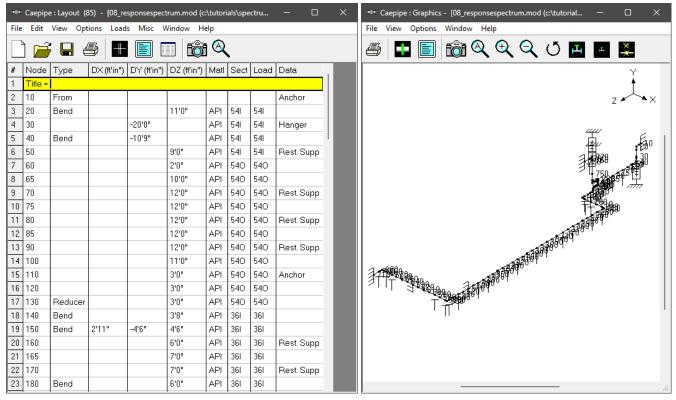
Tutorial for Response Spectrum Analysis using CAEPIPE

General

• The <u>Response Spectrum</u> is a plot of the maximum response (maximum displacement, velocity, acceleration or any other quantity of interest) to a specified dynamic loading applied on all possible single degree-of-freedom systems. The abscissa of the spectrum is the natural frequency (or period) of the system, and the ordinate is the maximum response.

In general, response spectra for a seismic event are prepared by calculating the maximum response to a specified ground motion excitation of single degree-of-freedom systems with various amounts of damping. Numerical integration with short time steps is used to calculate the response of each single degree-of-freedom system. The step-by-step process is continued until the total earthquake record is completed, the results of which becomes the response of that system to that excitation. Change the parameters of the system to change its natural frequency, repeat the process for the same excitation and record the new maximum response. This process is repeated until all frequencies of interest have been covered and the results plotted. Typically the El Centro, California earthquake of 1940 is used for this purpose. Attached ("ElCentro.txt") is an ASCII file that contains spectrum from El Centro, California earthquake of 1940. [*First line in this file is the name of the spectrum. Second line defines the "Units" for Abscissa (X-axis) and Ordinate (Y-axis) axes, separated by a space. Starting from the 3rd line, the first column is Abscissa and the second column is Ordinate. For further details on this ASCII file, refer to the "Spectrums" subsection under "Misc." section of Menus in the CAEPIPE User's Manual.]*


- Response Spectrum thus prepared as explained above is then input/imported into CAEPIPE Stress model for analysis through CAEPIPE Layout window > Misc > Spectrums.
- Once the inputting of different spectrums are done, input the Spectrum levels applicable for the current analysis through Layout window > Spectrum. Define a single level for uniform response spectrum analysis. For piping supported at different elevations with each elevation experiencing different seismic loads, define multiple levels with the corresponding spectrum loads. In the latter case, the levels should be assigned to each support.
- Save the model and perform analysis using CAEPIPE.
- Spectrum load specified will be applied at all supports, following which CAEPIPE will compute the modal and directional responses, which are further combined as per the combination method selected.
- Since the response spectra give only maximum response, only the maximum values for each mode are
 calculated and then superimposed (modal combination) to give a total response. A conservative upper
 bound for the total response may be obtained by adding the absolute values of the maximum modal
 components (absolute sum). However, this is excessively conservative and a more probable value of the
 maximum response is the square root of the sum of squares (SRSS) of the modal maxima.
- Ensure the CAEPIPE results meet project specific analysis requirements. If not, make changes to the piping layout and/or changes to support types and their locations and then reanalyze the model until the analysis requirements are met.

Uniform Response Spectrum Analysis

The following are the Steps for performing the Uniform Response Spectrum Analysis using CAEPIPE.

Step 1:

Attached is a sample CAEPIPE model with Response Spectrum. The piping layout shown below (extracted from the attached model) is for a water supply line that has the following layout and properties. The Analysis Code is selected as ASME B31.9 for this sample model.

HOH	Caepipe	: Pipe Sect	ions (4) - [08_	respons	espectru	m.mod (c:\tutorials\	spectrumt	utori –	· O	>	<		
File	Edit	View Opt	ions	Misc \	Vindow	Help									
$+\!\!\!+$															
#	Name	Nom Dia	Sch	OD (inch)	Thk (inch)	Cor.Al (inch)	M.Tol (%)	Ins.Dens (Ib/ft3)	Ins.Thk (inch)	Lin.Dens (lb/ft3)	Lin.Thk (inch)	Soil			
1	361	36"	STD	36	0.375	0.075		13	2						
2	360	36"	STD	36	0.375	0.075		13	2.5				1		
3	540	Non Std		54	0.375	0.075		13	2.5						
4	541	Non Std		54	0.375	0.075		13	2						

