

CAEPIPE Code Compliance Manual, Version 13.10 © January 2025, SST Systems, Inc. All Rights Reserved.

Disclaimer

Please read the following carefully:

This software and this manual have been developed and checked for correctness and accuracy by SST Systems, Inc. However, no warranty, expressed or implied, is made by SST Systems, Inc., as to the accuracy and correctness of the manual or the functioning of the software and the accuracy, correctness and utilization of its calculations. Users must carry out all necessary tests to assure the proper functioning of the software and the applicability of its results. All information presented by the software is for review, interpretation, approval and application by a Registered Professional Engineer.

CAEPIPE and CAdvantagE are trademarks of SST Systems, Inc. All other product names mentioned in this document are trademarks or registered trademarks of their respective companies/holders.

For Info and Support on CAEPIPE, contact:

SST Systems, Inc. 5674 Stoneridge Drive, Suite 107 Pleasanton, CA 94588, USA Tel: (408) 452-8111

info@sstusa.com support@sstusa.com www.sstusa.com

CODE COMPLIANCE SUMMARY	1
PIPING CODE COMPLIANCE	3
ASME B31.1 (2024)	
ASME B31.1 (2022)	
ASME B31.1 (2020)	
ASME B31.1 (2018)	
ASME B31.1 (2016)	
ANSI B31.1 (1967)	
ANSI B31.1 (1973)	
ANSI B31.1 (1977)	
ANSI/ASME B31.1 (1980)	
ASME B31.3 (2022)	77
ASME B31.3 (2020)	
ASME B31.3 (2018)	
ASME B31.3 (2016)	
ASME B31.3 (2014)	
ASME B31.4 (2022)	
ASME B31.4 (2019)	
ASME B31.4 (2016)	
ASME B31.4 (2012)	
ASME B31.5 (2022)	
ASME B31.5 (2019)	
ASME B31.5 (2016)	
ASME B31.8 (2022)	
ASME B31.8 (2020)	
ASME B31.8 (2018)	
ASME B31.8 (2016)	
ASME B31.8 (2012)	
ASME B31.9 (2020)	
ASME B31.9 (2017)	
ASME B31.9 (2014)	235
ASME B31.12 IP (2023)	243
ASME B31.12 IP (2019)	250
ASME B31.12 PL (2023)	
ASME B31.12 PL (2019)	
ASME B31.12 (2014)	
ASME B31J (2023)	
ASME B31J (2017)	
ASME CLASS 2 (1980)	
ASME CLASS 2 (1986)	
ASME CLASS 2 (1992)	
ASME CLASS 2 (2015)	
ASME CLASS 2 (2017)	
ASME CLASS 3 (2017)	
ASME CLASS 2 AND CLASS 3 (2021)	
ASME CLASS 2 AND CLASS 3 (2023)	
ASME NM.1 (2022)	
ASME NM.1 (2020)	
ASME NM.2 (2022)	
ASME NM.2 (2020)	
BS 806 (1986)	
DNV-ST-F101 (2021)	

Table of Contents

ISO 14692-3 (2017)
EN 13941-1 (2019)
EN 13480-3:2017/A2:2020
SS EN 13480-3:2017
SS EN 13480-3:2012
Norwegian (1983)
Norwegian (1990)
RCC-M (2022)
RCC-M (2020)
RCC-M (2018)
RCC-M (1985)
CODETI (2013)
CODETI (2006)
STOOMWEZEN (1989)
Swedish (1978)
Z183 (1990)
Z184 (1992)
CSA Z662 (2019)612
CSA Z662 (2015)617
FRP Stress
Von Mises Stress
OPERATING STRESS FOR NDE/IMPACT TEST/IMPACT TEST EXEMPTION
THICKNESS AND SECTION MODULUS USED FOR B31.X CODES
REMAINING STRENGTH OF CORRODED PIPELINES637
REMAINING STRENGTH OF CORRODED PIPELINES637 ASME B31G (2023)638
REMAINING STRENGTH OF CORRODED PIPELINES637
REMAINING STRENGTH OF CORRODED PIPELINES
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 645 SIMPLIFIED FATIGUE EVALUATION 646
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652 ANSI/HI 9.6.2 665
REMAINING STRENGTH OF CORRODED PIPELINES637ASME B31G (2023)638FATIGUE EVALUATION649SIMPLIFIED FATIGUE EVALUATION646DETAILED FATIGUE EVALUATION647ROTATING EQUIPMENT QUALIFICATION651API 610652ANSI/HI 9.6.2665NEMA SM-23679API 617681
REMAINING STRENGTH OF CORRODED PIPELINES637ASME B31G (2023)638FATIGUE EVALUATION649SIMPLIFIED FATIGUE EVALUATION646DETAILED FATIGUE EVALUATION647ROTATING EQUIPMENT QUALIFICATION651API 610652ANSI/HI 9.6.2665NEMA SM-23679API 617683FLANGE QUALIFICATION683
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652 ANSI/HI 9.6.2 665 NEMA SM-23 679 API 617 681 FLANGE QUALIFICATION 683 PRESSURE DESIGN – EN 13480-3 701
REMAINING STRENGTH OF CORRODED PIPELINES637ASME B31G (2023)638FATIGUE EVALUATION649SIMPLIFIED FATIGUE EVALUATION646DETAILED FATIGUE EVALUATION647ROTATING EQUIPMENT QUALIFICATION651API 610652ANSI/HI 9.6.2665NEMA SM-23679API 617683FLANGE QUALIFICATION683
REMAINING STRENGTH OF CORRODED PIPELINES637ASME B31G (2023)638FATIGUE EVALUATION649SIMPLIFIED FATIGUE EVALUATION646DETAILED FATIGUE EVALUATION647ROTATING EQUIPMENT QUALIFICATION651API 610652ANSI/HI 9.6.2665NEMA SM-23675API 617681FLANGE QUALIFICATION683PRESSURE DESIGN – EN 13480-3701LUG EVALUATION710
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 Simplified Fatigue Evaluation 646 Detailed Fatigue Evaluation 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652 ANSI/HI 9.6.2 665 NEMA SM-23 675 API 617 681 FLANGE QUALIFICATION 683 PRESSURE DESIGN – EN 13480-3 710 ASME Ection III, Div 1 (2010) 711
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652 ANSI/HI 9.6.2 665 NEMA SM-23 675 API 617 681 FLANGE QUALIFICATION 683 PRESSURE DESIGN – EN 13480-3 701 LUG EVALUATION 710 ASME SECTION III, DIV 1 (2010) 711 EN 13480-3 (2017) 721
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 645 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652 ANSI/HI 9.6.2 665 NEMA SM-23 675 API 617 681 FLANGE QUALIFICATION 683 PRESSURE DESIGN – EN 13480-3 701 LUG EVALUATION 710 ASME SECTION III, DIV 1 (2010) 711 EN 13480-3 (2017) 721 NOZZLE STIFFNESS CALCULATIONS 732
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 649 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652 ANSI/HI 9.6.2 665 NEMA SM-23 675 API 617 681 FLANGE QUALIFICATION 683 PRESSURE DESIGN – EN 13480-3 701 LUG EVALUATION 710 ASME SECTION III, DIV 1 (2010) 711 EN 13480-3 (2017) 721
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 645 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652 ANSI/HI 9.6.2 665 NEMA SM-23 675 API 617 681 FLANGE QUALIFICATION 683 PRESSURE DESIGN – EN 13480-3 701 LUG EVALUATION 710 ASME SECTION III, DIV 1 (2010) 711 EN 13480-3 (2017) 721 NOZZLE STIFFNESS CALCULATIONS 732
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 645 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652 ANSI/HI 9.6.2 665 NEMA SM-23 675 API 617 681 FLANGE QUALIFICATION 682 PRESSURE DESIGN – EN 13480-3 701 LUG EVALUATION 710 ASME SECTION III, DIV 1 (2010) 711 EN 13480-3 (2017) 721 NOZZLE STIFFNESS CALCULATIONS 732
REMAINING STRENGTH OF CORRODED PIPELINES 637 ASME B31G (2023) 638 FATIGUE EVALUATION 645 SIMPLIFIED FATIGUE EVALUATION 646 DETAILED FATIGUE EVALUATION 647 ROTATING EQUIPMENT QUALIFICATION 651 API 610 652 ANSI/HI 9.6.2 665 NEMA SM-23 675 API 617 681 FLANGE QUALIFICATION 683 PRESSURE DESIGN – EN 13480-3 701 LUG EVALUATION 710 ASME SECTION III, DIV 1 (2010) 711 EN 13480-3 (2017) 721 NOZZLE STIFFNESS CALCULATIONS 732 NOZZLE EVALUATION 746 EN 13445-3:2019 - ALLOWABLE NOZZLE LOADS ON SPHERICAL SHELLS 747

Table of Contents

ASCE/SEI 7	758
EARTHQUAKE LOAD – ASCE/SEI 7-16	
WIND LOAD – ASCE/SEI 7-16	
SNOW LOADS – ASCE/SEI 7-22	
Ice Loads – ASCE/SEI 7-22	771
EN1991-1-4 (2010)	772
WIND LOAD	

This page is blank

Code Compliance Summary

Table given below lists the Piping Codes that are built into CAEPIPE Version 12.20 or later for Code Compliance checks with their piping type and analysis type covered.

SI. No.	Piping Code and Description	Metallic / Nonmetallic Piping	Above Ground	Buried Piping
1	ASME B31.1 (2022) - Power Piping	Metallic	Yes	
2	ASME B31.1 (1967) - Power Piping	Metallic	Yes	
3	ASME B31.1 (1973) - Power Piping	Metallic	Yes	
4	ASME B31.1 (1977) - Power Piping	Metallic	Yes	
5	ASME B31.1 (1980) - Power Piping	Metallic	Yes	
6	ASME B31.3 (2022) - Process Piping	Metallic	Yes	
7	ASME B31.4 (2022) - Pipeline Transportation Systems for Liquids and Slurries	Metallic	Yes	Yes
8	ASME B31.5 (2022) - Refrigeration Piping and Heat Transfer Components	Metallic	Yes	
9	ASME B31.8 (2022) - Gas Transmission and Distribution Piping Systems	Metallic	Yes	Yes
10	ASME B31.9 (2020) - Building Services Piping	Metallic	Yes	
11	ASME B31.12 IP (2019) - Hydrogen Piping	Metallic	Yes	
12	ASME B31.12 PL (2019) - Hydrogen Pipelines	Metallic	Yes	Yes
13	ASME NM.1 (2022) - Thermoplastic Piping Systems	Nonmetallic	Yes	
14	ASME NM.2 (2022) - Glass-Fiber-Reinforced Thermosetting-Resin Piping Systems (GRP/FRP)	Nonmetallic	Yes	
15	ASME Class 2 (1980) - ASME Section III, Subsection NC - Class 2	Metallic Yes		
16	ASME Class 2 (1986) - ASME Section III, Subsection NC - Class 2	Metallic	Yes	
17	ASME Class 2 (1992) - ASME Section III, Subsection NC - Class 2	Metallic	Yes	
18	ASME Class 2 (2015) - ASME Section III, Subsection NC - Class 2	Metallic	Yes	
19	ASME Class 2 (2017) ASME Section III, Subsection NC - Class 2	Metallic	Yes	
20	ASME Class 2 (2021) - ASME Section III, Subsection NC - Class 2	Metallic	Yes	
21	ASME Class 2 (2023) - ASME Section III, Subsection NC - Class 2	Metallic	Yes	
22	ASME Class 3 (2017) - ASME Section III, Subsection ND - Class 3	Metallic	Yes	
23	ASME Class 3 (2021) - ASME Section III, Subsection ND - Class 3	Metallic	Yes	
24	ASME Class 3 (2023) - ASME Section III, Subsection ND - Class 3	Metallic	Yes	
25	ISO 14692-3 (2017) - Petroleum and Natural Gas Industries - Glass Reinforced Plastics (GRP/FRP) Piping	Nonmetallic	Yes	Yes
26	EN 13480 (2020) - Metallic industrial piping	Metallic	Yes	Yes

SI. No.	Piping Code and Description	Metallic / Nonmetallic Piping	Above Ground	Buried Piping
27	EN 13941 (2019) - District heating pipes	Metallic	No	Yes
28	BS 806 (1986) - Construction of Ferrous Piping Installations for and in Connection with Land Boilers (British)	Metallic	Yes	
29	DNV-ST-F101 – Submarine pipeline systems	Metallic	Yes	
30	IGEM (2012) - Institution of Gas Engineers and Managers (IGEM) IGE/TD/12 Edition 2 (UK)	Metallic	Yes	
31	Norwegian (1983) - Process design	Metallic	Yes	
32	Norwegian (1990) - Process design	Metallic	Yes	
33	RCC-M (1985) - Design and Construction Rules for Mechanical Components of PWR Nuclear Islands (French)	Metallic	Yes	
34	RCC-M (2018) - Design and Construction Rules for Mechanical Components of PWR Nuclear Islands (French)	Metallic	Yes	
35	RCC-M (2020) - Design and Construction Rules for Mechanical Components of PWR Nuclear Islands (French)	Metallic	Yes	
36	RCC-M (2022) - Design and Construction Rules for Mechanical Components of PWR Nuclear Islands (French)	Metallic	Yes	
37	CODETI (2013) - CODE DE CONSTRUCTION DES TUYAUTERIES INDUSTRIELLES (French)	Metallic	Yes	
38	Stoomwezen (1989) - Dutch Power piping code	Metallic	Yes	
39	Swedish (1978) – Swedish piping code	Metallic	Yes	
40	Z183 (1990) - Oil Pipeline Systems (Canadian)	Metallic	Yes	
41	Z184 (1992) - Gas Pipeline Systems (Canadian)	Metallic	Yes	
42	Z662 (2019) - Oil & Gas Pipeline Systems (Canadian)	Metallic	Yes	Yes
43	NONE (for AWWA M11 applications, and for applications in aircraft, aerospace & defence industries)	Metallic	Yes	Yes

Code Compliance Summary

Allowable Pressure

At this time, there is no provision in CAEPIPE to specify the type of pipe manufacturing process, i.e., whether the pipe is a seamless or longitudinal welded or spiral welded. Accordingly, irrespective of the type of pipe manufacturing process, <u>for straight pipes and bends</u>, CAEPIPE calculates allowable pressure using Eq. (9) of para.104.1.2 and Eqs. (3) & (5) of para. 102.4.5 (b).

$$P_a = \frac{2SEt_a}{(D_o - 2Yt_a)} \cdot \left(\frac{W}{I}\right)$$

where

 P_a = allowable pressure

SE = maximum allowable stress for the material inclusive of weld joint efficiency factor E (or casting quality factor F) at the design temperature (i.e., at T_{design} input into CAEPIPE). The values of SE and SF are given in Mandatory Appendix A of ASME B31.1 (2024) Code.

