	L1															
6	50			-1'6"		A53	6	L1					•30 N									_	
7	60	Bend		-2'2"		A53	6	L1						D_								2	
8	70	Bend	-1'8"			A53	6	L1					1 5	<u>_</u> 80)								
9	80			2'2"		A53	6	L1						2									
10	90			1'6"		A53	6	L1								- 10							- 10
11	100			0'8"		A53	6	L1															
12	110	Reducer		0'6"		A53	4	L1															
13	120			4'2"		A53	4	L1															
14	130	Reducer		0'6"		A53	6	L1	Anchor														
15											C+100												
											90												
-																							
													40										
-																							
-											80												
-																							
													⁵⁰										
											ł												
											Α							- 1					
											- 20		Ļ										
												Ļ	1										
													∔ 60			\checkmark							~
<u> </u>										<						>:	<						>

Step 1:

Select the Analysis code as ASME B31.5 through Layout Window > Options > Analysis as shown below.

Step 2:

As the piping layout involves two (2) operating temperatures, "Number of Thermal Loads" needs to be set as "2". This can be done through Layout Window > Analysis > Temperature as shown below. In addition, the installation temperature (same as "Reference temperature") can be input as shown below.

Note:

As per para. 519.4.5(a) of ASME B31.5 (2022), bending and torsional stresses shall be computed using the as-installed modulus of elasticity, i.e., E_c at installation temperature (same as "Reference temperature"). Hence, "Use modulus at reference temperature" is set as "default" and is disabled for user to modify.

Step 3:

Enter the Operating temperatures of the piping layout through "Layout Window > Misc > Loads" as shown below.

-0-1	Caepipe	: Load	s (1) -	[refrig	geration	npiping.mo	od (c:\tutoria	als\refrigera	itionpiping)]					D	×
File	Edit	View	Option	ns M	isc W	/indow H	lelp								
-#) <u>n</u> (2	H		➡							
#	Name	T1 (F)	P1 (psi)	T2 (F)	P2 (psi)	Desg.T (F)	Desg.Pr. (psi)	Specific gravity	Add.Wgt. (lb/ft)	Wind Load 1	Wind Load 2	Wind Load 3	Wind Load 4		
1	L1	-50	100	200	100	240	125	0.01							
2															

Note:

Design Temperature entered will be used to determine the allowable stress for material, which is in turn used to compute the Allowable Pressure as per the piping code selected (B31.5 in this case).

The Allowable Pressure so computed as per the piping code selected is then compared against the Design Pressure entered above and reported in the Code Compliance results.

In addition, starting CAEPIPE Version 10.20, a new load case called "Design (W+PD+TD)" is added. When this load case is selected for Analysis, CAEPIPE will compute and show results for Displacements,

Element Forces & Moments, Support Loads and Support Load Summary. This load cases is NOT included in Stress Calculations, Rotating Equipment Qualifications and Flange Equivalent Pressure Calculations.

Step 4:

Select the material properties corresponding to "A53 Grade A (SEAMLESS)" through "Layout Window > Misc > Materials > File > Library...".

Mate	erial Library - [B311-2022.mat 🗙
Pipin	ng code : B31.1
#	Material Description
1	A53 GRADE A (SEAMLESS)
2	A53 GRADE B (SEAMLESS)
3	A53 GRADE A (ERW)
4	A53 GRADE B (ERW)
5	A106 GRADE A
6	A106 GRADE B
7	A106 GRADE C
8	A105
9	A135 GRADE A
10	A135 GRADE B
11	A181 CLASS 60
12	A181 CLASS 70
	OK Cancel Library

From the dialog box shown, select the Material library as B315-2016 from the folder "Material_Library" available inside the CAEPIPE installation folder. Once selected, highlight the material as shown above and press the button "OK".