1404	Caepipe : N	laterials (2) - [08_r	espo	nsespectru	m.mod	(c:\tutori	als\spect	rumtutoria	01						
File	Edit Vie	w Options Misc	Wi	ndow He	lp										
-#															
#	Name	Description	Ty pe	Density (lb/in3)	Nu	Joint factor	Yield (psi)	Tensile (psi)	#	Temp (F)	E (psi)	Alpha (in/in/F)	Allowable (psi)		
1	A53	A53 Grade B	CS	0.283	0.3	1.00	35000		1	-325	31.4E+6	5.00E-6	20000		
2	API	API 5L Grade B	CS	0.283	0.3	1.00	35000		2	-200	30.8E+6	5.35E-6	20000		
3									3	-100	30.2E+6	5.65E-6	20000		
									4	70	29.5E+6	6.07E-6	20000		
									5	200	28.8E+6	6.38E-6	20000		
									6	300	28.3E+6	6.60E-6	20000		
									7	400	27.7E+6	6.82E-6	19900		
									8	500	27.3E+6	7.02E-6	19000		
									9	600	26.7E+6	7.23E-6	17900		

-0-1	Caepipe	: Load	s (32)	- [08_resp	onsespectro	um.mod (c:	\tutorials\sp	ectrumtut	torial)]	-		×
File	Edit	View	Option	ns Misc	Window	Help						
-#			F)] Q	н		•					
#	Name	T1 (F)	P1 (psi)	Desg.T (F)	Desg.Pr. (psi)	Specific gravity	Add.Wgt. (lb/ft)	Wind Load 1	Wind Load 2	Wind Load 3	Wind Load 4	
1	<mark>360</mark>	100	125	100	125	1.0	77.2	Y				
2	361	100	125	100	125	1.0						
3	30O	100	125	100	125	1.0	65.9	Y				
4	301	100	125	100	125	1.0						
5	240	100	125	100	125	1.0	54.6					
6	241	100	125	100	125	1.0						
7	200	100	125	100	125	1.0	48.9	Y				
8	201	100	125	100	125	1.0						
9	180	100	125	100	125	1.0	45.2	Y				
10	181	100	125	100	125	1.0						
4.4	100	100	100	100	100	10	44 4	0				

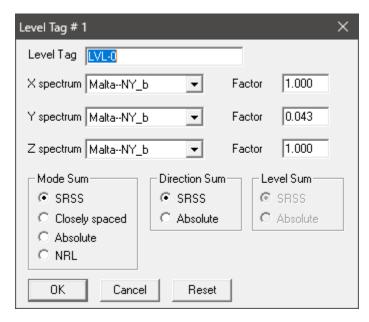
Step 2:

Input Spectrums into CAEPIPE. This can be done in three ways:

- 1. Input spectrums directly into the model.
- 2. Create a spectrum library and load spectrums from it.
- 3. Input spectrums from a text file.

When the first two methods are used, the units for the X-axis and Y-axis as well as the interpolation method are set through the menu Options > Spectrum.

H 04	Caepipe : Spectrums (2) -	[08_respo	- 0	×			
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>O</u> ption	s <u>I</u>	<u>M</u> isc <u>W</u> indov	v <u>H</u> elp				
_11		pect	rum					
		ont.						
#	Name	#	Period (Sec)	Acceleration (g's)				
1	Malta-NY	1	0	0.0856				
2	Malta–NY_b	2	0.037	0.1284				~
3		3	0.074	0.1712		Spectrum Options		×
		4	0.11	0.214		Abscissa	Ordinate	
		5	0.331	0.214		C Frequency (Hz)	Displacement (🔾 inch
		6	0.551	0.214		Period (Sec)		0 mm
		7	1.914	0.061665			Acceleration (
		8	3.276	0.036023				0 mm/sec2
		9	4.638	0.025443				• g's
		10	6	0.019667			`	s ys
		11	8	0.011063		Interpolation 💿 Linear	Interpolation (Linear
		12	10	0.00708		O Log	(C Log
		13	20	0.00177				
		14	30	0.000787		OK Cancel		
		15						


For the sample layout described above, spectrum was input directly into CAEPIPE model manually. If you wish to read the spectrum file "ElCentro.txt" supplied into the CAEPIPE model, select "Read Spectrum" through Spectrum List Window > File.

Step 3:

Once the inputting of different spectrums are done, input the Spectrum load itself for analysis through Layout window > Spectrum.

101	Caepip	e : Layo	ut (85) -	[08_res	ponsesp	ectrum.mo	d (c:\tutor	rials\spe	ctru	- 0		×
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>Options</u>	<u>L</u> oads	<u>M</u> isc	<u>W</u> indow	<u>H</u> elp					
) 🖻	; 🗖	4	!	Load cas	ses (6)	2					
#	Node	Туре		(-	ismic 1 ismic 2	- :	Sect	Load	Data		
1	Title =				-	ismic 3						
2	10	From			Wind 1					Anchor		
3	20	Bend		-	Wind 2			541	541			
4	30				Wind 3.	-		541	541	Hanger		
5	40	Bend			Wind 4.			541	541			
6	50				Spectrur	-		541	541	Rest. Supp)	
7	60				<u>T</u> ime his			540	540			
8	65				Harmon	-		540	540			
9	70			· · ·	<u>I a</u> mion	1.50		540	540	Rest. Supp)	
10	75					12'0"	API	540	540			
11	80					12'0"	API	540	540	Rest. Supp)	
12	85					12'0"	API	540	540			
13	90					12'0"	API	540	540	Rest. Supp)	
14	100					11'0"	API	540	540			
·							I			I		