 $t_a{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 D_0 = outside diameter of pipe

d = inside diameter of pipe

I = 1.0 for straight pipes and at the side wall on the bend / elbow centerline

Values for coefficient Y are as per Table 104.1.2-1. Refer to the Table listed at the end of this section for details on coefficient 'Y' implemented in CAEPIPE.

W = weld strength reduction factor as per Table 102.4.7-1. Refer to the Table listed at the end of this section for details on weld strength reduction factors implemented in CAEPIPE.

ASME B31.1 Code does not provide any explicit equation to compute Allowable Pressure for closely spaced and widely spaced miter bends. Hence, for ASME B31.1 Code, CAEPIPE computes the allowable pressure for miter bends using the explicit equations given in ASME B31.3 (2022) [see para. 304.2.3], as listed below.

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a(R-r)}{r(R-r/2)}$$

For widely spaced miter bends with $\theta \le 22.5$ deg, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a^2}{r(t_a + 0.643\tan\theta\sqrt{rt_a})}$$

For widely spaced miter bends with $\theta > 22.5$ deg, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a^2}{r(t_a + 1.25\tan\theta\sqrt{rt_a})}$$

where

 $r = mean radius of pipe = (D_o - t_n)/2$

R = equivalent bend radius of the miter (an input in CAEPIPE for Miter)

$$\theta = \text{miter half angle} = \tan^{-1} \left(\frac{1.0}{\left(\frac{2R}{r} - 1.0\right)} \right)$$

Sustained Stress

The stress (S_I) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eq. 15 of para.104.8.1

$$S_{L} = \sqrt{\left[I_{a} \left|S_{lp} + \frac{F_{a}}{A_{p}}\right| + \frac{\sqrt{(I_{i}M_{iA})^{2} + (I_{o}M_{oA})^{2}}}{Z}\right]^{2} + \left(\frac{I_{t}M_{tA}}{Z}\right)^{2}} \le S_{h}$$

where

P = internal design pressure that shall be not less than the maximum sustained operating pressure (MSOP) within the piping system, including the effects of static head = maximum of CAEPIPE pressures P1 through P10

 $S_{lp} = longitudinal pressure stress as defined in para. 102.3.2(a)(3) = \frac{PD_o}{4t_n} or \frac{Pd_n^2}{D_o^2 - d_n^2}$

 t_n = nominal wall thickness

 $D_0 = nominal outside diameter$

 d_n = nominal inside diameter = $D_o - 2t_n$

 F_a = longitudinal force due to weight and other sustained mechanical loads (excluding pressure)

 I_a = sustained longitudinal force index = 1.00

 I_i = sustained in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 I_o = sustained out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = sustained torsional moment index. I_t is taken as the greater of 0.75 i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iA} , M_{oA} , M_{tA} = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads

Z = nominal section modulus = un-corroded section modulus

 A_p = un-corroded nominal cross sectional area

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 through T10)]

 S_L = stress due to pressure, weight and other sustained mechanical loads

Occasional Stress

The stress (S_0) due to sustained and occasional loads is calculated from Eq. 16 of para. 104.8.2 as the combined stress due to (a) sustained loads such as pressure, weight and other sustained mechanical loads and (b) occasional loads such as earthquake or wind. Wind and earthquake are not considered to act concurrently as per para. 101.5.2 and para. 101.5.3.

$$S_{O} = \sqrt{\left[I_{a} \left|S_{lpo} + \frac{F_{b}}{A_{p}}\right| + \frac{\sqrt{(I_{i}M_{iB})^{2} + (I_{o}M_{oB})^{2}}}{Z}\right]^{2} + \left(\frac{I_{t}M_{tB}}{Z}\right)^{2} \le kS_{h}}$$

where

 F_b = longitudinal force due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 $S_{lpo} = longitudinal peak pressure stress = \frac{P_0 D_0}{4t_n} or \frac{P_0 d_n^2}{D_0^2 - d_n^2}$

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

 $t_n = nominal$ wall thickness

 $D_o = nominal outside diameter$

 $d_n = nominal inside diameter = D_o - 2t_n$

 I_a = occasional longitudinal force index = 1.00

 I_i = occasional in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 I_o = occasional out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = occasional torsional moment index. I_t is taken as the greater of 0.75i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iB} , M_{oB} , M_{tB} = in-plane, out-of-plane and torsional moment respectively due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 $S_{\rm O}$ = stress due to pressure, weight, other sustained mechanical loads and occasional loads such as thrusts from relief / safety valve loads, from pressure and flow transients, earthquake, wind etc.

k = 1.2 for occasional loads acting for no more than 1 hr at any one time and no more than 80 hr/yr.

All other terms such as P, D_o, Z, etc. are as defined under Sustained Stress.

For <u>Unsigned</u> occasional load cases such as Earthquake, etc. the forces and moments are combined as given below.

$$\begin{split} I_{a} \left| S_{lpo} + \frac{F_{b}}{A_{p}} \right| &= max \left[I_{a} \left(\left| S_{lpo} + \frac{F_{b(sust)}}{A_{p}} \right| + \left| \frac{F_{b(occa)}}{A_{p}} \right| \right), I_{a} \left(\left| S_{lpo} + \frac{I_{a}F_{b(sust)}}{A_{p}} \right| - \left| \frac{F_{b(occa)}}{A_{p}} \right| \right) \right] \\ (I_{i}M_{iB})^{2} &= (I_{i})^{2} \cdot \left[\left| M_{iB(sust)} \right| + \left| M_{iB(occa)} \right| \right]^{2} \\ (I_{o}M_{oB})^{2} &= (I_{o})^{2} \cdot \left[\left| M_{oB(sust)} \right| + \left| M_{oB(occa)} \right| \right]^{2} \\ (I_{t}M_{tB})^{2} &= (I_{t})^{2} \cdot \left[\left| M_{tB(sust)} \right| + \left| M_{tB(occa)} \right| \right]^{2} \end{split}$$

For Signed occasional load cases such as Wind, etc. the forces and moments are combined as given below.

$$I_{a} \left| S_{lpo} + \frac{F_{b}}{A_{p}} \right| = I_{a} \left| S_{lpo} + \frac{F_{b(sust)}}{A_{p}} + \frac{F_{b(occa)}}{A_{p}} \right|$$
$$(I_{i}M_{iB})^{2} = (I_{i})^{2} \cdot \left[\left| M_{iB(sust)} + M_{iB(occa)} \right| \right]^{2}$$
$$(I_{o}M_{oB})^{2} = (I_{o})^{2} \cdot \left[\left| M_{oB(sust)} + M_{oB(occa)} \right| \right]^{2}$$
$$(I_{t}M_{tB})^{2} = (I_{t})^{2} \cdot \left[\left| M_{tB(sust)} + M_{tB(occa)} \right| \right]^{2}$$

where

 $M_{iB(sust)}$, $M_{oB(sust)}$, $M_{tB(sust)}$ = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads (excluding pressure).

 $M_{iB(occa)}$, $M_{oB(occa)}$, $M_{tB(occa)}$ = in-plane, out-of-plane and torsional moment respectively due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 $F_{b(sust)}$ = longitudinal force due to weight, other sustained mechanical loads (excluding pressure)

 $F_{b(occa)}$ = longitudinal force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

Expansion Stress Range (i.e., Stress due to Displacement Load Range)

The stress range (S_E) due to thermal expansion is calculated from Eq. 17 of para.104.8.3.

$$S_{E} = \sqrt{\left[\left|\frac{i_{a}F_{c}}{A_{p}}\right| + \frac{\sqrt{(i_{i}M_{ic})^{2} + (i_{o}M_{oc})^{2}}}{Z}\right]^{2} + \left(\frac{i_{t}M_{tc}}{Z}\right)^{2} \le S_{A}}$$

where

 $F_c = axial$ force <u>range</u> due to reference displacement load range

 A_p = un-corroded nominal cross sectional area

 i_a = axial force stress intensification factor = 1.0 for elbows, pipe bends and miter bends (single, closely spaced and widely spaced), and $i_a = i_o$ (or i when listed) in ASME B31J for other components

 M_{iC} , M_{oC} , M_{tC} = in-plane, out-of-plane and torsional moment <u>range</u> respectively due to the reference displacement load range

 i_i , i_o , i_t = in-plane, out-of-plane and torsional stress intensification factors respectively as defined in ASME B31J, Table 1-1

Z = nominal section modulus = un-corroded section modulus

 $S_A = f(1.25S_C + 0.25S_h)$, from Eq. (1A) of para. 102.3.2 (b)

f = cyclic stress range reduction factor from Eq. (1C) of para. 102.3.2 (b),

 $f = 6/N^{0.2} \le 1.0$ and $f \ge 0.15$ with N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping

 S_c = basic allowable stress at minimum metal temperature expected during the displacement stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the displacement stress range under analysis

When S_h is greater than S_L, the allowable stress range may be calculated as

 $S_A = f[1.25(S_C + S_h) - S_L]$, from Eq. (1B) of para. 102.3.2 (b).

This equation can be re-written as

 $S_A = f(1.25S_C + 0.25S_h) + f(S_h - S_L)$ (see **Note 2** below)

This is specified as an analysis option: "Use liberal allowable stresses", in the menu Options->Analysis on the Code tab of CAEPIPE.

Note:

- 1. Refer to the end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 2. As per Note 2 of para. 102.3.2 (b) (1) of ASME B31.1 (2024), "For materials with a minimum tensile strength of over 70 ksi (480 MPa), eqs. (1A) and (1B) shall be calculated using Sc or Sh values no greater than 20 ksi (140 MPa), unless otherwise justified."

Compliance to this criterion is checked using the value entered under Tensile Strength field of CAEPIPE Material property input. If this field is NOT entered or left BLANK, then CAEPIPE will compute the Tensile Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 3.5. This is because, the allowable stress for material below creep is generally 1/3.5 of Tensile Strength as stated in Section 1-100 of Mandatory Appendix 1 of ASME Section II, Part D.

For example, if the allowable stress is 22,000 psi for a high strength material at the minimum temperature of -20 deg. F, then the Tensile Strength would be 22,000 x 3.5 = 77,000 psi. So, in this case, CAEPIPE will internally set the values of both S_c and S_h as 20,000 psi as Tensile Strength is greater than 70,000 psi.

In addition, if the option "Use Liberal allowable stresses" is turned ON through Layout Window > Options > Analysis > Code, then if the left over Sustained stress (= $S_h - S_L$) is positive, CAEPIPE will multiply this positive left over Sustained stress by the Stress range reduction factor (f) and add that resulting value to the Expansion allowable stress computed using the above equation (1A) of para. 102.3.2.

Settlement Stress

The stress range (S_S) due to single, noncyclic displacement stress range (e.g., predicted settlement or uplift or movement of pipe support structures such as buildings, pipe racks, anchors, etc.) is calculated from Eq. 17 of Figure 104.8-1 as given below in accordance with para. 102.3.2 (b)(2).

$$S_{S} = \sqrt{\left[\left| \frac{i_{a}F_{D}}{A_{p}} \right| + \frac{\sqrt{(i_{i}M_{iD})^{2} + (i_{o}M_{oD})^{2}}}{Z} \right]^{2} + \left(\frac{i_{t}M_{tD}}{Z}\right)^{2} \le 3S_{C}$$

where

 i_a = axial force stress intensification factor = 1.0 for elbows, pipe bends and miter bends (single, closely spaced and widely spaced), and $i_a = i_o$ (or i when listed) in ASME B31J for other components

 i_i , i_o , i_t = in-plane, out-of-plane and torsional stress intensification factors respectively as defined in ASME B31J, Table 1-1

 F_D = axial force range due to any single noncyclic anchor movement (e.g., predicted building settlement)

Ap= un-corroded nominal cross sectional area

 M_{iD} , M_{oD} , M_{tD} = in-plane, out-of-plane and torsional moment range respectively due to any single noncyclic anchor movement (e.g., predicted building settlement)

Z = nominal section modulus = un-corroded section modulus

 S_c = allowable stress at the Reference Temperature in CAEPIPE

Hydrotest Stress

The sum of longitudinal stress (S_1) due to test pressure, live and dead loads at the time of hydrotest shall not exceed 90% of yield strength at test temperature as per para. 102.3.3 (b).

$$S_{LT} = \sqrt{\left[I_a \left|\frac{PD_o}{4t_n} + \frac{F_a}{A_p}\right| + \frac{\sqrt{(I_i M_{iH})^2 + (I_o M_{oH})^2}}{Z}\right]^2 + \left(\frac{I_t M_{tH}}{Z}\right)^2 \le 0.9S_y}$$

where

P = The hydrostatic test pressure at any point in the piping system shall not be less than 1.5 times the design pressure as per para. 137.4.5. D_0 = nominal outside diameter

 $t_n = nominal$ wall thickness

F_a= longitudinal force due to hydrotest loads (excluding pressure)

 I_a = longitudinal force index = 1.00

 I_i = in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 $I_o =$ out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = torsional moment index. I_t is taken as the greater of 0.75i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iH} , M_{oH} , M_{tH} = in-plane, out-of-plane and torsional moment respectively due to hydrotest

Z = nominal section modulus = un-corroded section modulus

 A_p = un-corroded nominal cross sectional area

 S_v = yield strength at test temperature [i.e., at Tref in CAEPIPE)]

 S_{LT} = stress due to hydrotest loads

Power Piping

ASME B31.1 (2024)

ASME B31.1 (2024) – Nonmetallic piping as per Chapter N-II

The Piping Code ASME NM.1 (2020) titled "Thermoplastic Piping Systems" provides methods to evaluate Nonmetallic piping such as PVC, CPVC, HDPE, etc. Code Compliance as per ASME NM.1 is built into CAEPIPE Version 12.00 or later. Hence, for Nonmetallic Piping Analysis, ASME NM.1 can be selected in CAEPIPE for Code Compliance checks.

Material Properties for PVC, CPVC, etc. are provided in "Chapter N-II" titled "Design" of ASME B31.1 (2024). These properties are already included in the material library for Plastics (B311-2024_N-II.mat) in CAEPIPE. In addition, Allowable Pressure calculation for Non-metallic pipe and pipe fittings as per Chapter N-II is already included into CAEPIPE as given below.

So, if you still wish to perform Nonmetallic piping analysis as per ASME B31.1 (2024), then the material properties for Nonmetallic piping can be selected from the material library (B311-2024_N-II.mat) supplied with CAEPIPE.