-0-1	Caepipe : N	laterials (1) - [refrigerationpiping	g.mod	(c:\tutoria	ls\refrig	perationp	iping	J)]			- 0	×
File	Edit Vie	w Options Misc Window H	Help									
-#		🔲 🛍 🍳 🔳 🛛	2	•								
#	Name	Description	Ty pe	Density (lb/in3)	Nu	Joint factor	#	Temp (F)	E (psi)	Alpha (in/in/F)	Allowable (psi)	
1	A53	A53 GRADE A (SEAMLESS)	CS	0.283	0.3	1.00	1	20	29.7E+6	6.32E-6	13700	
2							2	70	29.4E+6	6.40E-6	13700	
							3	100	29.3E+6	6.47E-6	13700	
							4	200	28.8E+6	6.70E-6	13700	
							5	300	28.3E+6	6.90E-6	13700	
							6	400	27.4E+6	7.10E-6	13700	1
							7	500	27.3E+6	7.30E-6	13700	
							8	600	26.5E+6	7.40E-6	13700	
							9	650	26.0E+6	7.50E-6	13700	
							10	700	25.5E+6	7.60E-6	12500	
							11	750	24.9E+6	7.70E-6	10700	
							12	800	24.2E+6	7.80E-6	9000	
							4.5					

Step 5:

Define the section properties through "Layout Window > Misc > Sections".

-0-1	Caepipe	: Pipe S	Sectior	ns (2) -	[refrige	rationpip	oing.moc	l (c:\tutorial:	s\refrigera	tionp –	- 0)	×
File	Edit	View	Optio	ns Mis	c Win	dow H	elp						
-#			E) 🖉		1							
#	Name	Nom Dia	Sch	OD (inch)	Thk (inch)	Cor.Al (inch)	M.Tol (%)	Ins.Dens (Ib/ft3)	Ins.Thk (inch)	Lin.Dens (lb/ft3)	Lin.Thk (inch)	Soil	
1	6	6"	10S	6.625	0.134								1
2	4	4"	10S	4.5	0.12								

Step 6:

Generate the piping layout as shown below.

H	Caepipe	e:Layout (1	14) - [refrig	erationpipin	g.mod (c:\tu	itorials	\r			×
File	Edit	View Opt	ions Load	s Misc V	Vindow He	elp				
) 🖻	; 🖬 é	3 +) Q	•			
#	Node	Туре	DX (ft'in")	DY (ft'in")	DZ (ft'in")	Matl	Sect	Load	Data	
1	Title =	Tutorial on	Refrigerat	ion Piping						
2	10	From							Anchor	
3	20	Reducer	-0'11"			A53	6	L1		
4	30	Bend	-0'10"			A53	6	L1		
5	40			-5'2"		A53	6	L1		
6	50			-1'6"		A53	6	L1		
7	60	Bend		-2'2"		A53	6	L1		
8	70	Bend	-1'8"			A53	6	L1		
9	80			2'2"		A53	6	L1		
10	90			1'6"		A53	6	L1		
11	100			0'8"		A53	6	L1		
12	110	Reducer		0'6"		A53	4	L1		
13	120			4'2"		A53	4	L1		
14	130	Reducer		0'6"		A53	6	L1	Anchor	
15										

Step 7:

After creating the stress model, turn ON load cases through "Layout Window > Loads > Load cases as follows: Expansion (T1) {which is the same as the range (T1 - Tref)}, Expansion (T2) {which is the same as the range (T2 - Tref)}, and Expansion (T1 - T2) [= (T1 - Tref) - (T2 - Tref)].

After analysis, Expansion Stress (SE) value given at any node in Results Window > Sorted stresses and Results Window > Code compliance is the highest thermal stress range at that node among the three thermal ranges (T1 - Tref), (T2 - Tref) and (T1 - T2).

Step 8:

Save the model and perform analysis through Layout window > File > Analyze.