H	•II• Caepipe : Spectrum Levels (1) - [08_responsespectrum.mod (c:\tutorials\spectrumtutorial)] — [
File	Edit View	Options Mi	sc Window I	Help										
-#														
#	Level Tag	XSpectrum	YSpectrum	Z Spectrum	XFactor	YFactor	Z Factor	Mode Sum	Direction Sum	Level Sum				
1	LVL-0	Malta-NY_b	Malta-NY_b	Malta-NY_b	1.000	0.043	1.000	SRSS	SRSS					
2														

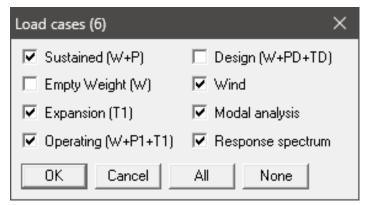
X, Y and Z spectrums

Select a spectrum from the drop-down combo box, which should have been input in the spectrum table for each direction.

Factor

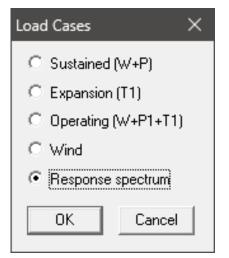
The multiplying (scale) factor for the spectrum is input here. The same spectrum may be multiplied by different (Scale) factors to apply spectrum loads for different dynamic events. For example, vertical spectrum can be input as the same as that of the horizontal spectrum with a factor as shown above.

Mode Sum


Pick one of three choices, "SRSS" (square root of sum of squares), "Closely spaced" or "Absolute".

Direction Sum

Pick one of two choices, "SRSS" (square root of sum of squares) or "Absolute".


Step 4:

Turn ON the load case "Response spectrum" through Layout window > Loads > Load cases. Save the model and perform the analysis through Layout window > File > Analyze. CAEPIPE will apply these loads to compute the response of the piping system by performing a Response Spectrum analysis along with other load cases defined in the piping system.

Step 5:

Upon analysis, CAEPIPE will show a "Load case" with name "Response spectrum" under "Support Loads", "Displacements", "Element forces" and "Support load summary" results.

H0-1	Caepipe	: Loads c	on Anchor	s: Respons	se spect	trum (Unifo	rm) - [08_respo	nsespectrur	n	_	o >	<
File	Result	s View	Options	Window	v Helj	р							
4	3 			ið (2	臣 🗲			-	→			⇒
#	Node	Tag F	X (lb)	FY (lb)	FZ (II	o) MX (1	t-lb)	MY (ft-lb) MZ (ft-lb)			
1	10	10	0164	2696	2142	2746	5	59452	191368				
2	110	11	1855	4462	1596	6 2540	0	400410	80432				
3	510	49	382	18	2691	6 121		74282	807				
4	630	28	397	5	2057	1		15207	33				
5	710	81	10	0	1806	0		8120	0				
6	790	37	726	2014	1984	3027	2	50334	24125				
H0H	Caepipe	: Displac	ements: F	Response s	pectrur	m (Uniform)	- [08	_respons	espectrum.r	es	_		×
File	Result	s View	Options	; Windo	w Hel	p							
_	,			ar@~a /	\sim							4	Ν
					×			↓ E		-			$ \rightarrow $
#				Displ	aceme	ents (globa	l)						
	Node	\times (inch)	Y (inc	:h) Z (ir	nch)	XX (deg)	YY (deg) (Zi	Z (deg)				
1	10	0.000	0.000	0.00	00	0.0000	0.00	0. 0.	0001				
2	20A	0.003	0.001	0.00	00	0.0012	0.00	20 0.	0132				
3	20B	0.235	0.015	0.01	4	0.0026	0.12	56 0.	2231				
4	30	0.877	0.015	0.01	7	0.0017	0.11	46 0.	2332				
5	40A	1.073	0.015	0.01	6	0.0020	0.11	13 0.	2324				
6	40B	1.375	0.001	0.00)6	0.0024	0.05	32 0.	1013				
7	50	1.351	0.000	0.00)6	0.0020	0.05	58 0.	0987				
8	60	1.328	0.001	0.00)6	0.0015	0.05	33 0.	0964				
9	65	1.195	0.002	0.00)6	0.0001	0.07	18 0.	0850				
10	70	0.996	0.000	0.00)5	0.0005	0.08	75 0.	0712				
11	75	0.762	0.000	0.00)4	0.0000	0.09	77 0.	0574				
12	80	0.512	0.000	0.00)3	0.0001	0.09	79 0.	0437				