Allowable Pressure

From ASME B31.1 (2024) Chapter N-II, Allowable Pressure for Nonmetallic (thermoplastics) pipe and pipe fittings are computed using Eq. (2) of para. N-104.1.2(a)(1).

$$P_a = \frac{2S_a}{\left(\frac{D_o}{t_a} - 1\right)}$$

where

 P_a = allowable pressure

 S_a = hydrostatic design stress from Table N-102.2.1-1 of ASME B31.1 (2024) code (input into CAEPIPE material property for thermoplastics)

 $t_a\text{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE as per para. N-104.1.1)

 t_n = nominal pipe thickness

 D_o = outside diameter of pipe

Power Piping

ASME B31.1 (2024)

Coefficient 'Y' used in CAEPIPE to compute components Allowable Design Pressure (extracted from Table 104.1.2-1 of ASME B31.1 – 2024)

		Values of 'Y' for Temperature, Deg F (Deg C)							
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
S.		and							and
No.	Material Type	below							above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
3.	Nickel Alloy UNS No. N06690 (NA)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
4.	Other Nickel Alloys (NA)	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
5.	Cast Iron	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.	Material Types other than those stated from Sl. Nos. 1 to 5.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Notes:

1. If $D_o/t_a < 6$, for ferritic and austenitic steels designed for temperatures of 900°F (480°C) and below, CAEPIPE calculates Y as

$$Y = \frac{d}{d + D_o}$$

Power Piping

ASME B31.1 (2024)

Weld Strength Reduction Factors (W) used in CAEPIPE to calculate components Allowable Design Pressure (extracted from Table 102.4.7-1 of ASME B31.1-2024)

	Material		Veld Strength Reduction Factor for Temperature, Deg F (Deg C)									
SI.	Type/Material	700	750	800	850	900	950	1000	1050	1100	1150	1200
No.	Description	(371)	(399)	(427)	(454)	(482)	(510)	(538)	(566)	(593)	(621)	(649)
1	Carbon Steel	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	(CS)											
	[see Note (a)]											
2	Ferritic Steels	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
	(FS)											
3	Austenitic	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
	Steel (AS)											
4	Material	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64
	Description											
	that contains a											
	string "CrMo"											
5	Material Types	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	other than											
	those stated in											
	Sl. Nos. 1 to 3											

Notes:

- (a) Based on Note 7 of Table 102.4.7-1 of ASME B31.1 (2024) code, W = 1.0 for Carbon Steel (CS).
- (b) For Austenitic Steels (including 800H and 800 HT), values up to 1500 deg F are as follows:

Temperature, deg F	Temperature, deg C	Weld Strength Reduction Factor
1250	677	0.73
1300	704	0.68
1350	732	0.64
1400	760	0.59
1450	788	0.55
1500	816	0.50
1500	816	0.50

Allowable Pressure

At this time, there is no provision in CAEPIPE to specify the type of pipe manufacturing process, i.e., whether the pipe is a seamless or longitudinal welded or spiral welded. Accordingly, irrespective of the type of pipe manufacturing process, <u>for straight pipes and bends</u>, CAEPIPE calculates allowable pressure using Eq. (9) of para.104.1.2 and Eqs. (3) & (5) of para. 102.4.5 (b).

$$P_a = \frac{2SEt_a}{(D_o - 2Yt_a)} \cdot \left(\frac{W}{I}\right)$$

where

 P_a = allowable pressure

SE = maximum allowable stress for the material inclusive of weld joint efficiency factor E (or casting quality factor F) at the design temperature (i.e., at T_{design} input into CAEPIPE). The values of SE and SF are given in Mandatory Appendix A of ASME B31.1 (2022) Code.

 $t_a\text{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 $D_0 =$ outside diameter of pipe

d = inside diameter of pipe

I = 1.0 for straight pipes and at the side wall on the bend / elbow centerline

Values for coefficient Y are as per Table 104.1.2-1. Refer to the Table listed at the end of this section for details on coefficient 'Y' implemented in CAEPIPE.

W = weld strength reduction factor as per Table 102.4.7-1. Refer to the Table listed at the end of this section for details on weld strength reduction factors implemented in CAEPIPE.

ASME B31.1 Code does not provide any explicit equation to compute Allowable Pressure for closely spaced and widely spaced miter bends. Hence, for ASME B31.1 Code, CAEPIPE computes the allowable pressure for miter bends using the explicit equations given in ASME B31.3 (2020) [see para. 304.2.3], as listed below.

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a(R-r)}{r(R-r/2)}$$

For widely spaced miter bends with $\theta \le 22.5$ deg, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a^2}{r(t_a + 0.643\tan\theta\sqrt{rt_a})}$$

For widely spaced miter bends with $\theta > 22.5$ deg, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a^2}{r(t_a + 1.25\tan\theta\sqrt{rt_a})}$$

where

 $r = mean radius of pipe = (D_o - t_n)/2$

R = equivalent bend radius of the miter (an input in CAEPIPE for Miter)

$$\theta = \text{miter half angle} = \tan^{-1} \left(\frac{1.0}{\left(\frac{2R}{r} - 1.0\right)} \right)$$

Sustained Stress

The stress (S_1) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eq. 15 of para.104.8.1

$$S_{L} = \sqrt{\left[I_{a} \left|\frac{PD_{o}}{4t_{n}} + \frac{F_{a}}{A_{p}}\right| + \frac{\sqrt{(I_{i}M_{iA})^{2} + (I_{o}M_{oA})^{2}}}{Z}\right]^{2} + \left(\frac{I_{t}M_{tA}}{Z}\right)^{2}} \le S_{h}$$

where

P = internal design pressure that shall be not less than the maximum sustained operating pressure (MSOP) within the piping system, including the effects of static head = maximum of CAEPIPE pressures P1 through P10

 D_{o} = nominal outside diameter

 $t_n =$ nominal wall thickness

 F_a = longitudinal force due to weight and other sustained mechanical loads (excluding pressure)

 I_a = sustained longitudinal force index = 1.00

 I_i = sustained in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 I_o = sustained out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = sustained torsional moment index. I_t is taken as the greater of 0.75 i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iA} , M_{oA} , M_{tA} = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads

Z = nominal section modulus = un-corroded section modulus

 $A_p =$ un-corroded nominal cross sectional area

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 through T10)]

 S_L = stress due to pressure, weight and other sustained mechanical loads

Occasional Stress

The stress (S_0) due to sustained and occasional loads is calculated from Eq. 16 of para. 104.8.2 as the combined stress due to (a) sustained loads such as pressure, weight and other sustained mechanical loads and (b) occasional loads such as earthquake or wind. Wind and earthquake are not considered to act concurrently as per para. 101.5.2 and para. 101.5.3.

$$S_{O} = \sqrt{\left[I_{a} \left|\frac{P_{o}D_{o}}{4t_{n}} + \frac{F_{b}}{A_{p}}\right| + \frac{\sqrt{(I_{i}M_{iB})^{2} + (I_{o}M_{oB})^{2}}}{Z}\right]^{2} + \left(\frac{I_{t}M_{tB}}{Z}\right)^{2} \le kS_{h}}$$

where

 F_b = longitudinal force due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 I_a = occasional longitudinal force index = 1.00

 I_i = occasional in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 I_o = occasional out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = occasional torsional moment index. I_t is taken as the greater of 0.75 i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iB} , M_{oB} , M_{tB} = in-plane, out-of-plane and torsional moment respectively due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

 S_0 = stress due to pressure, weight, other sustained mechanical loads and occasional loads such as thrusts from relief / safety valve loads, from pressure and flow transients, earthquake, wind etc.

k = 1.2 for occasional loads acting for no more than 1 hr at any one time and no more than 80 hr/yr.

All other terms such as P, A_n, Z, etc. are as defined under Sustained Stress.

For <u>Unsigned</u> occasional load cases such as Earthquake, etc. the forces and moments are combined as given below.

$$\begin{split} I_{a} \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{F_{b}}{A_{p}} \right| &= max \left[I_{a} \left(\left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{F_{b(sust)}}{A_{p}} \right| + \left| \frac{F_{b(occa)}}{A_{p}} \right| \right), I_{a} \left(\left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b(sust)}}{A_{p}} \right| - \left| \frac{F_{b(occa)}}{A_{p}} \right| \right) \right] \\ (I_{i}M_{iB})^{2} &= (I_{i})^{2} \cdot \left[\left| M_{iB(sust)} \right| + \left| M_{iB(occa)} \right| \right]^{2} \\ (I_{o}M_{oB})^{2} &= (I_{o})^{2} \cdot \left[\left| M_{oB(sust)} \right| + \left| M_{oB(occa)} \right| \right]^{2} \\ (I_{t}M_{tB})^{2} &= (I_{t})^{2} \cdot \left[\left| M_{tB(sust)} \right| + \left| M_{tB(occa)} \right| \right]^{2} \end{split}$$

For Signed occasional load cases such as Wind, etc. the forces and moments are combined as given below.

$$I_{a} \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{F_{b}}{A_{p}} \right| = I_{a} \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{F_{b}(sust)}{A_{p}} + \frac{F_{b}(occa)}{A_{p}} \right|$$
$$(I_{i}M_{iB})^{2} = (I_{i})^{2} \cdot \left[\left| M_{iB}(sust) + M_{iB}(occa) \right| \right]^{2}$$
$$(I_{o}M_{oB})^{2} = (I_{o})^{2} \cdot \left[\left| M_{oB}(sust) + M_{oB}(occa) \right| \right]^{2}$$
$$(I_{t}M_{tB})^{2} = (I_{t})^{2} \cdot \left[\left| M_{tB}(sust) + M_{tB}(occa) \right| \right]^{2}$$

where

 $M_{iB(sust)}$, $M_{oB(sust)}$, $M_{tB(sust)}$ = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads (excluding pressure).

 $M_{iB(occa)}$, $M_{oB(occa)}$, $M_{tB(occa)}$ = in-plane, out-of-plane and torsional moment respectively due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 $F_{b(sust)}$ = longitudinal force due to weight, other sustained mechanical loads (excluding pressure)

 $F_{b(occa)}$ = longitudinal force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

Expansion Stress Range (i.e., Stress due to Displacement Load Range)

The stress range (S_E) due to thermal expansion is calculated from Eq. 17 of para.104.8.3.

$$S_{E} = \sqrt{\left[\left| \frac{i_{a}F_{c}}{A_{p}} \right| + \frac{\sqrt{(i_{i}M_{ic})^{2} + (i_{o}M_{oc})^{2}}}{Z} \right]^{2} + \left(\frac{i_{t}M_{tc}}{Z}\right)^{2} \le S_{A}}$$

where

 F_c = axial force <u>range</u> due to reference displacement load range

 A_p = un-corroded nominal cross sectional area

 i_a = axial force stress intensification factor = 1.0 for elbows, pipe bends and miter bends (single, closely spaced and widely spaced), and $i_a = i_o$ (or i when listed) in ASME B31J for other components

 M_{iC} , M_{oC} , M_{tC} = in-plane, out-of-plane and torsional moment <u>range</u> respectively due to the reference displacement load range

 i_i , i_o , i_t = in-plane, out-of-plane and torsional stress intensification factors respectively as defined in ASME B31J, Table 1-1

Z = nominal section modulus = un-corroded section modulus

 $S_A = f(1.25S_C + 0.25S_h)$, from Eq. (1A) of para. 102.3.2 (b)

f = cyclic stress range reduction factor from Eq. (1C) of para. 102.3.2 (b),

 $f = 6/N^{0.2} \le 1.0$ and $f \ge 0.15$ with N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping

 S_c = basic allowable stress at minimum metal temperature expected during the displacement stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the displacement stress range under analysis

When S_h is greater than S_I, the allowable stress range may be calculated as

 $S_A = f[1.25(S_C + S_h) - S_L]$, from Eq. (1B) of para. 102.3.2 (b).

This equation can be re-written as

 $S_A = f(1.25S_C + 0.25S_h) + f(S_h - S_L)$ (see **Note 2** below)

This is specified as an analysis option: "Use liberal allowable stresses", in the menu Options->Analysis on the Code tab of CAEPIPE.

Note:

- 3. Refer to the end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 4. As per Note 2 of para. 102.3.2 (b) (1) of ASME B31.1 (2022), "For materials with a minimum tensile strength of over 70 ksi (480 MPa), eqs. (1A) and (1B) shall be calculated using Sc or Sh values no greater than 20 ksi (140 MPa), unless otherwise justified."

Compliance to this criterion is checked using the value entered under Tensile Strength field of CAEPIPE Material property input. If this field is NOT entered or left BLANK, then CAEPIPE will compute the Tensile Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 3.5. This is because, the allowable stress for material below creep is generally 1/3.5 of Tensile Strength as stated in Section 1-100 of Mandatory Appendix 1 of ASME Section II, Part D.

For example, if the allowable stress is 22,000 psi for a high strength material at the minimum temperature of -20 deg. F, then the Tensile Strength would be 22,000 x 3.5 = 77,000 psi. So, in this case, CAEPIPE will internally set the values of both S_c and S_h as 20,000 psi as Tensile Strength is greater than 70,000 psi.

In addition, if the option "Use Liberal allowable stresses" is turned ON through Layout Window > Options > Analysis > Code, then if the left over Sustained stress (= $S_h - S_L$) is positive, CAEPIPE will multiply this positive left over Sustained stress by the Stress range reduction factor (f) and add that resulting value to the Expansion allowable stress computed using the above equation (1A) of para. 102.3.2.