In order to understand the loads and load combinations used for analysis, review the CAEPIPE results file for Sorted Stress, Code Compliance, Displacements, Support Loads (loads acting on the supports by the piping for each load case), Element Forces & Moments (local/global forces and moments on each element for each load case) and Support Load Summary (listing support loads at a particular support for all <u>relevant</u> load cases and load combinations).

As stated above, Sorted Stresses in CAEPIPE lists the maximum of Expansion stresses for all thermal range cases at <u>each node</u>. On the other hand, for Sustained case, it always uses the maximum pressure among the input pressures (P1 and P2 in this case) while computing Sustained Stress at <u>each node</u>.

1-0-1	Caepipe	e : B31.5	5 (2022) (Code c	omplian	ce (Sori	ted stres	S	_		\times
File	Result	s Vie	w Opti	ons	Window	Help					
4	3 -				ð 16	\ [⇒	S	^S ∕A
		Suste	ained			Expar	nsion				
#	Node	SL (psi)	SH (psi)	<u>SL</u> SH	Node	SE (psi)	SA (psi)	<u>SE</u> SA			
1	10	1647	13700	0.12	30A	1183	32775	0.04			
2	30A	1475	13700	0.11	10	1086	32603	0.03			
3	30B	1419	13700	0.10	70B	827	32958	0.03			
4	70B	1292	13700	0.09	30B	803	32831	0.02			
5	20	1268	13700	0.09	70A	622	33080	0.02			
6	60A	1248	13700	0.09	60B	557	33074	0.02			
7	40	1212	13700	0.09	20	342	32982	0.01			
8	130	1209	13700	0.09	110	218	33322	0.01			
9	80	1201	13700	0.09	120	200	33306	0.01			
10	90	1198	13700	0.09	80	189	33049	0.01			
11	50	1198	13700	0.09	60A	176	33002	0.01			
12	100	1197	13700	0.09	90	135	33052	0.00			
13	60B	1176	13700	0.09	100	111	33053	0.00			
14	70A	1170	13700	0.09	130	104	33041	0.00			
15	120	944	13700	0.07	40	75	33038	0.00			
16	110	928	13700	0.07	50	20	33052	0.00			

Operating Stress for Impact Test can be seen by selecting the option "Show Operating Stress for Impact Test" through Mouse Right click.

101	Caepipe	e : B31.	5 (2022) (Code o	omplian:	ce (Sor	ted stres	s	_		×				
File	Result	s Vie	w <mark>Opt</mark> i	ons	Window	Help									
	3 -				ð 16	\ [⇒	S	^S ⁄A				
		Susta	ained			Expai	nsion								
#	Node	SL (psi)	SH (psi)	SL SH	Node	SE (psi)	SA (psi)	SE SA							
1	10	1647	13700	0.12	30A	1183	32775	0.04							
2	30A	1475	13700	0.11	10	1086	32603	0.03							
3	30B	1419	13700	0.10	70B	827	32958	0.03							
4	70B	1292	13700	0.09	30B	803	32831	0.02							
5	20	1268	1	Show	/ Stresses	;	i	i							
6	60A	1248	68 1 Show Stresses 48 1 Show Stress Ratios												
7	40	1212	1	Thres	holds										
8	130	1209	1	Show	Operati	ng Stre	∿s for Im	pact Te	st						
9	80	1201	1	Hide	Allowab	les	3								
10	90	1198	1 —												
11	50	1198	1	Resul	ts										
12	100	1197	1	Next	Result										
13	60B	1176	1	Previ	ous Resu	lt									
14	70A	1170	0 13700 0.09 130 104 33041 0.00												
15	120	944	13700 0.07 40 75 33038 0.00												
16	110	928	13700	0.07	50	20	33052	0.00							