101	Caepipe	e : Pipe for	ces in local	coordinate	es: Respons	e spectrum	(Uniform)	- [08_resp	onsespectro	um.res (c:\t	utorials\	spectru	mtutori	al)]	_		×
File	Result	s View	Options	Window	Help												
e	3 -			<u>ê</u> (Q		\	╞║═] (–)	➡ t.	G →							
#	Node	Axial	y Shear	z Shear	Torsio	n(ft-lb)	Inplan	e(ft-lb)	Outplar	ne(ft-lb)	Fle	x. Fact	ors	SL+SO		SL+SO	
		(lb)	(lb)	(lb)	Moment	SIF	Moment	SIF	Moment	SIF	FFi	FFo	FFt	(psi)	(psi)		
1	10 20A	2142 2142	2696 2696	10164 10164	191368 191368		27465 16155		59452 16950					6388 5628	26600 26600		1
2	20A 20B	2138 2594	2594 2138	10150 10150	191368 52845	1.00 1.00	16155 14977	3.31 3.31	16950 123743	2.76 2.76	21.98 21.98	21.98 21.98		6088 8165	26600 26600	0.23 0.31	
3	20B 30	504 504	9400 9400	702 702	52845 52845		123743 8850		14977 19836					6211 4525	26600 26600	0.23 0.17	
4	30 40A	1191 1191	7698 7698	1220 1220	52845 52845		8850 31916		19836 15011					5086 5184	26600 26600	0.19 0.19	
5	40A 40B	2504 2821	2821 2504	6146 6146	52845 71282	1.00 1.00	15011 13836	3.31 3.31	31916 91806	2.76 2.76	21.98 21.98	21.98 21.98		5795 7496	26600 26600	0.22 0.28	
6	40B 50	3814 3814	2647 2647	4372 4372	71282 71282		13836 19257		91806 100776					6012 6253	26600 26600	0.23 0.24	
7	50 60	4198 4198	810 810	3813 3813	71282 71282		19257 17702		100776 107539					6259 6218	26600 26600	0.24 0.23	
8	60 65	5395 5395	861 861	2478 2478	71282 71282		17702 9446		107539 123741					6237 6590	26600 26600	0.23 0.25	
9	65 70	7590 7590	1171 1171	2484 2484	71282 71282		9446 4642		123741 107572					6624 6565	26600 26600	0.25 0.25	

•••• Caepipe : Support load	d summary f	or anchor a	t node 10 -	[08_respon:	s —	o ×	<							
File Results View Options Window Help														
Load combination	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)								
Sustained	0	-9872	-144	36275	0	0								
Operating1	0	39149	-13404	-301288	2	4								
Sustained+Wind	0	-9858	-150	36176	0	0								
Operating1+Wind	0	39163	-13410	-301387	2	4								
Sustained+Response	10164	-7177	1999	63740	59452	191368								
Sustained-Response	-10164	-12568	-2286	8811	-59452	-191368								
Operating1+Response	10164	41844	-11261	-273823	59454	191372								
Operating1-Response	-10164	36453	-15546	-328752	-59449	-191363								
Maximum	10164	41844	1999	63740	59454	191372								
Minimum	-10164	-12568	-15546	-328752	-59452	-191368								
Allowables	0	0	0	0	0	0								

Multi-level Response Spectrum Analysis

The model shown below is a 3 inch nominal diameter water line extending between two elevations, namely Level L1 and Level L2, with each Level experiencing different seismic loads. The layout has two anchors with a number of intermediate supports. The seimsic excitation consists of two separate spectra, with each spectrum corresponding to the two different Levels. All supports connected from node 1 through mode 11 (inclusive of the two end nodes) experience the upper level (Level L1) spectra excitation, while the remaining supports experience the lower level (Level L2) spectra excitation.

For this Multi-Level Response Spectrum Analysis, only the first 15 modes are used to approximate the response of the system. For each Level, the same spectrum load is applied along X, Y and Z directions with weighting factors of 1.0, 0.667 and 0.0 in the three global directions respectively.

The following are the Steps to perform the Multi-level Response Spectrum Analysis using CAEPIPE.

Step 1:

Attached is a sample CAEPIPE model with Response Spectrum. The piping layout shown below (extracted from the attached model "08_ResponseSpectrum_MLRSA.mod") has the following layout and properties.