Settlement Stress

The stress range (S_S) due to single, noncyclic displacement stress range (e.g., predicted settlement or uplift or movement of pipe support structures such as buildings, pipe racks, anchors, etc.) is calculated from Eq. 17 of Figure 104.8-1 as given below in accordance with para. 102.3.2 (b)(2).

$$S_{S} = \sqrt{\left[\left| \frac{i_{a}F_{D}}{A_{p}} \right| + \frac{\sqrt{(i_{i}M_{iD})^{2} + (i_{o}M_{oD})^{2}}}{Z} \right]^{2} + \left(\frac{i_{t}M_{tD}}{Z}\right)^{2}} \le 3S_{C}$$

where

 i_a = axial force stress intensification factor = 1.0 for elbows, pipe bends and miter bends (single, closely spaced and widely spaced), and $i_a = i_o$ (or i when listed) in ASME B31J for other components

 i_i , i_o , i_t = in-plane, out-of-plane and torsional stress intensification factors respectively as defined in ASME B31J, Table 1-1

 F_D = axial force range due to any single noncyclic anchor movement (e.g., predicted building settlement)

Ap= un-corroded nominal cross sectional area

 M_{iD} , M_{oD} , M_{tD} = in-plane, out-of-plane and torsional moment range respectively due to any single noncyclic anchor movement (e.g., predicted building settlement)

Z = nominal section modulus = un-corroded section modulus

 S_c = allowable stress at the Reference Temperature in CAEPIPE

Hydrotest Stress

The sum of longitudinal stress (S_1) due to test pressure, live and dead loads at the time of hydrotest shall not exceed 90% of yield strength at test temperature as per para. 102.3.3 (b).

$$S_{LT} = \sqrt{\left[I_a \left|\frac{PD_o}{4t_n} + \frac{F_a}{A_p}\right| + \frac{\sqrt{(I_i M_{iH})^2 + (I_o M_{oH})^2}}{Z}\right]^2 + \left(\frac{I_t M_{tH}}{Z}\right)^2 \le 0.9S_y}$$

where

P = The hydrostatic test pressure at any point in the piping system shall not be less than 1.5 times the design pressure as per para. 137.4.5. $D_0 =$ nominal outside diameter

 $t_n = nominal wall thickness$

 F_a = longitudinal force due to hydrotest loads (excluding pressure)

 $I_a = longitudinal force index = 1.00$

 I_i = in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 I_o = out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = torsional moment index. I_t is taken as the greater of 0.75i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iH} , M_{oH} , M_{tH} = in-plane, out-of-plane and torsional moment respectively due to hydrotest

Z = nominal section modulus = un-corroded section modulus

 A_p = un-corroded nominal cross sectional area

Sy = yield strength at test temperature [i.e., at Tref in CAEPIPE)]

 S_{LT} = stress due to hydrotest loads

ASME B31.1 (2022) – Nonmetallic piping as per Chapter N-II

The Piping Code ASME NM.1 (2020) titled "Thermoplastic Piping Systems" provides methods to evaluate Nonmetallic piping such as PVC, CPVC, HDPE, etc. Code Compliance as per ASME NM.1 is built into CAEPIPE Version 12.00 or later. Hence, for Nonmetallic Piping Analysis, ASME NM.1 can be selected in CAEPIPE for Code Compliance checks.

Material Properties for PVC, CPVC, etc. are provided in "Chapter N-II" titled "Design" of ASME B31.1 (2022). These properties are already included in the material library for Plastics (B311-2022_N-II.mat) in CAEPIPE. In addition, Allowable Pressure calculation for Non-metallic pipe and pipe fittings as per Chapter N-II is already included into CAEPIPE as given below.

So, if you still wish to perform Nonmetallic piping analysis as per ASME B31.1 (2022), then the material properties for Nonmetallic piping can be selected from the material library (B311-2022_N-II.mat) supplied with CAEPIPE.

Allowable Pressure

From ASME B31.1 (2022) Chapter N-II, Allowable Pressure for Nonmetallic (thermoplastics) pipe and pipe fittings are computed using Eq. (2) of para. N-104.1.2(a)(1).

$$P_a = \frac{2S_a}{\left(\frac{D_o}{t_a} - 1\right)}$$

where

 P_a = allowable pressure

 S_a = hydrostatic design stress from Table N-102.2.1-1 of ASME B31.1 (2022) code (input into CAEPIPE material property for thermoplastics)

 $t_a\text{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE as per para. N-104.1.1)

 t_n = nominal pipe thickness

 D_0 = outside diameter of pipe

Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure of components (extracted from Table 104.1.2-1 of ASME B31.1 – 2022)

		Values of 'Y' for Temperature, Deg F (Deg C)							
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
S.		and							and
No.	Material Type	below							above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
3.	Nickel Alloy UNS No.	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
	N06690 (NA)								
4.	Other Nickel Alloys	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
	(NA)								
5.	Cast Iron	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.	Material Types other	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	than those stated from								
	Sl. Nos. 1 to 5.								

Notes:

2. If $D_o/t_a < 6$, for ferritic and austenitic steels designed for temperatures of 900°F (480°C) and below, CAEPIPE calculates Y as

$$Y = \frac{d}{d + D_o}$$

Weld Strength Reduction Factors (W) used in CAEPIPE to calculate the Allowable Design Pressure of components (extracted from Table 102.4.7-1 of ASME B31.1-2022)

	51.1-2022)											
	Material	Weld St	trength F	Reduction	n Factor	for Temp	erature,	Deg F (D	eg C)			-
SI.	Type/Material	700	750	800	850	900	950	1000	1050	1100	1150	1200
No.	Description	(371)	(399)	(427)	(454)	(482)	(510)	(538)	(566)	(593)	(621)	(649)
1	Carbon Steel	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	(CS)											
	[see Note (a)]											
2	Ferritic Steels	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
	(FS)											
3	Austenitic	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
	Steel (AS)											
4	Material	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64
	Description											
	that contains a											
	string "CrMo"											
5	Material Types	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	other than											
	those stated in											
	Sl. Nos. 1 to 3											

Notes:

- (c) Based on Note 7 of Table 102.4.7-1 of ASME B31.1 (2022) code, W = 1.0 for Carbon Steel (CS).
- (d) For Austenitic Steels (including 800H and 800 HT), values up to 1500 deg F are as follows:

Temperature, deg F	Temperature, deg C	Weld Strength Reduction Factor
1250	677	0.73
1300	704	0.68
1350	732	0.64
1400	760	0.59
1450	788	0.55
1500	816	0.50

Allowable Pressure

At this time, there is no provision in CAEPIPE to specify the type of pipe manufacturing process, i.e., whether the pipe is a seamless or longitudinal welded or spiral welded. Accordingly, irrespective of the type of pipe manufacturing process, <u>for straight pipes and bends</u>, CAEPIPE calculates allowable pressure using Eq. (9) of para.104.1.2 and Eqs. (3) & (5) of para. 102.4.5 (b).

$$P_a = \frac{2SEt_a}{(D_o - 2Yt_a)} \cdot \left(\frac{W}{I}\right)$$

where

 P_a = allowable pressure

SE = maximum allowable stress for the material inclusive of weld joint efficiency factor E (or casting quality factor F) at the design temperature (i.e., at T_{design} input into CAEPIPE). The values of SE/SF are given in Mandatory Appendix A of B31.1 (2020) Code.

 $t_a{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 $t_n =$ nominal pipe thickness

 $D_0 =$ outside diameter of pipe

d = inside diameter of pipe

I = 1.0 for straight pipes and at the side wall on the bend / elbow centerline

Values for coefficient Y are as per Table 104.1.2-1. Refer to the Table listed at the end of this section for details on coefficient 'Y' implemented in CAEPIPE.

W = weld strength reduction factor as per Table 102.4.7-1. Refer to the Table listed at the end of this section for details on weld strength reduction factors implemented in CAEPIPE.

ASME B31.1 Code does not provide any explicit equation to compute Allowable Pressure for closely spaced and widely spaced miter bends. Hence, for ASME B31.1 Code, CAEPIPE computes the allowable pressure for miter bends using the explicit equations given in ASME B31.3 (2018) [see para. 304.2.3], as listed below.

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a(R-r)}{r(R-r/2)}$$

For widely spaced miter bends with $\theta \le 22.5$ deg, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a^2}{r(t_a + 0.643\tan\theta\sqrt{rt_a})}$$

For widely spaced miter bends with $\theta > 22.5$ deg, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a^2}{r(t_a + 1.25\tan\theta\sqrt{rt_a})}$$

where

 $r = mean radius of pipe = (D_o - t_n)/2$

R = equivalent bend radius of the miter (an input in CAEPIPE for Miter)

$$\theta = \text{miter half angle} = \tan^{-1} \left(\frac{1.0}{\left(\frac{2R}{r} - 1.0\right)} \right)$$

Sustained Stress

The stress (S_I) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eq. 15 of para.104.8.1

$$S_{L} = \sqrt{\left[\left| \frac{PD_{o}}{4t_{n}} + \frac{I_{a}F_{a}}{A_{p}} \right| + \frac{\sqrt{(I_{i}M_{iA})^{2} + (I_{o}M_{oA})^{2}}}{Z} \right]^{2} + \left(\frac{I_{t}M_{tA}}{Z}\right)^{2} \le S_{h}}$$

where

P = internal design pressure that shall be not less than the maximum sustained operating pressure (MSOP) within the piping system, including the effects of static head = maximum of CAEPIPE pressures P1 through P10

 D_{o} = nominal outside diameter

 $t_n = nominal$ wall thickness

 F_a = longitudinal force due to weight and other sustained mechanical loads (excluding pressure)

 I_a = sustained longitudinal force index = 1.00

 I_i = sustained in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 I_o = sustained out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = sustained torsional moment index. I_t is taken as the greater of 0.75 i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iA} , M_{oA} , M_{tA} = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads

Z = nominal section modulus = un-corroded section modulus

 $A_p =$ un-corroded nominal cross sectional area

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 through T10)]

 S_L = stress due to pressure, weight and other sustained mechanical loads

Note:

When the option "Pressure stress" is selected as "Pd^2/(D^2-d^2)" through CAEPIPE Layout Window > Options > Analysis > Pressure; then CAEPIPE will replace the term "PD/4t" with the term "Pd^2/(D^2 - d^2)", where, d = nominal inside diameter

Occasional Stress

The stress (S_0) due to sustained and occasional loads is calculated from Eq. 16 of para. 104.8.2 as the combined stress due to (a) sustained loads such as pressure, weight and other sustained mechanical loads and (b) occasional loads such as earthquake or wind. Wind and earthquake are not considered to act concurrently as per para. 101.5.2 and para. 101.5.3.

$$S_{O} = \sqrt{\left[\left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}}{A_{p}} \right| + \frac{\sqrt{(I_{i}M_{iB})^{2} + (I_{o}M_{oB})^{2}}}{Z} \right]^{2} + \left(\frac{I_{t}M_{tB}}{Z}\right)^{2} \le kS_{h}}$$

where

 F_b = longitudinal force due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 I_a = occasional longitudinal force index = 1.00

 I_i = occasional in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 I_o = occasional out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = occasional torsional moment index. I_t is taken as the greater of 0.75i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iB} , M_{oB} , M_{tB} = in-plane, out-of-plane and torsional moment respectively due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts

from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

 $S_{\rm O}$ = stress due to pressure, weight, other sustained mechanical loads and occasional loads such as thrusts from relief / safety valve loads, from pressure and flow transients, earthquake, wind etc.

k = 1.2 for occasional loads acting for no more than 1 hr at any one time and no more than 80 hr/yr.

All other terms such as P, A_p , Z, etc. are as defined under Sustained Stress.

For <u>Unsigned</u> occasional load cases such as Earthquake, etc. the forces and moments are combined as given below.

$$\begin{aligned} \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}}{A_{p}} \right| &= max \left[\left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}(sust)}{A_{p}} \right| + \left| \frac{I_{a}F_{b}(occa)}{A_{p}} \right| , \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}(sust)}{A_{p}} \right| - \left| \frac{I_{a}F_{b}(occa)}{A_{p}} \right| \right] \\ (I_{i}M_{iB})^{2} &= (I_{i})^{2} . \left[\left| M_{iB}(sust) \right| + \left| M_{iB}(occa) \right| \right]^{2} \\ (I_{o}M_{oB})^{2} &= (I_{o})^{2} . \left[\left| M_{oB}(sust) \right| + \left| M_{oB}(occa) \right| \right]^{2} \\ (I_{t}M_{tB})^{2} &= (I_{t})^{2} . \left[\left| M_{tB}(sust) \right| + \left| M_{tB}(occa) \right| \right]^{2} \end{aligned}$$

For Signed occasional load cases such as Wind, etc. the forces and moments are combined as given below.

$$\begin{aligned} \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}}{A_{p}} \right| &= \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}(sust)}{A_{p}} + \frac{I_{a}F_{b}(occa)}{A_{p}} \right| \\ (I_{i}M_{iB})^{2} &= (I_{i})^{2} \cdot \left[\left| M_{iB}(sust) + M_{iB}(occa) \right| \right]^{2} \\ (I_{o}M_{oB})^{2} &= (I_{o})^{2} \cdot \left[\left| M_{oB}(sust) + M_{oB}(occa) \right| \right]^{2} \\ (I_{t}M_{tB})^{2} &= (I_{t})^{2} \cdot \left[\left| M_{tB}(sust) + M_{tB}(occa) \right| \right]^{2} \end{aligned}$$

where

 $M_{iB(sust)}$, $M_{oB(sust)}$, $M_{tB(sust)}$ = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads (excluding pressure).

 $M_{iB(occa)}$, $M_{oB(occa)}$, $M_{tB(occa)}$ = in-plane, out-of-plane and torsional moment respectively due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 $F_{b(sust)}$ = longitudinal force due to weight, other sustained mechanical loads (excluding pressure)

 $F_{b(occa)}$ = longitudinal force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

Note:

When the option "Pressure stress" is selected as "Pd^2/(D^2-d^2)" through CAEPIPE Layout Window > Options > Analysis > Pressure; then CAEPIPE will replace the term "P₀D/4t" with the term "P₀d^2/(D^2 - d^2)", where, d = nominal inside diameter

Expansion Stress Range (i.e., Stress due to Displacement Load Range)

The stress range (S_E) due to thermal expansion is calculated from Eq. 17 of para.104.8.3.

$$S_{E} = \sqrt{\left[\left| \frac{i_{a}F_{c}}{A_{p}} \right| + \frac{\sqrt{(i_{i}M_{ic})^{2} + (i_{o}M_{oc})^{2}}}{Z} \right]^{2} + \left(\frac{i_{t}M_{tc}}{Z}\right)^{2} \le S_{A}}$$

where

 $F_c = axial$ force <u>range</u> due to reference displacement load range

 A_{p} = un-corroded nominal cross sectional area

 i_a = axial force stress intensification factor = 1.0 for elbows, pipe bends and miter bends (single, closely spaced and widely spaced), and $i_a = i_o$ (or i when listed) in ASME B31J for other components

 M_{iC} , M_{oC} , M_{tC} = in-plane, out-of-plane and torsional moment <u>range</u> respectively due to the reference displacement load range

 i_i , i_o , i_t = in-plane, out-of-plane and torsional stress intensification factors respectively as defined in ASME B31J, Table 1-1

Z = nominal section modulus = un-corroded section modulus

 $S_A = f(1.25S_C + 0.25S_h)$, from Eq. (1A) of para. 102.3.2 (b)

f = cyclic stress range reduction factor from Eq. (1C) of para. 102.3.2 (b),

 $f = 6/N^{0.2} \le 1.0$ and $f \ge 0.15$ with N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping

 S_c = basic allowable stress at minimum metal temperature expected during the displacement stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the displacement stress range under analysis

When S_h is greater than S_L, the allowable stress range may be calculated as

 $S_A = f[1.25(S_C + S_h) - S_L]$, from Eq. (1B) of para. 102.3.2 (b).

This equation can be re-written as

 $S_A = f(1.25S_C + 0.25S_h) + f(S_h - S_L)$ (see **Note 2** below)

This is specified as an analysis option: "Use liberal allowable stresses", in the menu Options->Analysis on the Code tab of CAEPIPE.