HH	Caepipe	e : B31.5	5 (2022) (Code o	omplian	ce (Sort	ted stres	ses) -	[refrigerat	i —		×
File	Result	s Viev	w Opti	ons	Window	Help						
4	3 -				ð 16				⇒ ∎	s S⁄A		
		Suste	ained			Expar	nsion		Oper.	Stress fo	or Impac	tTest
#	Node	SL (psi)	SH (psi)	SL SH	Node	SE (psi)	SA (psi)	<u>SE</u> SA	Node	Sopr (psi)	Sall (psi)	<u>Sopr</u> Sall
1	10	1647	13700	0.12	30A	1183	32775	0.04	30B	1777	4795	0.37
2	30A	1475	13700	0.11	10	1086	32603	0.03	70B	1674	4795	0.35
3	30B	1419	13700	0.10	70B	827	32958	0.03	70A	1457	4795	0.30
4	70B	1292	13700	0.09	30B	803	32831	0.02	60B	1406	4795	0.29
5	20	1268	13700	0.09	70A	622	33080	0.02	30A	1396	4795	0.29
6	60A	1248	13700	0.09	60B	557	33074	0.02	80	1289	4795	0.27
7	40	1212	13700	0.09	20	342	32982	0.01	90	1261	4795	0.26
8	130	1209	13700	0.09	110	218	33322	0.01	130	1257	4795	0.26
9	80	1201	13700	0.09	120	200	33306	0.01	100	1248	4795	0.26
10	90	1198	13700	0.09	80	189	33049	0.01	40	1233	4795	0.26
11	50	1198	13700	0.09	60A	176	33002	0.01	20	1215	4795	0.25
12	100	1197	13700	0.09	90	135	33052	0.00	50	1194	4795	0.25
13	60B	1176	13700	0.09	100	111	33053	0.00	60A	1165	4795	0.24
14	70A	1170	13700	0.09	130	104	33041	0.00	10	1153	4795	0.24
15	120	944	13700	0.07	40	75	33038	0.00	120	1038	4795	0.22
16	110	928	13700	0.07	50	20	33052	0.00	110	1029	4795	0.21

Similarly, Code Compliance report lists the Stresses <u>element-wise</u> following the same procedure as done for Sorted Stresses.

HH	Caepipe	≘:B31.5	(2022) (Code Co	mplian	ice - [re	efrigerati	o	_		×				
File	File Results View Options Window Help														
4	Press, Sustained Expansion														
		Press.	S	ustaine	k	E>	cpansio	n							
#	Node	Allow. (psi)	SL (psi)	SH (psi)	<u>SL</u> SH	SE (psi)	SA (psi)	<u>SE</u> SA							
1	10 20	125	1647 1268	13700 13700	0.12 0.09	1086 342	32603 32982	0.03 0.01							
2	20 30A	125 563	1268 1249	13700 13700	0.09 0.09	342 333	32982 33001	0.01 0.01							
3	30A 30B	125 563	1475 1419	13700 13700	0.11 0.10	1183 803	32775 32831	0.04 0.02							
4	30B 40	125 563	1251 1212	13700 13700	0.09 0.09	234 75	32999 33038	0.01 0.00							
5	40 50	125 563	1212 1198	13700 13700	0.09 0.09	75 20	33038 33052	0.00 0.00	I						
6	50 60A	125 563	1198 1185	13700 13700	0.09 0.09	20 60	33052 33065	0.00 0.00	I						
7	60A 60B	125 563	1248 1176	13700 13700	0.09 0.09	176 557	33002 33074	0.01 0.02	I						
8	60B 70A	125 563	1166 1164	13700 13700	0.09 0.08	158 177	33084 33086	0.00 0.01							
9	70A 70B	125 563	1170 1292	13700 13700	0.09 0.09	622 827	33080 32958	0.02 0.03							
10	70B 80	125 563	1204 1201	13700 13700	0.09 0.09	241 189	33046 33049	0.01 0.01							

From the Displacement results for Expansion (T1) and Expansion (T1-T2), it is observed that the Displacements are +ve in Global Y direction confirming that the piping is shrinking due to temperature decrease for both expansion cases.