HIN	Caepipe	e : Layout (4	49) - [08_re	sponsespec	trum_mlrsa.	mod (c	:\tutori	a –	- o x		⊫∎ Ca	epipe	e : Graphic	cs - [08_responsespectrum_mIrsa — 🛛 🗙
File	Edit	View Opt	ions Load	ls Misc V	Vindow H	elp					File V	View	Options	Window Help
) 🖻	; 🔲 é	3 -			1 🔍	•				4			📸 🍳 🍳 🗘 🖬 💻 🜉
#	Node	Туре	DX (inch)	DY (inch)	DZ (inch)	Matl	Sect	Load	Data	٦I				Y
1	Title =	l								Ш				†_+×
2	1	From							Anchor	Ш				57
3	2			12.0000		1	1	1		Ш			44	- <u>-</u>
4	201	Bend		48.0000		1	1	1		Ш	• 20. ⁻	1	₩ ₩ 3-14-1	
5	3		35.6870		32.1100	1	1	1		Ш	20	<u> </u>	3-14-4	E. Fot
6	4		19.3130		17.3900	1	1	1	Skewed restr	Ш	пħ			501
7	5		19.3290		17.3820	1	1	1		Ш	וידדח			GANNE
8	501	Bend	35.6710		32.1180	1	1	1		Ш				9 10 ^{mm} ↓ L1 Level
9	6			-48.0000		1	1	1		Ш				270
10	7			-12.0000		1	1	1	Skewed restr	Ш				10^{6} L1 Level
11	7	Location							Skewed restr	Ш			_	
12	8			-24.0000		1	1	1		Ш				11 12 ↓ L2 Level 13 14 16 16
13	9			-24.0000		1	1	1		Ш				13 MNN-E
14	10			-24.0000		1	1	1		Ш				Have C
15	11			-24.0000		1	1	1		Ш				· 笺
16	12			-24.0000		1	1	1		Ш				16 <i>f</i> ⁿ
17	13			-24.0000		1	1	1		Ш				17
18	14			-24.0000		1	1	1	Skewed restr	Ш				19 8
19	14	Location							Skewed restr	Ш				KENNE
20	15			-30.0000		1	1	1		Ш				1272
21	16			-30.0000		1	1	1		Ш				22 m
22	17			-24.0000		1	1	1		Ш				23
23	18			-24.0000		1	1	1					,	118 19 21 22 22 22 22 22 23 24 23 24 25 24 25 24 25 24 25 24 25 24 25 24 25 26 26 27 20 21 23 24 25 25 26 26 27 26 27 27 23 24 25 25 26 26 27 26 27 27 27 27 27 27 27 27 27 27
24	19			-24.0000		1	1	1					12	33 33 33 33 33 33 35 53 5 53 5 53 5 5 5 5 5 5 5 5 5 5 5 5 5
25	20			-24.0000		1	1	1	Skewed restr				K ²	4We 33351
26	20	Location							Skewed restr				N.	
	21		-10.4000	-25.4000		1	1	1					• 2	277 20-29-30-301
	22		-10.4000	-25.4000		1	1	1						Ma .
29	23		-10.4000	-25.4000		1	1	1						Z
30	24		-10.4000	-25.4000		1	1	1						
	25		-10.4000	-25.4000		1	1	1						
	26			-24.0000		1	1	1	Skewed restr					
33	26	Location							Skewed restr					

H	Caepipe : M	laterials (2) - [0	8_res	ponsespec	.trum_m	Irsa.mod	(c:\t	utorials\:	spectru	—	o ×				
File	Edit Viev	w Options M	isc	Window	Help										
-#															
#	Name	Description	Ty pe	Density (lb/in3)	Nu	Joint factor	#	Temp (F)	E (psi)	Alpha (in/in/F)	Allowable (psi)				
1	1	M1	CS	0.0	0.3	1.00	1	60	25.8E+6	0					
2	2	M2	CS	0.0	0.3	1.00	2								
3															

H	Caepipe	: Pipe S	Section	s (2) - [()8_respor	sespectr	um_mlrs	a.mod (c:\tu	itorials\sp	e —		×			
File	Edit	View	Option	s Misc	Window	v Help									
-#	᠊᠊᠊ →														
#	Name	Nom Dia	Sch	OD (inch)	Thk (inch)	Cor.Al (inch)	M.Tol (%)	Ins.Dens (lb/ft3)	Ins.Thk (inch)	Lin.Dens (lb/ft3)	Lin.Thk (inch)	Soil			
1	1	3"	STD	3.5000	0.2160		12.5								
2	2	3"	STD	3.5000	0.2160		12.5								
3															

	Caepipe	: Load	s (2) -	[08_respo	onsespectru	m_mlrsa.mo	od (c:\tutoria	ls\spectru	m —		×			
File	Edit	View	Option	ns Misc	Window	Help								
-#	■ [] [] [] [] [] [] [] [] [] [] [] [] []													
#	Name	T1 (F)	P1 (psi)	Desg.T (F)	Desg.Pr. (psi)	Specific gravity	Add.Wgt. (lb/ft)	Wind Load 1	Wind Load 2	Wind Load 3	Wind Load 4			
1	1	60	0	60	0		10.776							
2	2	60	0	60	0									
3														

Step 2:

Input Spectrum load data from layout window: Misc Menu > Spectrums. This can be done in three ways:

- 1. Input spectrums directly into the model.
- 2. Create a spectrum library and load spectrums from it.
- 3. Input spectrums from a text file.

For further details, refer to the section titled "Spectrum Loads" in CAEPIPE User's Manual.

When the first two methods are used, the units for the X-axis & Y-axis and the interpolation method are set through the Options > Spectrum.

101	Caepipe : Spectrums ((2) -	[08_res	- 0	×	101	Caepipe : Spectrums ((2) -	[08_res	- 0 X			
File	Edit View Option	ns I	Misc Window	v Help		File	Edit View Option	ns l	Misc Window	w Help			
-#	$\blacksquare \blacksquare \blacksquare \textcircled{\otimes} \bigcirc \bigcirc \frown \bigcirc $												
#	Name	#	Period (Sec)	Acceleration (in/sec2)		#	Name	#	Period (Sec)	Acceleration (in/sec2)			
1	<mark>51</mark>	1	0.029	338.1		1	S1	1	0.029	231.84			
2	S2	2	0.034	386.4		2	S <mark>2</mark>	2	0.032	270.48			
3		3	0.043	386.4		3		3	0.037	289.8			
		4	0.048	309.12				4	0.043	289.8			
		5	0.059	357.42				5	0.046	231.84			
		6	0.074	357.42				6	0.063	270.48			
		7	0.081	309.12				7	0.071	270.48			
		8	0.125	386.4				8	0.08	260.82			
		9	0.2	879.06				9	0.143	289.8			
		10	0.4	879.06				10	0.25	540.96			
		11						11	0.333	540.96			

Step 3:

Define Spectrum Levels through Layout window > Loads > Spectrum. From the list window shown, double click on an empty row and input Level Tag, select Spectrums; input factors and select Mode Sum, Direction Sum and Level Sum. Levels L1 and L2 defined for this analysis are shown below.