Note:

- 1. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 2. As per Note 2 of para. 102.3.2 (b) (1) of ASME B31.1 (2020), "For materials with a minimum tensile strength of over 70 ksi (480 MPa), eqs. (1A) and (1B) shall be calculated using Sc or Sh values no greater than 20 ksi (140 MPa), unless otherwise justified."

Compliance to this criterion is checked using the value entered under Tensile Strength field of CAEPIPE Material property input. If this field is NOT entered or left BLANK, then CAEPIPE will compute the Tensile Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 3.5. This is because, the allowable stress for material below creep is generally 1/3.5 of Tensile Strength as stated in Section 1-100 of Mandatory Appendix 1 of ASME Section II, Part D.

For example, if the allowable stress is 22,000 psi for a high strength material at the minimum temperature of -20 deg. F, then the Tensile Strength would be 22,000 x 3.5 = 77,000 psi. So, in this case, CAEPIPE will internally set the values of both S_c and S_h as 20,000 psi as Tensile Strength is greater than 70,000 psi.

In addition, if the option "Use Liberal allowable stresses" is turned ON through Layout Window > Options > Analysis > Code, then if the left over Sustained stress (= $S_h - S_L$) is positive, CAEPIPE will multiply this positive left over Sustained stress by the Stress range reduction factor (f) and add that resulting value to the Expansion allowable stress computed using the above equation (1A).

Settlement Stress

The stress range (S_S) due to single, noncyclic displacement stress range (e.g., predicted settlement or uplift or movement of pipe support structures such as buildings, pipe racks, anchors, etc.) is calculated from Eq. 17 of Figure 104.8-1 as given below in accordance with para. 102.3.2 (b)(2).

$$S_{S} = \sqrt{\left[\left| \frac{i_{a}F_{D}}{A_{p}} \right| + \frac{\sqrt{(i_{i}M_{iD})^{2} + (i_{o}M_{oD})^{2}}}{Z} \right]^{2} + \left(\frac{i_{t}M_{tD}}{Z}\right)^{2} \le 3S_{C}}$$

where

 i_a = axial force stress intensification factor = 1.0 for elbows, pipe bends and miter bends (single, closely spaced and widely spaced), and $i_a = i_o$ (or i when listed) in ASME B31J for other components

 i_i , i_o , i_t = in-plane, out-of-plane and torsional stress intensification factors respectively as defined in ASME B31J, Table 1-1

 F_D = axial force range due to any single noncyclic anchor movement (e.g., predicted building settlement)

Ap= un-corroded nominal cross sectional area

 M_{iD} , M_{oD} , M_{tD} = in-plane, out-of-plane and torsional moment range respectively due to any single noncyclic anchor movement (e.g., predicted building settlement)

Z = nominal section modulus = un-corroded section modulus

 S_c = allowable stress at the Reference Temperature in CAEPIPE

ASME B31.1 (2020) - Non-metallic piping as per Chapter N-II

The Chapter N-II titled "Design" of ASME B31.1 (2020) provides methods to evaluate Non-metallic piping such as PVC, CPVC etc. This Chapter presents equations and references for

1. Pressure Design (Allowable Pressure calculation) of Non-metallic Pipe and Pipe Fittings, and

2. Code Compliance checks (such as Sustained Stress, Expansion Stress and Occasional Stress) for Non-Metallic piping.

From ASME B31.1 (2020) Chapter N-II, it was observed that the equations for Allowable Pressure for Non-metallic piping and pipe fittings are different from those provided for Metallic piping and pipe fittings. On the other hand, equations provided for Code Compliance checks for Metallic piping are also applicable for Non-metallic piping. Refer to Code Compliance equations for Metallic piping as per ASME B31.1 (2020) given above.

In view of the above, CAEPIPE can be used for analyzing Plastic Piping (such as PVC, CPVC etc.) using ASME B31.1 (2020) code to obtain results for displacements, element forces and moments, stresses, support loads and support load summary; however, the Allowable Pressure results given in Column 2 of Code Compliance Results should be ignored. Allowable pressures for Plastic Pipe and Pipe Fittings have to be computed manually as per Chapter N-II of ASME B31.1 (2020) outside of CAEPIPE.

Material Properties for PVC, CPVC, etc. are provided in "Chapter N-II" titled "Design" of ASME B31.1 (2020). These properties are already included in the material library for Plastics starting CAEPIPE Version 11.00.

Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure of components (extracted from Table 104.1.2-1 of ASME B31.1 – 2020)

			Val	ues of 'Y'	for Temp	erature,	Deg F (Deg	g C)	
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
S.		and							and
No.	Material Type	below							above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
3.	Nickel Alloy UNS No.	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
	N06690 (NA)								
4.	Other Nickel Alloys	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
	(NA)								
5.	Cast Iron	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.	Material Types other	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	than those stated from								
	Sl. Nos. 1 to 5.								

Notes:

3. If $D_o/t_a < 6$, for ferritic and austenitic steels designed for temperatures of 900°F (480°C) and below, CAEPIPE calculates Y as

$$Y = \frac{d}{d + D_o}$$

Weld Strength Reduction Factors (W) used in CAEPIPE to calculate the
Allowable Design Pressure of components (extracted from Table 102.4.7-1 of ASME
B31.1-2020)

	Material	Weld St	trength F	Reduction	n Factor	for Temp	erature,	Deg F (D	eg C)			
SI.	Type/Material	700	750	800	850	900	950	1000	1050	1100	1150	1200
No.	Description	(371)	(399)	(427)	(454)	(482)	(510)	(538)	(566)	(593)	(621)	(649)
1	Carbon Steel	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	(CS)											
	[see Note (a)]											
2	Ferritic Steels (FS)	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
3	Austenitic	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
	Steel (AS)											
4	Material	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64
	Description											
	that contains a											
	string "CrMo"											
5	Material Types	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	other than											
	those stated in											
	Sl. Nos. 1 to 3											

Notes:

- (e) Based on Note 7 of Table 102.4.7-1 of ASME B31.1 (2020) code, W = 1.0 for Carbon Steel (CS).
- (f) For Austenitic Steels (including 800H and 800 HT), values up to 1500 deg F are as follows:

Temperature, deg F	Temperature, deg C	Weld Strength Reduction Factor
1250	677	0.73
1300	704	0.68
1350	732	0.64
1400	760	0.59
1450	788	0.55
1500	816	0.50

Allowable Pressure

At this time, there is no provision in CAEPIPE to specify the type of pipe construction, i.e., whether the pipe is a seamless or longitudinal welded or spiral welded. Accordingly, irrespective of the type of pipe construction, CAEPIPE calculates allowable pressure as follows.

For straight pipes and bends with seamless construction or designed for sustained operation <u>below the creep range</u>, Eq. (9) of para.104.1.2 is used as given below to compute allowable pressure.

$$P_a = \frac{2SEWt_a}{D_o - 2Yt_a}$$

where

 P_a = allowable pressure

SE = maximum allowable stress in material due to internal pressure and joint efficiency (or casting quality factor) at the design temperature. The values of SE are given in Mandatory Appendix A of B31.1 (2018) Code

 $t_a{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 $D_0 =$ outside diameter of pipe

d = inside diameter of pipe

The coefficient Y is implemented as per Table 104.1.2-1. Refer to the Table listed at the end of this section for details on 'Y' factor implemented in CAEPIPE.

W = weld strength reduction factor as per Table 102.4.7-1. Refer to the Table listed at the end of this section for details on Weld strength reduction factor implemented in CAEPIPE.

ASME B31.1 Code does not provide any explicit equation to compute Allowable Pressure for closely spaced and widely spaced miter bends. Hence, for ASME B31.1 Code, CAEPIPE computes the allowable pressure for miter bends using the explicit equations given in ASME B31.3 (2018) [see para. 304.2.3] as listed below.

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a(R-r)}{r(R-r/2)}$$

For widely spaced miter bends with $\theta \le 22.5 \text{ deg}$, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a^2}{r(t_a + 0.643\tan\theta\sqrt{rt_a})}$$

For widely spaced miter bends with $\theta \ge 22.5$ deg, the allowable pressure is calculated in CAEPIPE as

$$P_a = \frac{SEWt_a^2}{r(t_a + 1.25\tan\theta\sqrt{rt_a})}$$

where

 $r = mean radius of pipe = (D_o - t_n)/2$

R = equivalent bend radius of the miter (an input in CAEPIPE for Miter)

$$\theta = \text{miter half angle} = \tan^{-1} \left(\frac{1.0}{\left(\frac{2R}{r} - 1.0\right)} \right)$$

Sustained Stress

The stress (S_1) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eq. 15 of para.104.8.1

$$S_L = \frac{PD_o}{4t_n} + \frac{0.75iM_A}{Z} \le S_h$$

where

P = maximum of CAEPIPE pressures P1 through P10

 $D_o = outside diameter$

 $t_n = nominal wall thickness$

i = stress intensification factor. The product 0.75i shall not be less than 1.0.

 M_A = resultant bending moment due to weight and other sustained loads

Z = un-corroded section modulus; for reduced outlets, effective section modulus as per para. 104.8.4

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 through T10)]

Occasional Stress

The stress (S_{LO}) due to occasional loads is calculated from Eq. 16 of para.104.8.2 as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_o) such as earthquake or wind. Wind and earthquake are not considered concurrently.

$$S_{Lo} = \frac{P_{peak}D_o}{4t_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le 1.2S_h$$

where

 M_B = resultant bending moment on the cross-section due to occasional loads such as thrusts from relief / safety valve loads, from pressure and flow transients, earthquake, wind etc.

 P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P

Expansion Stress Range (i.e., Stress due to Displacement Load Range)

The stress (S_E) due to thermal expansion is calculated from Eq. 17 of para.104.8.3.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

 M_{c} = resultant moment due to thermal expansion

 $S_A = f(1.25S_C + 0.25S_h)$, from Eq. (1A) of para. 102.3.2 (b)

f = cyclic stress range reduction factor from Eq.(1C) of para. 102.3.2(b),

 $f = 6/N^{0.2} \le 1.0$ and $f \ge 0.15$ with N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping

 S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than S_I , the allowable stress range may be calculated as

 $S_A = f[1.25(S_C + S_h) - S_L]$, from Eq. (1B) of para. 102.3.2 (b)

This is specified as an analysis option: "Use liberal allowable stresses", in the menu Options->Analysis on the Code tab of CAEPIPE.

Note:

Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

	Flexibility Characteristic, h	Flexibility Factor, k	Stress Intensification Factor, <i>i</i>	Illustration
Description	n	· ·		t _n
Velding elbow or pipe bend [Notes (1), (2), (3), (4), (5)]	$\frac{t_0R}{r^2}$	1.65 h	$\frac{0.9}{k^{2/3}}$	
Closely spaced miter bend [Notes (1), (2), (3), (5)] $s < r(1 + \tan \theta)$ $B \ge 6t_e$ $\theta \le 22V_2$ deg	$\frac{\mathrm{st}_n \cot \theta}{2r^2}$	1.52 35 ⁵ /6	$\frac{0.9}{h^{2/3}}$	B B B $R = \frac{s \cot 2}{2}$
Widely spaced miter bend [Notes (1), (2), (5), (6)] $s \ge r(1 + \tan \theta)$ $\theta \le 2Z_{2}^{1/2} \deg$	$\frac{t_0(1+\cot\theta)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{1/3}}$	$\frac{5}{r} \xrightarrow{\theta} \frac{1}{r} \xrightarrow{t} \frac{1}{t_n}$ $R = \frac{r(1 + \cot \theta)}{2}$
Velding tee per ASME B16.9 [Notes (1), (2), (7)]	$\frac{3.1t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	
Reinforced fabricated tee [Notes (1), (2), (8), (9)]	$\frac{\left(t_n + \frac{t_r}{2}\right)^{5/2}}{r(t_n)^{5/2}}$	1	$\frac{0.9}{h^{2/3}}$	↓ ↓ ↑ tr, Pad ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Unreinforced fabricated tee [Notes [1], (2], (9]]	$\frac{t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	
Branch welded-on fitting (integrally reinforced) per MSS SP-97 [Notes (1), (2)]	$\frac{3.3t_{\pi}}{r}$	1	$\frac{0.9}{h^{2/3}}$	

Description	Flexibility Characteristic, h	Flexibility Factor, k	Stress Intensification Factor, i	Illustration
Extruded outlet meeting the requirements of para. 104.3.1(g) [Notes (1), (2)]	$\frac{t_{n}}{r}$	1	$\frac{0.9}{h^{2/3}}$	
Welded-in contour insert [Notes (1), (2), (7)]	$\frac{3.1t_{\rm ff}}{r}$	1	$\frac{0.9}{h^{2/3}}$	
	Flexibility		Stress	
Description	Factor,	Intens	ification Factor,	Illustration
Description	*	For che	cking branch end	muscracion
Branch connection [Notes (1), (10)]	1		$\frac{\sqrt{3}}{\left(\frac{r'_m}{R_m}\right)^{1/2}} \left(\frac{t_{nb}}{t_{nk}}\right) \left(\frac{r'_m}{r_p}\right)$	See Figure D-1
Butt weld [Note (1)]				
$t \ge 0.237$ in., $\delta_{max} \le \frac{1}{16}$ in., and $\delta_{mg}/t \le 0.13$	1	1.0 [Note (11)]	
Butt weld [Note (1)] $t \ge 0.237$ in., $\delta_{max} \le \frac{1}{3}$ in., and $\delta_{avg}/t =$ any value	1	1.9 max. or	[0.9 + 2.7(8 _{ang} /t)],	
Butt weld [Note (1)]		but not 1 [Note (1)]	ess than 1.0 1)]	
t < 0.237 in., $\delta_{max} \le \frac{1}{t_{16}}$ in., and $\delta_{avg}/t \le 0.33$	1			
illet welds	1	1.3 [Note (12)]	See Figures 127.4.4-1, 127.4.4-2, and 127.4.4-3
Tapered transition per para. 127.4.2(b) and ASME B16.25 [Note (1)]	1	1.9 max. or 1.3 + ($0.0036 \frac{D_p}{t_n} + 3.6 \frac{\delta}{t_n}$	
Concentric reducer per ASME B16.9 [Notes (1), (13)]	1	2.0 max. or 0.5 + 0	$1.01 \alpha \left(\frac{D_2}{t_2}\right)^{1/2}$	\downarrow^{t_1} \downarrow^{t_2} \downarrow^{t_2}

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

Description	Flexibility Factor, k	Stress Intensification Factor,	Illustration	
Threaded pipe joint or threaded flange 1		23	musuation	
Corrugated straight pipe, or corrugated or creased bend 5 [Note (14)]		2.5		

GENERAL NOTES:

(a) The validity of the stress intensification and flexibility factor data in Table D-1 has been demonstrated for $D_o/t_n \le 100$.