1404	Caepipe	e : Displacen	nents: Expar	sion (T1) -	[refrigeratio	npipin ·	- 0	×	⊫∎ Ca	aepipe	Deflect.			\times
File	Result	s View (Options W	/indow He	lp				File	View	Options	Window	Help	
4	3 -			ð 🔍	E 🔶	■ 🚽		• →	4	-		ið (A (ر ∈
#				Displaceme	ents (globa	l)							Y	
	Node	X (inch)	Y (inch)	Z (inch)	XX (deg)	YY (deg)	ZZ (deg)			ЦĻ	ψзο		+	
1	10	0.000	0.000	0.000	0.0000	0.0000	0.0000			- 4	1 20	7		××
2	20	0.008	0.000	0.000	0.0000	0.0000	-0.0021							
3	30A	0.009	0.000	0.000	0.0000	0.0000	-0.0022				5	-30 		
4	30B	0.014	0.008	0.000	0.0000	0.0000	-0.0162				f		0	
5	40	-0.002	0.048	0.000	0.0000	0.0000	-0.0182							1
6	50	-0.008	0.061	0.000	0.0000	0.0000	-0.0184							
7	60A	-0.013	0.074	0.000	0.0000	0.0000	-0.0183				110			
8	60B	-0.009	0.083	0.000	0.0000	0.0000	-0.0134			- 4	100			
9	70A	-0.008	0.083	0.000	0.0000	0.0000	-0.0134			ļ	90			
10	70B	0.000	0.078	0.000	0.0000	0.0000	-0.0021					40		
11	80	0.000	0.065	0.000	0.0000	0.0000	-0.0011				İ	40		
12	90	0.001	0.052	0.000	0.0000	0.0000	-0.0005			Ī	80			
13	100	0.001	0.046	0.000	0.0000	0.0000	-0.0001					50		
14	110	0.001	0.042	0.000	0.0000	0.0000	0.0001			ļ,				
15	120	0.000	0.004	0.000	0.0000	0.0000	0.0002			÷.	えん			
16	130	0.000	0.000	0.000	0.0000	0.0000	0.0000				\sim	60		
										_			-	.:

H 04	Caepipe	e : Displacen	nents: Expan	ision (T1-T2)	- [refrigera	tionpi ·	- 0	×	⊫∎ Ca	epipe : I	Deflect			>	<
File	Result	ts View (Options W	indow He	lp				File \	/iew C	ptions	Window	v Help)	
4	3 -			ð 🔍	E 🔶	■ 🚽		• →	4	÷		Î	Q	Ð	e
#)isplaceme	ents (globa	l)							Y		
	Node	X (inch)	Y (inch)	Z (inch)	XX (deg)	YY (deg)	ZZ (deg)			ԼԱԳԹ	30		+		
1	10	0.000	0.000	0.000	0.0000	0.0000	0.0000			- 44	20		7 🖍	××	
2	20	0.018	0.000	0.000	0.0000	0.0000	-0.0045					~~	-		
3	30A	0.020	0.001	0.000	0.0000	0.0000	-0.0047				5	30 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
4	30B	0.030	0.018	0.000	0.0000	0.0000	-0.0351				Ē		30		
5	40	-0.005	0.104	0.000	0.0000	0.0000	-0.0395					,			
6	50	-0.017	0.134	0.000	0.0000	0.0000	-0.0399								
7	60A	-0.029	0.161	0.000	0.0000	0.0000	-0.0397			1	10				
8	60B	-0.020	0.181	0.000	0.0000	0.0000	-0.0292			- 41					
9	70A	-0.017	0.182	0.000	0.0000	0.0000	-0.0290			. 9	n I				
10	70B	0.000	0.171	0.000	0.0000	0.0000	-0.0045				-	40			
11	80	0.001	0.143	0.000	0.0000	0.0000	-0.0025					40			
12	90	0.001	0.114	0.000	0.0000	0.0000	-0.0009			10					
13	100	0.002	0.101	0.000	0.0000	0.0000	-0.0004					50			
14	110	0.002	0.091	0.000	0.0000	0.0000	0.0001								
15	120	0.000	0.010	0.000	0.0000	0.0000	0.0005			έ.γ	<i>ر</i> لي ا				
16	130	0.000	0.000	0.000	0.0000	0.0000	0.0000				- Çi	60			
										_			_		:

Similarly, from the Displacement results for Expansion (T2), it is observed that the Displacements are -ve in Global Y direction confirming that the piping is expanding downward due to temperature increase.

100-0	Caepipe	e : Displacer	nents: Expar	ision (T2) -	[refrigeratio	npipin ·	- 0	\times	HIN C	aepipe	: Deflect.			>	<
File	Result	s View (Options W	/indow He	lp				File	View	Options	Window	v He	p	
4	3 -			ð 🔍	E 🕻	■ 🚽		• →	4			tõt	Q	Ð	e
#							×	۲.							
	Node	X (inch)	Y (inch)	Z (inch)	XX (deg)	YY (deg)	ZZ (deg)			Щ	Щ30			•	
1	10	0.000	0.000	0.000	0.0000	0.0000	0.0000			4	i≓20		z 🖌	\searrow_{\times}	
2	20	-0.010	-0.000	0.000	0.0000	0.0000	0.0024					20			
3	30A	-0.011	-0.000	0.000	0.0000	0.0000	0.0025				ž	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
4	30B	-0.016	-0.010	0.000	0.0000	0.0000	0.0189				ĺ		10		
5	40	0.002	-0.057	0.000	0.0000	0.0000	0.0213						<u> </u>		
6	50	0.009	-0.073	0.000	0.0000	0.0000	0.0215								
7	60A	0.016	-0.088	0.000	0.0000	0.0000	0.0213				410				
8	60B	0.011	-0.098	0.000	0.0000	0.0000	0.0157			- 4	+00				
9	70A	0.009	-0.099	0.000	0.0000	0.0000	0.0156				90				
10	70B	0.000	-0.093	0.000	0.0000	0.0000	0.0025					40			
11	80	-0.000	-0.078	0.000	0.0000	0.0000	0.0014					40			
12	90	-0.001	-0.062	0.000	0.0000	0.0000	0.0005				.00				
13	100	-0.001	-0.055	0.000	0.0000	0.0000	0.0003				1	50			
14	110	-0.001	-0.049	0.000	0.0000	0.0000	-0.0000			1					
15	120	0.000	-0.005	0.000	0.0000	0.0000	-0.0003				XQ]				
16	130	0.000	0.000	0.000	0.0000	0.0000	0.0000				N.	60			
										-			_		.::

Element Forces & Moments (local forces and moments on each element for Expansion (T2) load case) are shown below.