Level Tag # 1	×	
Level Tag 📘		
X spectrum S1	Factor 1.000	
Y spectrum S1	▼ Factor 0.667	
Z spectrum	▼ Factor	
Mode Sum SRSS C Closely spaced C Absolute C NRL OK Cancel	Direction Sum SRSS Absolute Reset	
•II• Caepipe : Spectrum L	Levels (2) - [08_responsespectrum_mlrs	sa.mod (c:\tutorials\spectrumtutorial)]
File Edit View Optic	ons Misc Window Help	

	Caepipe : Sp	ectrum Levels	(2) - [08_respo	onsespectrum_	mirsa.mod	(c:\tutorials)	spectrumti	itorial)]	—		۲.		
File	Edit View	Options N	Aisc Window	Help									
-#													
#	Level Tag	XSpectrum	YSpectrum	Z Spectrum	×Factor	YFactor	Z Factor	Mode Sum	Direction Sum	Level Su	r _		
1	L1	S1	S1		1.000	0.667		SRSS	SRSS	SRSS			
2	L2	S2	S2		1.000	0.667		SRSS	SRSS	SRSS			
-													

Step 4:

Assign Spectrum Level to each support in the analysis model by selecting the appropriate Level Tag from the list. Snapshots shown below are for a Restraint and an Anchor.

Skewed restraint at node 4 $\qquad \qquad \times$	
Tag Type Translational C Rotational	
Stiffness 2.000E+7 (lb/inch)	Anchor at node 1 ? X
X comp Y comp Z comp	Tag Level Tag L1 💌
Connected to	Translational stiffness (lb/inch) Rotational stiffness (in-lb/deg) KX KY KZ [2.000E+7] 2.000E+7 2.000E+7
Axial Sheary Shearz	Releases for hanger selection X Y Z XX YY ZZ OK Cancel Displacements Rigid Anchor in Pipe LCS

Alternatively, one can use the command "Change" through "Layout Window > Edit" to assign Level Tag for all supports in the Layout for a range specified as shown below.

Change Rows $ imes$	Change Rows X
From # 2 To # 15	From # 16 To # 47
Change Material to 📃 🚽	Change Material to
Change Section to	Change Section to
🗌 Change Load to 📃 🖃	Change Load to
🗹 Change Level Tag to 📘 👻	🗹 Change Level Tag to 📃 🗨
Change Friction coefficient to	Change Friction coefficient to
Change DX (inch)	Change DX (inch)
Change DY (inch)	Change DY (inch)
Change DZ (inch)	Change DZ (inch)
OK Cancel	OK Cancel

Note:

The Level Tag selection list will be enabled and available for selection only when two or more Spectrum Levels are input in the analysis model. On the other hand, the Level Tag selection list will be disabled and the same Level Tag will be assigned automatically to all supports when only one Spectrum Level is defined in the analysis model.

Step 5:

The users can review the Levels assigned to different supports using the List command. Snapshots shown below are from List command for Anchors and Skewed Restraints.

	*** Caepipe : Anchors (2) - [08_responsespectrum_mlrsa.mod (c:\tutorials\spectrumtutorial)]													
File	Edit Vie		tions Misc Wind	ow Help										
+			i al 🖉 🗲	• 🔿										
#	Node Ta	ag KXVI	kx KY/ky	KZ/kz KX	γk∞ Kγ	Y/kyy	KZZ/k		Releases		Level Tag			
						·lb/deg)	(in-lb/		z 🗙 🗠					
<u> </u>	1			2.000E+7 Rig		gid	Rigid			GCS	L1			
2	36	2.00	0E+7 2.000E+7	2.000E+7 1.0	DE+11 1.0	0E+11	1.00E	+11		GCS	L2			
	■ Caepipe : Skewed restraints (11) - [08_responsespectrum_mIrsa.mod (c:\tutorials\ — □ ×													
File														
rile	Ealt	view	Options Mis	c window	Help									
-#			1 👘 🙆											
					-									
#	Node	Tag	Туре	Stiffness	Units	Xco	mp	Y comp	Z comp	CNode	Level Tag			
1	4		Translationa	I 2.000E+7	(lb/inch)		1.000			L1			
2	7		Translationa	2.000E+7	(lb/inch) 1.00	0				L1			
3	7		Translationa	I 2.000E+7	(lb/inch)			1.000		L1			
4	14		Translationa	1 20000	(lb/inch) 1.00	0				L2			
5	14		Translationa	1 20000	(lb/inch)			1.000		L2			
6	20		Translationa	1 20000	(lb/inch) 1.00	0				L2			
7	20		Translationa	1 20000	(lb/inch)			1.000		L2			
8	26		Translationa	I 2.000E+7	(lb/inch) 1.00	0				L2			
9	26		Translationa	I 2.000E+7	(lb/inch)			1.000		L2			
10	28		Translationa	I 2.000E+7	(lb/inch)		1.000			L2			
11	28		Translationa	I 2.000E+7	(lb/inch)			1.000		L2			
						·								

Note: CAEPIPE will terminate the analysis, if a level tag is not assigned to a support. For further details, refer to the flowchart under the section titled "Spectrum Loads" in CAEPIPE User's Manual.