(b) The designer may use the stress intensification and flexibility factors from ASME B31J instead of the stress intensification and flexibility factors herein. When using the stress intensification factors from ASME B31], the maximum of the in-plane (i_i), out-plane (l_o), and torsional (i_i) stress intensification factors shall be used in calculating stresses in accordance with para. 104.8. Alternatively, stress intensification factors may be developed using ASME B31J, Nonmandatory Appendix A.

NOTES:

The following nomenclature applies to Table D-1:

- B = length of miter segment at crotch, in. (mm)
- D1 = outside diameter of reducer on large end, in. [mm]
- D_2 = outside diameter of reducer on small end, in. (mm) $D_{\phi} = \text{outside diameter, in. (mm)}$
- Dob = outside diameter of branch, in. (mm)
- R = bend radius of elbow or pipe bend, in. (mm)
- r = mean radius of pipe, in. (mm) (matching pipe for tees)
- r_x = external crotch radius of welded-in contour inserts and welding tees, in. (mm) s = miter spacing at centerline, in. (mm)
- $T_{\rm c}$ = crotch thickness of welded-in contour inserts and welding tees, in. (mm) to = nominal wall thickness of pipe, in. (mm) (matching pipe for tees)
- tr = reinforcement pad or saddle thickness, in. (mm)
- α = reducer cone angle, deg
- δ = mismatch, in. (mm)
- θ = one-half angle between adjacent miter axes, deg
- [2] The flexibility factors, k, and stress intensification factors, i, in Table D-1 apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective arclength (shown by heavy centerlines in the illustrations) for curved and miter elbows, and to the intersection point for tees. The values of k and i can be read directly from Figure D-2 by entering with the characteristic, h, computed from the formulas given.
- (3) Where flanges are attached to one or both ends, the values of k and i in Table D-1 shall be multiplied by the factor, c, given below, which can be read directly from Figure D-3, entering with the computed h: one end flanged, $c = h^{1/6}$; both ends flanged, $c = h^{1/3}$
- (4) The designer is cautioned that cast butt welding elbows may have considerably heavier walls than those of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- In large diameter thin-wall clows and bends, pressure can significantly affect magnitudes of k and i. Values from the Table may be corrected [5] by dividing k by

divid		

	1 +	$6\left(\frac{p}{E_{i}}\right)$	$\left(\frac{r}{t_n}\right)$	7/3	$\left(\frac{R}{r}\right)^1$	/3	
1	+ 3.	$2.5\left(\frac{1}{2}\right)$	$\left(\frac{r}{t_s}\right) \left(\frac{r}{t_s}\right)$)5/2	$\left(\frac{R}{r}\right)$	2/3	

- (6) Also includes single miter joints.
- If $r_z \ge D_{ob}/8$ and $T_c \ge 1.5 t_{ov}$ a flexibility characteristic, h, of $4.4 t_o/r$ may be used.
- (8) When $t_r > 1.5t_{er}$, $h = 4.05t_n/r$.
- (9) The stress intensification factors in the Table were obtained from tests on full size outlet connections. For less than full size outlets, the full size values should be used until more applicable values are developed.
- (10) The equation applies only if the following conditions are met:
- (a) The reinforcement area requirements of para. 104.3 are met.
- (b) The axis of the branch pipe is normal to the surface of run pipe wall.

⁸⁾

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

NOTES (Cont'd):

(c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the sum of their radii along the circumference of the run pipe.

(d) The inside corner radius r_1 (see Figure D-1) is between 10% and 50% of $t_{\rm mb}$

(e) The outer radius, r_2 [see Figure D-1], is not less than the larger of $T_b/2$, $(T_b + y)/2$ [shown in Figure D-1 illustration (c)], or $t_{sb}/2$. (f) The outer radius, r_3 (see Figure D-1), is not less than the larger of

(1) $0.0028d_a$ (2) $2(\sin \theta)^3$ times the offset for the configurations shown in Figure D-1 illustrations (a) and (b)

(g) $R_m/t_{vb} \le 50$ and $r'_m/R_m \le 0.5$.

- (11) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between 0.875t and 1.10t for an axial distance of $\sqrt{D_{ol}}$. D_o and t are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a full weld is made between the pipe and fitting as shown in Figure 127.4.4-3. For welds to socket welding flanges, the stress intensification factor is based on the weld geometry shown in Figure 127.4.4-2 and has been shown to envelop the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld, with no undercut, smoothly into the pipe wall, as shown in the concave fillet welds in Figure 127.4.4-1, illustrations (b) and (d), has been shown to improve the fatigue performance of the weld.

(13) The equation applies only if the following conditions are met:

(a) Cone angle, a, does not exceed 60 deg, and the reducer is concentric.

(b) The larger of D₁/t₁ and D₂/t₂ does not exceed 100. (c) The wall thickness is not less than t, throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small

end, where the thickness shall not be less than t_2 .

(14) Factors shown apply to bending; flexibility factor for torsion equals 0.9,

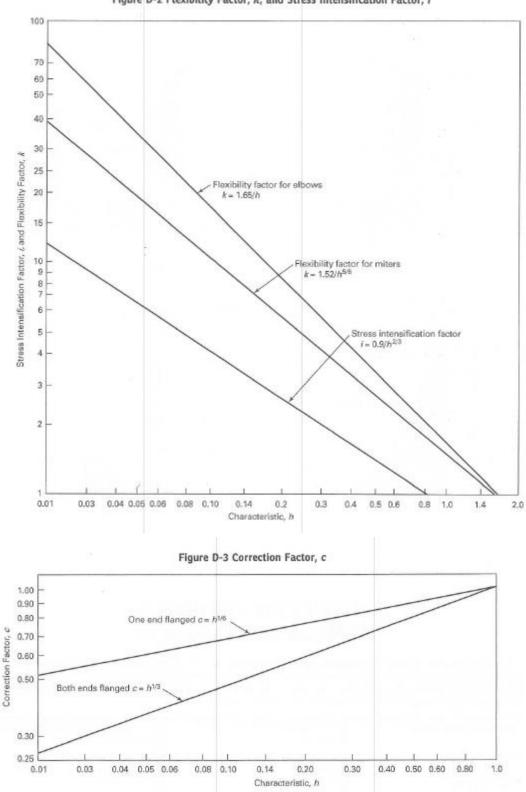


Figure D-2 Flexibility Factor, k, and Stress Intensification Factor, I

Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure of components (extracted from Table 104.1.2-1 of ASME B31.1 – 2018)

			V	alues of '	'Y' for Ten	nperature,	Deg F (De	g C)	
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
SI.		and							and
No.	Material Type	below							above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
3.	Nickel Alloy UNS No. N06690 (NA)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
4.	Other Nickel Alloys (NA)	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
5.	Cast Iron	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.	Material Types other than those stated from SI. Nos. 1 to 5.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Notes:

4. If $D_o/t_a < 6$, for ferritic and austenitic steels designed for temperatures of 900°F (480°C) and below, CAEPIPE calculates Y as

$$Y = \frac{d}{d + D_o}$$

Weld Strength Reduction Factors used in CAEPIPE to calculate the Allowable Design Pressure of components (extracted from Table 102.4.7-1 of ASME B31.1-2018)

	Material	Weld S	trength F	Reduction	n Factor	for Temp	erature,	Deg F (D	eg C)			
SI.	Type/Material	700	750	800	850	900	950	1000	1050	1100	1150	1200
No.	Description	(371)	(399)	(427)	(454)	(482)	(510)	(538)	(566)	(593)	(621)	(649)
1	Carbon Steel (CS)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	Ferritic Steels (FS)	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
3	Austenitic Steel (AS)	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
4	Material Description that contains a string "CrMo"	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64
5	Material Types other than those stated in Sl. Nos. 1 to 3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Notes:

For Austenitic Steels (including 800H and 800 HT) the values up o 1500 deg F are as follows:

Temperature, deg F	Temperature, deg C	Weld Strength Reduction Factor
1250	677	0.73
1300	704	0.68
1350	732	0.64
1400	760	0.59
1450	788	0.55
1500	816	0.50

Allowable Pressure

At this time, there is no provision in CAEPIPE to specify the type of pipe construction, i.e., whether the pipe is a seamless or longitudinal welded or spiral welded. Accordingly, irrespective of the type of pipe construction, CAEPIPE calculates allowable pressure as follows.

For straight pipes and bends with seamless construction or designed for sustained operation below the creep range, Eq. (9) of para.104.1.2 is used as given below to compute allowable pressure.

$$P_a = \frac{2SEt_a}{D_o - 2Yt_a}$$

For straight pipes and bends designed for sustained operation within the creep range, Eq. (11) of para.104.1.4 is used as given below to calculate allowable pressure.

$$P_a = \frac{2SEWt_a}{D_o - 2Yt_a}$$

where

 P_a = allowable pressure

SE = allowable stress as given in Appendix A of B31.1 (2016) Code, where

E = weld joint efficiency factor or casting quality factor as given in Table 102.4.3

 $t_a{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 $D_0 =$ outside diameter of pipe

d = inside diameter of pipe

The Pressure coefficient Y is implemented as per Table 104.1.2 (A). Refer to the Table listed at the end of this section for details on 'Y' factor implemented in CAEPIPE

W = weld strength reduction factor as per Table 102.4.7. Refer to the Table listed at the end of this section for details on Weld strength reduction factor implemented in CAEPIPE.

For closely spaced miter bends, the allowable pressure is calculated from Eq. (C.3.1) of para.104.3.3.

$$P_a = \frac{SEt_a(R-r)}{r(R-r/2)}$$

where

 $r = mean radius of pipe = (D_o - t_n)/2$

R = equivalent bend radius of the miter

For widely spaced miter bends, the allowable pressure is calculated from Eq. (C.3.2) of para. 104.3.3.

$$P_a = \frac{SEt_a^2}{r(t_a + 1.25 \tan \theta \sqrt{rt_a})}$$

Where, $\theta = \text{miter half angle}$

Sustained Stress

The stress (SL) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eq. 15 of para.104.8.1

$$S_L = \frac{PD_o}{4t_n} + \frac{0.75iM_A}{Z} \le S_h$$

where

P = maximum of CAEPIPE pressures P1 through P10

 $D_0 = outside diameter$

 $t_n = nominal$ wall thickness

i = stress intensification factor. The product 0.75i shall not be less than 1.0.

 M_A = resultant bending moment due to weight and other sustained loads

Z = un-corroded section modulus; for reduced outlets, effective section modulus as per para. 104.8.4

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 through T10)]

Occasional Stress

The stress (SLo) due to occasional loads is calculated from Eq. 16 of para.104.8.2 as the sum of stress due to sustained loads (SL) and stress due to occasional loads (So) such as earthquake or wind. Wind and earthquake are not considered concurrently.

$$S_{Lo} = \frac{P_{peak}D_o}{4t_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le 1.2S_h$$

where

 M_B = resultant bending moment on the cross-section due to occasional loads such as thrusts from relief / safety valve loads, from pressure and flow transients, earthquake, wind etc.

 P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P

Expansion Stress Range (i.e., Stress due to Displacement Load Range)

The stress (S_E) due to thermal expansion is calculated from Eq. 17 of para.104.8.3.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

 M_{C} = resultant moment due to thermal expansion

 $S_A = f(1.25S_C + 0.25S_h)$, from Eq. (1A) of para. 102.3.2 (B)

 $f = \frac{1}{\text{cyclicstress range reduction factor from Eq.(1C) of para. 102.3.2(B),}$

 $f = 6/N^{0.2} \le 1.0$ and $f \ge 0.15$ with N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping

 S_c = basic allowable stress as minimum metal temperature expected during the displacement cycle under analysis

 S_h = basic allowable stress as maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than S_L , the allowable stress range may be calculated as

$$S_A = f[1.25(S_C + S_h) - S_L]$$
, from Eq. (1B) of para. 102.3.2 (B)

This is specified as an analysis option: "Use liberal allowable stresses", in the menu Options->Analysis on the Code tab of CAEPIPE.

Note:

Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

MANDATORY APPENDIX D

	Table D-1 Flex	cibility and S	tress Intensification F	actors
Description	Flexibility Characteristic, <i>h</i>	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch
Welding elbow or pipe bend [Notes (1), (2), (3), (4), (5)]	$\frac{t_n R}{r^2}$	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c} $
Closely spaced miter bend [Notes (1), (2), (3), (5)] $s < r(1 + \tan \theta)$ $B \ge 6 t_n$ $\theta \le 22^{1}/_{2} \deg$	$\frac{st_n \cot \theta}{2r^2}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	s θ $R = \frac{s \cot \theta}{2}$
Widely spaced miter bend [Notes (1), (2), (5), (6)] $s \ge r(1 + \tan \theta)$ $\theta \le 22^{1/2} \deg$	$\frac{t_n \left(1 + \cot \theta\right)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$S = \frac{r}{r} + \frac{1}{r} + $
Welding tee per ASME B16.9 [Notes (1), (2), (7)]	$\frac{3.1t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$\overbrace{\overline{T_c}}_{r_x} \xrightarrow{\downarrow}_{r_x} t_n$
Reinforced fabricated tee [Notes (1), (2), (8), (9)]	$\frac{\left(t_n + \frac{t_r}{2}\right)^{5/2}}{r(t_n)^{3/2}}$	1	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c c} & \downarrow \\ \hline \\$
Unreinforced fabricated tee [Notes (1), (2), (9)]	$\frac{t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$- \underbrace{ \begin{array}{c} & & \\ $

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)							
Description	Flexibility Characteris <i>h</i>		Stress Intensification Factor, <i>i</i>	Sketch			
Branch welded-on fitting (integrally reinforced) per MSS SP-97 [Notes (1), (2)]	$\frac{3.3t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c} $			
Extruded outlet meeting the requirements of para. 104.3.1(G) [Notes (1), (2)]	$\frac{t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$\frac{\frac{\psi^t n}{\overline{x}}}{\frac{\varphi r}{\overline{x}}}$			
Welded-in contour insert [Notes (1), (2), (7)]	$3.1 \frac{t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	T_c			
Description	Flexibility Factor, <i>k</i>		ntensification Factor, i	Sketch			
Branch connection [Notes (1), (10)]	1	For checking 1.5 $\left(\frac{R_m}{t_{nh}}\right)^2$	t branch end $\left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{t_{nb}}{t_{nh}}\right) \left(\frac{r'_m}{r_p}\right)$	See Fig. D-1			
Butt weld [Note (1)] $t \ge 0.237$ in., $\delta_{max} \le \frac{1}{46}$ in., and $\delta_{avg}/t \le 0.13$	1	1.0 [Note (1	1)]				
Butt weld [Note (1)] $t \ge 0.237 \text{ in.,}$ $\delta_{\max} \le \frac{1}{8} \text{ in.,}$ and $\delta_{avg}/t = \text{ any value}$	1		$[0.9 + 2.7(\delta_{avg}/t)],$	$ \begin{array}{c c} \uparrow t \\ \hline \uparrow \delta \end{array} \end{array} \begin{array}{c} \downarrow t \\ \hline \uparrow \delta \end{array} $			
Butt weld [Note (1)] t < 0.237 in., $\delta_{max} \le \frac{1}{16}$ in., and $\delta_{avg}/t \le 0.33$	1	— but not le [Note (11)	ss than 1.0]				
Fillet welds	1	1.3 [Note (1	2)]	See Figs. 127.4.4(A), 127.4.4(B), and 127.4.4(C)			
Tapered transition per para. 127.4.2(B) and ASME B16.25 [Note (1)]	1	1.9 max. or 1.3 + 0.00	$036\frac{D_o}{t_n} + 3.6\frac{\delta}{t_n}$	$D_{o} \uparrow \uparrow \delta$			