10	📲 Caepipe : Pipe forces in local coordinates: Expansion (T2) - [refrigerationpiping.res (c:\tutorials\refrigerationpiping)] — 🗆 🗙													×			
File	File Results View Options Window Help																
4																	
#	Node	Axial	y Shear	z Shear	Torsio	n(ft-lb)	Inplan	e(ft-lb)	Outplar	ne(ft-lb)	Fle	x. Fact	ors	SE	SA	SE	
		(lb)	(lb)	(lb)	Moment	SIF	Moment	SIF	Moment	SIF	FFi	FFo	FFt	(psi)	(psi)	SA	
1	10 20	-7 -7	-21 -21	0 0	0 0		-85 -66	1.00 1.00	0 0	1.00 1.00				585 184	32603 32982	0.02 0.01	
2	20 30A	-7 -7	-21 -21	0 0	0 0		-66 -64		0 0					184 179	32982 33001	0.01 0.01	
3	30A 30B	-7 21	21 7	0 0	0 0		64 43	3.59 3.59	0 0	2.99 2.99	13.74 13.74	13.74 13.74		637 432	32775 32831	0.02 0.02	
4	30B 40	21 21	-7 -7	0 0	0 0		-43 -12		0 0					126 40	32999 33038	0.00 0.00	
5	40 50	21 21	-7 -7	0 0	0 0		-12 -1		0 0					40 11	33038 33052	0.00 0.00	
6	50 60A	21 21	-7 -7	0 0	0 0		-1 9		0 0					11 32	33052 33065	0.00 0.00	
7	60A 60B	21 -7	-7 -21	0 0	0 0		9 30	3.59 3.59	0 0	2.99 2.99	13.74 13.74	13.74 13.74		94 299	33002 33074	0.00 0.01	
8	60B 70A	-7 -7	-21 -21	0 0	0 0		30 33		0 0					85 95	33084 33086	0.00 0.00	
9	70A 70B	-7 -21	-21 7	0 0	0 0		33 44	3.59 3.59	0 0	2.99 2.99	13.74 13.74	13.74 13.74		334 445	33080 32958	0.01 0.02	
10	70B 80	-21 -21	-7 -7	0 0	0 0		-44 -34		0 0					130 102	33046 33049	0.00 0.00	
44	1	01	7	۱.	1		1.04		1					1100	10040	0.00	

Element Forces & Moments (global forces and moments on each element for Expansion (T2) load case) are shown below.

101	Caepipe	e : Pipe	forces i	in globa	al coord	inates: l	Expansio	on (T	2) - [refrigerationpiping.res (c:\tutorials\r —	×
File	Result	ts Vie	w Op	tions	Windov	v Hel	р			
4	3 -				<u>ð</u> (2			• ➡ 🚍 ➡ ➡ 🔆	
#	Node	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)	1		
1	10 20	-7 7	21 -21	0 0	0 0	0 0	-85 66			
2	20 30A	-7 7	21 -21	0 0	0 0	0 0	-66 64			
3	30A 30B	-7 7	21 -21	0 0	0 0	0 0	-64 43			
4	30B 40	-7 7	21 -21	0 0	0 0	0 0	-43 12			
5	40 50	-7 7	21 -21	0 0	0 0	0 0	-12 1			
6	50 60A	-7 7	21 -21	0 0	0 0	0 0	-1 -9			
7	60A 60B	-7 7	21 -21	0 0	0 0	0 0	9 -30			
8	60B 70A	-7 7	21 -21	0 0	0 0	0 0	30 -33			
9	70A 70B	-7 7	21 -21	0 0	0 0	0 0	33 -44			
10	70B 80	-7 7	21 -21	0 0	0 0	0 0	44 -34			
4.4	1.00	-	01	0	0	0	1.1.4			

📲 Caepipe : Loads on Anchors: Operating (W+P1+T1) - [refrigerationpiping.res (c:\tutorials\refriger —												×
File	File Results View Options Window Help											
4	3 -			iði (\ E] 🛵 🗖	⇒ ≡] 🗲 =	▶			
#	Node	Tag	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)				
1	10		-8	-69	0	0	0	42				
2	130		8	-107	0	0	0	20				

Support Loads on all supports by the piping for Operating Load case 1 are shown below.

Support Load Summary (listing loads on a particular support by the piping) for all <u>relevant</u> load cases and load combinations) is shown below.

*** Caepipe : Suppo	rt load sumr	mary for and	hor at node:	10 - [refrig	erationpipir	ng.res (c:\tut	orials\refri –	- C	כ	×
File Results View	Options	Window	Help							
4 •		<u>i (</u>		⇐ ➡			>			
Load combination	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)				
Sustained	-2	-87	0	0	0	115				
Operating1	-8	-69	0	0	0	42				
Operating2	5	-108	0	0	0	200				
Maximum	5	-69	0	0	0	200				
Minimum	-8	-108	0	0	0	42				
Allowables	0	0	0	0	0	0				