Step 6:

Turn ON the load case "Response spectrum" through Layout window > Loads > Load cases. Save the model and perform the analysis through Layout window > File > Analyze. CAEPIPE will apply these loads to compute the response of the piping system by performing a Response Spectrum analysis along with other load cases defined in the piping system.

Load cases (5)	×
☑ Sustained (W+P)	🔲 Design (W+PD+TD)
🔲 Empty Weight (W)	🔽 Modal analysis
💌 Expansion (T1)	🔽 Response spectrum
🔽 Operating (W+P1+T1)	
OK Cancel	All None

Upon analysis, CAEPIPE will show a "Load case" with name "Response spectrum" under "Support Loads", "Displacements", "Element forces" and "Support load summary" results.

Load Cases	×								
C Sustained (W+P)									
C Expansion (T1)									
O Operating (W+P1+T1)								
Response :	spectrum								
ОК	Cancel								

When selected, each results window (such as Support Loads, Displacements, etc.) will display the title as "Response Spectrum (Multi-level)" as shown in the snapshots below.

-0-	📲 Caepipe : Loads on Anchors: Response spectrum (Multi-level) - [08_responsespectrum_mlrs — 🛛 🛛 🛛																
File	e Resu	lts V	iew Options	Wind	ow H	lelp											
4																	
#	Node	Tag	g FX (lb)	FY (lb)	FZ	(lb)	MX (ft-lb)	MY (ft-lk	o) MZ (f	t-lb)							
1	1		87	93	82		238	110	231								
2	36		84	67	74		36	394	374								
-0-																	
File				Vindow	Help			/ L _			-						
	0 🖿			ji 🔍													
#	0 III Node	Taq		Ju 🔾	Vnits		Y comp	Z comp	CNode		↓ <						
		Tag	Type			_	Y comp	Z comp	CNode		↓ <		~				
	Node	Tag	туре	Load	Units			Z comp	CNode		↓ <	, ,	~				
#	Node 4	Tag	Type Translational	Load	Units (lb)	× comp		Z comp 1.000	CNode		↓ <	, , ,	~				
# 1 2	Node 4 7	Tag	Type Translational Translational	Load 202 84	Units (Ib) (Ib)	× comp			CNode		↓ <	, ,	~				
# 1 2 3	Node 4 7 7	Tag	Type Translational Translational Translational	Load 202 84 74	Units (lb) (lb) (lb)	× comp			CNode		↓ <	, <u> </u>					
# 1 2 3 4	Node 4 7 7 14	Tag	Type Translational Translational Translational Translational	Load 202 84 74 55	Units (lb) (lb) (lb) (lb)	× comp		1.000	CNode		↓ < _	(_/				
# 1 2 3 4 5	Node 4 7 7 14 14	Tag	Type Translational Translational Translational Translational Translational	Load 202 84 74 55 34	Units (lb) (lb) (lb) (lb) (lb)	× comp 1.000 1.000		1.000	CNode		↓ < _		_/				
# 1 2 3 4 5 6	Node 4 7 7 14 14 20	Tag	Type Translational Translational Translational Translational Translational	Load 202 84 74 55 34 57	Units (lb) (lb) (lb) (lb) (lb)	× comp 1.000 1.000		1.000	CNode		↓ <	, (~				
# 1 2 3 4 5 6 7	Node 4 7 7 14 14 20 20	Tag	Type Translational Translational Translational Translational Translational Translational	Load 202 84 74 55 34 57 26	Units (lb) (lb) (lb) (lb) (lb) (lb)	× comp 1.000 1.000 1.000		1.000	CNode		↓ <		~				
# 1 2 3 4 5 6 7 8	Node 4 7 7 14 14 20 20 26	Tag	Type Translational Translational Translational Translational Translational Translational Translational	Load 202 84 74 55 34 57 26 136	Units (lb) (lb) (lb) (lb) (lb) (lb) (lb)	× comp 1.000 1.000 1.000		1.000	CNode		↓ <						