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

Table	Table D-1 Flexibility and Stress Intensification Factors (Cont'd)							
Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch					
Concentric reducer per ASME B16.9 [Note (13)]	1	2.0 max. or $0.5 + 0.01 \alpha \left(\frac{D_2}{t_2}\right)^{1/2}$	$ \begin{array}{c} \downarrow^{t_1} \\ \uparrow \\ D_1 \\ \downarrow^{t_2} $					
Threaded pipe joint or threaded flange	1	2.3						
Corrugated straight pipe, or corrugated or creased bend	5	2.5						

Flowibility and Change InternalGootien Footans (Contid) ----

NOTES:

[Note (14)]

(1) The following nomenclature applies to Table D-1:

B = length of miter segment at crotch, in. (mm)

- $D_o =$ outside diameter, in. (mm)
- D_{ob} = outside diameter of branch, in. (mm) R = bend radius of elbow or pipe bend, in. (mm)
 - r = mean radius of pipe, in. (mm) (matching pipe for tees)
- r_{χ} = external crotch radius of welded-in contour inserts and welding tees, in. (mm)
- s = miter spacing at centerline, in. (mm)
- T_c = crotch thickness of welded-in contour inserts and welding tees, in. (mm)
- t_n = nominal wall thickness of pipe, in. (mm) (matching pipe for tees)
- t_r = reinforcement pad or saddle thickness, in. (mm)
- α = reducer cone angle, deg
- δ = mismatch, in. (mm)
- θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factors k and stress intensification factors i in Table D-1 apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter elbows, and to the intersection point for tees. The values of k and i can be read directly from Chart D-1 by entering with the characteristic *h* computed from the formulas given.
- (3) Where flanges are attached to one or both ends, the values of k and i in Table D-1 shall be multiplied by the factor c given below, which can be read directly from Chart D-2, entering with the computed h: one end flanged, $c = h^{1/6}$; both ends flanged, $c = h^{1/3}$.
- (4) The designer is cautioned that cast butt welding elbows may have considerably heavier walls than those of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin-wall elbows and bends, pressure can significantly affect magnitudes of k and i. Values from the Table may be corrected by dividing k by

$$\left[1 + 6\left(\frac{P}{E_c}\right) \left(\frac{r}{t_n}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}\right]$$

and dividing i by

$$\left[1 + 3.25 \left(\frac{P}{E_c}\right) \left(\frac{r}{t_n}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}\right]$$

- (6) Also includes single miter joints.
- (7) If $r_x \ge D_{ab}/8$ and $T_c \ge 1.5t_a$, a flexibility characteristic, *h*, of $4.4t_a/r$ may be used.
- (8) When $t_r > 1.5t_n$, $h = 4.05t_n / r$.
- (9) The stress intensification factors in the Table were obtained from tests on full size outlet connections. For less than full size outlets, the full size values should be used until more applicable values are developed.

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

NOTES (Cont'd):

- (10) The equation applies only if the following conditions are met:
 - (a) The reinforcement area requirements of para. 104.3 are met.
 - (b) The axis of the branch pipe is normal to the surface of run pipe wall.

(c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the sum of their radii along the circumference of the run pipe.

- (d) The inside corner radius r_1 (see Fig. D-1) is between 10% and 50% of t_{nh} .
- (e) The outer radius r_2 (see Fig. D-1) is not less than the larger of $T_b/2$, $(T_b + y)/2$ [shown in Fig. D-1 sketch (c)], or $t_{nh}/2$.
- (f) The outer radius r_3 (see Fig. D-1) is not less than the larger of:
 - (1) 0.002 θd_o ;

(2) $2(\sin \theta)^3$ times the offset for the configurations shown in Fig. D-1 sketches (a) and (b).

- (g) $R_m / t_{nh} \le 50$ and $r'_m / R_m \le 0.5$.
- (11) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between 0.875*t* and 1.10*t* for an axial distance of $\sqrt{D_o t}$. D_o and *t* are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a full weld is made between the pipe and fitting as shown in Fig. 127.4.4(C). For welds to socket welding flanges, the stress intensification factor is based on the weld geometry shown in Fig. 127.4.4(B) and has been shown to envelop the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld, with no undercut, smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 127.4.4(A) sketches (b) and (d), has been shown to improve the fatigue performance of the weld.
- (13) The equation applies only if the following conditions are met:
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_1/t_1 and D_2/t_2 does not exceed 100.
 - (c) The wall thickness is not less than t_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t_2 .
- (14) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

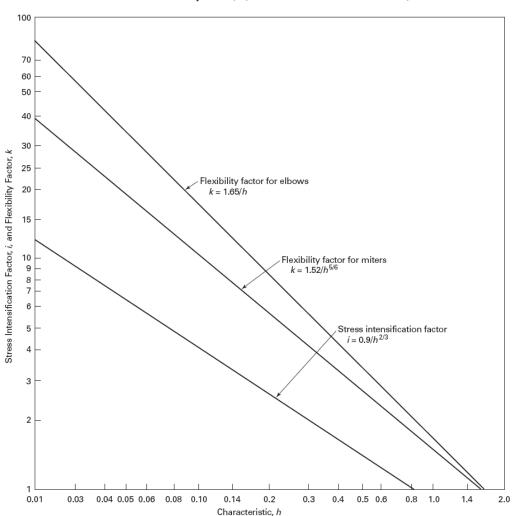


Chart D-1 Flexibility Factor, k, and Stress Intensification Factor, i

Pressure coefficient 'Y' used in Allowable Design Pressure of components (extracted from Table 104.1.2(A) of ASME B31.1 – 2016).

			V	alues of '	Y' for Tem	perature,	Deg F (De	g C)	
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
SI.		and							and
No.	Material Type	below							above
1.	Ferritic Steels	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
	(FS)								
2.	Austenitic Steel	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
	(AS)								
3.	Nickel Alloy UNS	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
	No. N06690 (NA)								
4.	Other Nickel	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
	Alloys (NA)								
5.	Cast Iron	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.	Material Types	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	other than those								
	stated from SI.								
	Nos. 1 to 5.								

Notes:

5. If $D_o/t_a < 6$, for ferritic and austenitic steels designed for temperatures of 900°F (480°C) and below then

$$Y = \frac{d}{d + D_o}$$

		Weld S	/eld Strength Reduction Factor for Temperature, Deg F (Deg C)									
SI.		700	750	800	850	900	950	1000	1050	1100	1150	1200
No.	Material Type	(371)	(399)	(427)	(454)	(482)	(510)	(538)	(566)	(593)	(621)	(649)
1	Carbon Steel (CS)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	Ferritic Steels (FS)	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
3	Austenitic Steel (AS)	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
4	Material Types other than those stated in Sl. Nos. 1 to 3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Weld Strength Reduction Factors applied for calculating the Allowable Design Pressure of components (extracted from Table 102.4.7 of ASME B31.1-2016).

Notes:

For Austenitic Steels (including 800H and 800 HT) the values upto 1500 deg F are as follows:

Temperature, deg F	Temperature, deg C	Weld Strength Reduction Factor
1250	677	0.73
1300	704	0.68
1350	732	0.64
1400	760	0.59
1450	788	0.55
1500	816	0.50

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from 104.1.2.

$$P = \frac{2SEt_m}{D - 2Yt_m}$$

where

P = allowable pressure

S = allowable stress

E = joint factor (input as material property)

 t_m = minimum required thickness, including mechanical, corrosion, and erosion allowances

= $t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

 t_n = nominal pipe thickness

D = nominal outside diameter

d = nominal inside diameter

Y = pressure coefficient from Table 104.1.2(a)2

Sustained Stress

The stress S_L due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from 102.3.2(d)

$$S_{L} = \left| \frac{PD}{4t_{m}} + \frac{F_{A}}{A} \right| + \frac{\sqrt{(i_{i}M_{iA})^{2} + (i_{o}M_{oA})^{2}}}{Z} \le S_{h}$$

where

P = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

 t_m = minimum wall thickness as given above

 i_i = in-plane stress intensification factor

 i_o = out-of-plane stress intensification factor

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal metal area

 M_{iA} = in-plane bending moment due to weight and other sustained loads

 M_{oA} = out-of-plane bending moment due to weight and other sustained loads

Z = nominal section modulus = un-corroded section modulus

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

- 1. When the option "Include axial force in stress calculations" is tuned OFF, then CAEPIPE will exclude the term $\frac{F_A}{A}$ in the equation above.
- 2. When the option "Pressure stress" is selected as "Pd^2/(D^2-d^2)"; then CAEPIPE will replace the term $\frac{PD}{4t_m}$ with $\frac{Pd^2}{D^2-d^2}$, where, d = nominal inside diameter

Occasional Stress

The stress S_{LO} is calculated as the sum of stress due to sustained loads S_L and stress due to occasional loads S_O such as earthquake or wind. Wind and earthquake are not considered concurrently (102.3.1).

$$S_{LO} = S_L + \left| \frac{(P_o - P)D}{4t_m} + \frac{F_B}{A} \right| + \frac{\sqrt{(i_i M_{iB})^2 + (i_o M_{oB})^2}}{Z} \le 1.2S_h$$

where

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

P = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

 i_i = in-plane stress intensification factor

 i_o = out-of-plane stress intensification factor

 F_B = axial force due to occasional loads

A = nominal metal area

 M_{iB} = in-plane bending moment only due to occasional loads

 M_{oB} = out-of-plane bending moment only due to occasional loads

Z = nominal section modulus = un-corroded section modulus

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref} , T1 through T10)]

Note:

- 1. When the option "Include axial force in stress calculations" is tuned OFF, then CAEPIPE will exclude the term $\frac{F_B}{A}$ in the equation above.
- 2. When the option "Pressure stress" is selected as "Pd^2/(D^2-d^2)" then CAEPIPE will replace the term $\frac{(P_0-P)D}{4t_m}$ with $\frac{(P_0-P)d^2}{D^2-d^2}$, where, d = nominal inside diameter

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from (119.6.4).

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\sqrt{(i_i M_{iC})^2 + (i_o M_{oC})^2}/Z$

 S_t = torsional stress = $M_{tC}/2Z$

Z = un-corroded section modulus; for a branch, effective section modulus

 M_{ic} = in-plane bending moment only due to thermal loads

 M_{oC} = out-of-plane bending moment only due to thermal loads

 M_{tC} = torsional moment only due to thermal loads

 $S_A = f(1.25S_c + 0.25S_h)$ as per eq. (1) in para. 102.3.2 (c).

 S_c = basic allowable stress at minimum metal temperature expected during the displacement stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the displacement stress range under analysis

f = stress range reduction factor from Table 102.3.2(c). When S_h is greater than S_L , the allowable stress range may be calculated as

 $S_A = f[1.25(S_c + S_h) - S_L]$

This is specified as an option (Use liberal allowable stresses) in the menu Options > Analysis on the Code tab.

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_E as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

 F_C = axial force due to thermal loads only.

A = nominal metal area

Pressure Correction for Bends (Pressure stiffening effect)

In large diameter thin-wall bends, pressure can significantly affect their flexibility and SIF. If pressure correction for bends is turned ON then the Flexibility of the bend is divided by

$$1 + 6 \times \left(\frac{P}{E}\right) \left(\frac{r}{t}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}$$

and the SIF for the bend is divided by

$$1 + 3.25 \times \left(\frac{P}{E}\right) \left(\frac{r}{t}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}$$

where

P = pressure, E = elastic modulus, r = mean radius of matching pipe, t = nominal wall thickness and R = bend radius

2 (Flexibility Factor for [Elbows: k=1.65/h [Flexibility Factor for [Miters: k=1.52/h³* [Stress Intensification [Factor : $i = 0.9/h^{2.3}$ - ! end flonged C₁= h¹/6 -2 ends flanged C1=h¹³ 6 810 15 ³ Where flanges are attached to one or both ends, the values of k and i in the table shall be corrected by the factors C₁ given below, which can be read directly from Chart B, entering with the ⁷ The engineer is cautioned that cast butt-welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect. of these greater thicknesses is considered. for curved and miter elbows, and to the intersection point for tees. ² The values of k and i can be read directly from Chart A above by entering with the character-istic h computed from the formulas given, where: heta = one-half angle between adjacent miter R_1 = bend radius of welding elbow or pipe ¹The flexibility factors k and stress intensification factors i in the table apply to bending in any plane for fittings shall in no case be taken less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy center lines in the sketches) ⁶ The stress intensification factors *i* in the table were obtained from tests on full size outlet connections. For less than full size outlets, the full size values should be used until more apte = pad or saddle thickness, inches. < CHART B s = miter spacing at center line. 4 CHART m Both ends flanged: h^{Y_3} 2 ⁴ Also includes single-miter joint. ⁵ Factors shown apply to bending; flexibility factor for torsion equals 0.9. £ bend, inches. 06 08 10 Characteristic h axes. 03 04 8 Corr Factor 30 0 8 9 4 2 5 25 80 60 4 20 2 n 5 8 ۲s T = for tees, the nominal wall thickness of and Flexibility Factor r_2 = mean radius of matching pipe, inches T = for elbows and miter bends, the nominal wall thickness of the fitting × 1 Stress Intensitin Factor coddie codie coddie codie codi R-bend radius 12 5 - 1 1-KR : 5(1+ col 8 **۲** ·R_5cet the matching pipe, inches. 2 One end flanged: h^{γ} Sketch plicuble values are developed --6 (see note 7), inches. 1 ĺ à ت Characteristic h computed h: Flexibility 0 T+ 4 1 . YS Cot $\theta \overline{T}s$ 2 1 $2(r_2)^3$ ~ \overline{T}^{λ} r_{2} $\frac{TR}{(r_2)^3}$ ۲ | J (+ cot 4.4 í, 2 Stress Int. Factor i <u>h %</u> 0.0 2 4 6.0 6.0 4% 1.2 1.3 1.6 2.3 0.0 % 0.0 24 1.0 2.5 Flexibility Factor k 1.52 h% 1.52 h 1.65 У°Ч 5 ----_ ---Closely spaced miter bend^{1,2,3} ap joint flange (with USAS B16.9 lap joint stub) Widely spaced miter bend ^{1,2,4} Corrugated straight pipe, or corrugated or creased bend⁵ "illet welded joint, socket welded flange, or single welded slip-on flange Butt-welded joint, reducer, or welded neck flange fabricated tee, 13.6. with pad or saddle Threaded pipe joint, or threaded flange $s \geq_{r_2} (1 + \tan \theta)$ fabricated tee $s < r_2 (1 + \tan \theta)$ Description Welding elbow, 12,3 per USAS B16.9 Double welded slip-on flange Welding tee ¹²⁶ or pipe bend Unreinforced Reinforced

ANSI B31.1 (1967)

FLEXIBILITY AND STRESS IN TENSIFICATION FACTORS

Appendix D

⁶ When t_e is > 1% \overline{T} , use $h = 4.05 \frac{\overline{T}}{r_2}$

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated using eq. (4) in para. 104.1.2A.

$$P_a = \frac{2SEt_a}{(D_o - 2Yt_a)}$$

where

 P_a = allowable pressure

SE = maximum allowable stress for the material inclusive of weld joint efficiency factor E (or casting quality factor F) at the design temperature (i.e., at T_{design} input into CAEPIPE). The values of SE/SF are given in Appendix A of B31.1 (1973) Code.