File			nents: Optior	-	nse sp indow			ti-leve	el) - [08	3_resp	oonsesp	ectrum	n_mlrs	a.res (c:\tuto	rial	—		×
4					-			4	• 🛋	> [-	→		1 <u></u>	⇒		Α
#					ispla	ceme	nts (gl											
	Node	, ,	Y (ir	<i>.</i>	Z (inc		XX (d		YY (de		ZZ (deg	3)						
1	1	0.0000	0.00		0.000		0.000		0.0000		0.0000							
2	2	0.0024	0.00		0.002		0.021		0.0151		0.0205	-1						
3	201A	0.0024	0.00		0.002		0.021		0.0151		0.0205	-1						
4	201B	0.0622	0.00		0.068		0.064	8	0.0480		0.0586	-1						
5	3	0.0622	0.00		0.068		0.064		0.0480		0.0586	-1						
6	4	0.0738	0.00		0.081		0.073		0.0283		0.0679							
7	5	0.0783	0.02		0.086		0.086		0.0098		0.0830	_						
8	501A	0.0783	0.02		0.086		0.086		0.0098		0.0830							
9	501B	0.0125	0.05		0.013		0.069		0.0296		0.0629							
10	6	0.0125	0.05		0.013		0.069		0.0296		0.0629							
11	7	0.0000	0.05		0.000		0.061		0.0291		0.0557	_						
12	8	0.0197	0.05		0.021		0.041		0.0281		0.0387	_						
13	9	0.0320	0.05		0.034		0.022		0.0272		0.0221	_						
14	10	0.0368	0.05		0.039	0364 0.01			0.0264		0.0082	_						
15	11	0.0343	0.05						0.0256		0.0154	_						
16	12	0.0256	0.05		0.0272		0.027		0.0249		0.0263	_						
17	13	0.0135	0.05				0.032		0.0243		0.0304	_						
18	14	0.0028	0.05		0.001		0.028		0.0238		0.0272	_						
19	15	0.0135	0.05		0.011	9 0.01			0.0232		0.0218	_						
20	16	0.0220	0.05		0.018		0.007		0.0229		0.0098	_						
01	17	0.0000		<u>-0 </u>	0.010	in I	0 00 4	7	0 0 0 0 7)	0 0005	- 1			_	_	_	
HH	Caepip	e : Support	t load	l sumn	nary fo	or and	hor at	nod	e1-[(08_re	sponse	spect	rum_r	nIrsa.re	—)	\times
File	Resu	lts View	Opt	ions	Wind	ow	Help											
4	3				ô	Q				4		≣↓ <	$\langle \neg$	\Rightarrow				
Loa	ad com	bination		FX (II	o)	FY (b)	FZ (lb)	МX	(ft-lb)	MY (ft-Ib)	MZ (ft-lb)				
Su	stained			104		82		94		174		0		-192				
QΟ	erating	1		104		82		94		174		0		-192				
<u> </u>	-	I+Respon	se	190		175		175		412		109		39				
<u> </u>		l-Respons		17		-11		12		-64		-110		-424				
		1+Respo		190		175		175		412		109		39				
<u> </u>	-	•		17		-11		12		-64		-110		-424				
<u> </u>)perating1-Response faximum			17		-11 175		12		-64 412		109		-424 39				
				190				175										
L	nimum	_				-11				-64		-110		-424				
Alle	owable	8		0		0		0		0		0		0				

File					es: Respons Help	e spectrum	n (Multi-leve	el) - [08_re	sponsespeo	ctrum_mlrs	a.res (c:\tuto	rials\s	pectr	—	o x
4	_			<u>ê</u> t 🔍		<	↓ Ξ] ()	→ t.	G →						
#	Node	Axial	y Shear	z Shear	Torsio	n(ft-lb)	Inplan	e(ft-lb)	Outplar	ne(ft-lb)	Flex	x Fac	tors	SL+SO		SL+SO
		(lb)	(lb)	(lb)	Moment	SIF	Moment	SIF	Moment	SIF	FFi	FFo	FFt	(psi)	(psi)	
1	1 2	93 93	87 87	82 82	110 110		231 159		238 170					4116 2454	1 1	solololok solololok
2	201A 201B	93 108	108 93	45 45	110 28		111 97	1.00 1.00	205 71	1.00 1.00				2454 1556	1 1	Xaladalak Xaladalak
3	3 4	92 92	97 97	19 19	28 28		97 264		71 110					1556 5300	1 1	Xolololok Xolololok
4	4 5	88 88	114 114	5 5	28 28		264 65		110 116					5300 1172	1 1	Yolololok Yolololok
5	501A 501B	93 105	105 93	30 30	28 6		65 71	1.00 1.00	116 96	1.00 1.00				1172 1343	1 1	solololok solololok
6	6 7	92 92	75 75	69 69	6 6		84 111		84 111					1343 1553	1 1	solololok solololok
7	7 8	87 87	22 22	17 17	6 6		111 95		111 102					1553 1349	1 1	Yolololok Yolololok
8	8 9	81 81	20 20	16 16	6 6		95 92		102 98					1349 1222	1 1	skololole skololole
9	9 10	75 75	15 15	13 13	6 6		92 89		98 91					1222 1094	1 1	solololok solololok
10	10 11	69 69	12 12	12 12	6 6		89 76		91 76					1094 869	1 1	kolololok kolololok
11	11 12	65 65	18 18	16 16	6 6		76 48		76 48					869 513	1 1	solololok solololok
12	12 13	61 61	26 26	22 22	6 6		48 36		48 19					513 336	1 1	skolalak skolalak
10	4.5	r0	20	<u>ac</u>	c i		20		10					226	-	solololok