 $t_a\text{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 D_0 = nominal outside diameter of pipe

d = nominal inside diameter

Y =coefficient from Table 104.1.2, A

		Values of 'Y' for Temperature, Deg F (Deg C)					eg C)
		900	950	1000	1050	1100	1150
		(482)	(510)	(538)	(566)	(593)	(621)
S.		and					and
No.	Material Type	below					above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7
3.	Nonferrous Steels	0.4	0.4	0.4	0.4	0.4	0.4
4.	Cast Iron	0.4	0.4	0.4	0.4	0.4	0.4
5.	Material Types other	0.4	0.4	0.4	0.4	0.4	0.4
	than those stated from						
	Sl. Nos. 1 to 4.						

Notes:

If D_o/t_a< 6, for ferritic and austenitic steels designed for temperatures of 900°F (480°C) and below, CAEPIPE calculates Y using eq. (5) in para. 104.1.2.

$$Y = \frac{d}{d + D_o}$$

Sustained Stress

The stress S_L due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para. 102.3.2 D.

$$S_L = \left| \frac{Pd^2}{D^2 - d^2} \right| + \frac{\sqrt{(i_i M_{iA})^2 + (i_o M_{oA})^2}}{Z} \le S_h$$

where

P = internal design pressure that shall be not less than the maximum sustained operating pressure (MSOP) within the piping system, including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

 i_i = in-plane stress intensification factor from Appendix D

 i_o = out-of-plane stress intensification factor from Appendix D

- M_{iA} = in-plane bending moment due to weight and other sustained mechanical loads (excluding pressure)
- M_{oA} = out-of-plane bending moment due to weight and other sustained mechanical loads (excluding pressure)

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 119.7.3.

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $\left|\frac{Pd^2}{D^2-d^2}\right|$ with $\left|\frac{Pd^2}{D^2-d^2} + \frac{F_A}{A}\right|$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal metal area

Occasional Stress

The stress S_{LO} , calculated as the sum of stress due to sustained loads S_L and stress due to occasional loads S_O such as earthquake or wind, shall meet the following conditions as per para. 102.3.3A. Wind and earthquake are not considered concurrently as per para. 101.5.3.

$$S_{LO} = S_L + \left| \frac{(P_o - P)d^2}{D^2 - d^2} \right| + \frac{\sqrt{(i_i M_{iB})^2 + (i_o M_{oB})^2}}{Z} \le k.S_h$$

 P_o = peak pressure = (peak pressure factor in CAEPIPE) x P

P = Maximum of CAEPIPE input pressures P1 through P10

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 119.7.3. $M_{iB} =$ in-plane bending moment due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

58

 M_{oB} = out-of-plane bending moment due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)] k = 1.2 for Level B

k = 1.8 for Level C

k = 2.40 for Level D

 i_i = in-plane stress intensification factor from Appendix D

 i_o = out-of-plane stress intensification factor from Appendix D

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $\left|\frac{(P_o - P)d^2}{D^2 - d^2}\right|$ with $\left|\frac{(P_o - P)d^2}{D^2 - d^2} + \frac{F_B}{A}\right|$

where

 F_B = axial force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

A = nominal metal Area

Expansion Stress Range

The stress range (S_E) due to thermal expansion is calculated using eq. (8) in para. 119.6.4A.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

 S_b = resultant bending stress = $\sqrt{(i_i M_{iC})^2 + (i_o M_{oC})^2}/Z$ S_t = torsional stress = $M_{tC}/2Z$

 i_i = in-plane stress intensification factor from Appendix D

 i_o = out-of-plane stress intensification factor from Appendix D

 M_{iC} = in-plane bending moment due to the reference thermal load range

 M_{oC} = out of plane bending moment due to the reference thermal load range

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 119.7.3.

 $S_A = f(1.25S_c + 0.25S_h)$ as per eq. (1) in para. 102.3.2 (c).

 S_c = basic allowable stress at minimum metal temperature expected during the thermal stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the thermal stress range under analysis

f = stress range reduction factor from Table 102.3.2, C

When S_h is greater than S_L , the allowable stress range may be calculated as follows, in accordance with para. 102.3.2 D.

$$S_A = f[1.25(S_c + S_h) - S_L]$$

This is specified as an option (Use liberal allowable stresses) in the menu Options > Analysis on the Code tab.

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute SE as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

 F_C = axial force due to reference displacement load range.

A = nominal metal area

Pressure Correction for Bends (Pressure stiffening effect)

In large diameter thin-wall bends, pressure can significantly affect their flexibility and SIF. If pressure correction for bends is turned ON then the Flexibility of the bend is divided by

$$1 + 6 \times \left(\frac{P}{E}\right) \left(\frac{r}{t}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}$$

and the SIF for the bend is divided by

$$1 + 3.25 \times \left(\frac{P}{E}\right) \left(\frac{r}{t}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}$$

where

P = pressure, E = elastic modulus, r = mean radius of matching pipe, t = nominal wall thickness and R = bend radius

2 **Flexibility Factor for** Elbows : k = 1.65/h [Flexibility Factor for [Miters: k=1.52/h^{3/}* [Stress Intensification [Factor : $i = 0.9/h^{2.3}$ - I end flonged C₁= h¹/s -2 ends flanged C1= h13 .6 .8 10 1.5 ³Where flanges are attached to one or both ends, the values of k and i in the table shall be cor-rected by the factors C, given below, which can be read directly from Chart B, entering with the plicable values are developed. ¹ The engineer is cautioned that cast butt-welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be infroduced unless the effect. of these greater thicknesses is considered. for curved and miter elbows, and to the intersection point for tees. ² The values of k and i can be read directly from Chart A above by entering with the characterheta = one-half angle between adjacent miter R_1 = bend radius of welding elbow or pipe ¹The flexibility factors k and stress intensification factors i in the table apply to bending in any plane for fittings shall in no case be taken less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy center lines in the sketches) ⁴ The stress intensification factors i in the table were obtained from tests on full size outlet connections. For less than full size outlets, the full size values should be used until more ap*te* = pad or saddle thickness, inches. CHART B CHART A s = miter spacing at center line. Ю. 1 Both ends flanged: h^{y_3} Ņ ⁴ Also includes single-miter joint. ⁵ Factors shown apply to bending; flexibility factor for torsion equals 0.9. ũ bend, inches. 03 04 06 08 10 Choracteristic h axes. 20 Corr Factor 60 Ŷ 30 20 0 9 4 3 2 2 22 25 8 80 2 istic h computed from the formulas given, where: Flexibility 'ɔ T = for tees, the nominal wall thickness of the matching pipe, inches. Totop × pub Stress Intensif'n Factor 1 r_2 = mean radius of matching pipe, inches = for elbows and miter bends, the nominal wall thickness of the fitting • When l_e is > 1% \overline{T} , use $h = 4.05 \frac{\overline{T}}{r_2}$ 5 2 1 1 114 RR : 5(1+ cot 8) 5 H .R . S. ... Ľ -41 || soddle 1 ~ One end flanged: h^{χ} Sketch 1 ic 1 (see note 7), inches. a 13 ١ Characteristic h Flexibility $(\overline{T} + \frac{1}{2} t_e) \sqrt{\frac{1}{2}}$ computed h: 0 Cot $\theta \overline{T}s$ 2 1 $2(r_2)^2$ ~ T% r2 $\frac{TR}{(r_2)^3}$ r | " l + cot 4.4 ь ١. l~ Stress Int. Factor i 0.0 2,4 <u>h %</u> 0.0 % 2.3 0.0 % 0.0 %4 1.0 1.6 0.0 % 1.2 1.3 2.5 Flexibility Factor k 1.52 h% 1.52 h[%] <u>h</u> 5 ---_ -Closely spaced miter bend^{1,2,3} ap joint flange (with USAS B16.9 lap joint stub) Corrugated straight pipe, or corrugated or corrugated for the straight of the Widely spaced miter bend ^{1,2,4} Fillet welded joint, socket welded flange, or single welded slip-on flange Butt-welded joint, reducer, or welded neck flange fabricated tee, 13.68 Threaded pipe joint, or threaded flange with pad or saddle $s \ge_{r_2} (1 + \tan \theta)$ fabricated tee $s < r_2 (1 + \tan \theta)$ Description Welding elbow, ^{1,2,3} per USAS B16.9 slip-on flange Velding tee ^{12,6} or pipe bend Double welded Unrein forced Reinforced

ANSI B31.1 (1973)

FLEXIBILITY AND STRESS IN TENSIFICATION FACTORS

Appendix D

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated using eq. (4) in para. 104.1.2A.

$$P_a = \frac{2SEt_a}{(D_o - 2Yt_a)}$$

where

 P_a = allowable pressure

SE = maximum allowable stress for the material inclusive of weld joint efficiency factor E (or casting quality factor F) at the design temperature (i.e., at T_{design} input into CAEPIPE). The values of SE or SF are given in Appendix A of B31.1 (1977) Code.

 $t_a{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 $D_0 =$ nominal outside diameter of pipe

Y =coefficient from Table 104.1.2A

		Values of 'Y' for Temperature, Deg F (Deg C)					
		900	950	1000	1050	1100	1150
		(482)	(510)	(538)	(566)	(593)	(621)
S.		and					and
No.	Material Type	below					above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7
3.	Nonferrous Steels	0.4	0.4	0.4	0.4	0.4	0.4
4.	Cast Iron	0.4	0.4	0.4	0.4	0.4	0.4
5.	Material Types other	0.4	0.4	0.4	0.4	0.4	0.4
	than those stated from						
	Sl. Nos. 1 to 4.						

Notes:

If $D_o/t_a < 6$, for ferritic and austenitic steels designed for temperatures of 900°F (480°C) and below, CAEPIPE calculates Y using eq. (5) in para. 104.1.2.

$$Y = \frac{d}{(d+D_o)}$$

where, d = nominal inside diameter

Sustained Stress

The stress S_L due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para. 102.3.2 D and eq. (11) of para. 104.8.1.

$$S_L = \left| S_{lp} \right| + \frac{0.75iM_A}{Z} \le S_h$$

where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure stress option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal design pressure that shall be not less than the maximum sustained operating pressure (MSOP) within the piping system, including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from Appendix D and 0.75i shall not be less than 1.0

 M_A = resultant bending moment due to weight and other sustained mechanical loads (excluding

pressure) =
$$\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 104.8.4.

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal metal area

Occasional Stress

The stress S_{LO} , calculated as the sum of stress due to sustained loads S_L and stress due to occasional loads S_O such as earthquake or wind, shall meet the following conditions as per para. 102.3.3 (A) and eq. (12) of para. 104.8.2. Wind and earthquake are not considered concurrently as per para. 101.5.3.

$$S_{LO} = S_L + \left| S_{lpo} \right| + \frac{0.75iM_B}{Z} \le k.S_h$$

 S_{lpo} = peak pressure stress = $\left|\frac{(P_o - P)d^2}{D^2 - d^2}\right|$ or $\left|\frac{(P_o - P)D}{4t_n}\right|$ This pressure stress option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

P = Maximum of CAEPIPE input pressures P1 through P10

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 104.8.4.

i = stress intensification factor from Appendix D and 0.75i shall not be less than 1.0

- k = 1.2 for Level B
- k = 1.8 for Level C

k = 2.40 for Level D

 M_B = resultant bending moment due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc. = $\sqrt{(M_{Bx})^2 + (M_{By})^2 + (M_{Bz})^2}$

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lpo}|$ with $|S_{lpo} + \frac{F_B}{A}|$

where

 F_B = axial force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

A = nominal metal Area

Expansion Stress Range

Stress range (S_E) due to thermal expansion is calculated using eq. (13) in para. 104.8.3 (A).

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from Appendix D

 M_c = resultant bending moment due to the thermal load range under analysis =

$$\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 104.8.4.

 $S_A = f(1.25S_c + 0.25S_h)$ as per eq. (1) in para. 102.3.2 (C).

 S_c = basic allowable stress at minimum metal temperature expected during the thermal stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the thermal stress range under analysis

f = stress range reduction factor from Table 102.3.2 (C)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_E as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_C}{Z} \le S_A$$
64

where

 F_C = axial force due to displacement load range under analysis.

A = nominal metal area

Sustained + Expansion Stress

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated using eq. (14) of para. 104.8.3 (B).

$$S_{TE} = |S_{lp}| + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_A + S_h$$

Where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure stress option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal design pressure that shall be not less than the maximum sustained operating pressure (MSOP) within the piping system, including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from Appendix D and 0.75i shall not be less than 1.0

 M_A = resultant bending moment due to weight and other sustained mechanical loads (excluding

pressure) = $\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$

$$M_C$$
 = resultant bending moment due to the thermal load range under analysis = $\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 104.8.4. S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$ and term $\frac{iM_C}{Z}$ with $\left|\frac{F_C}{A}\right| + \frac{iM_C}{Z}$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

 F_C = axial force due to displacement load range under analysis

A = nominal metal area

	т	able D-1			80 Flexibility Factor for	Ą
Description	Flexibility Factor k	Stress Int. Factor i	Flexibility Characteristic h	Sketch	Fiexibility Factor for Elbows: k = 1.65/h Fiexibility Factor for Niters: k = 1.52/h ³ /e	4SI B31.1
Welding elbow, 123 or pipe bend	$\frac{1.65}{h}$	$\frac{0.9}{h^{\frac{2}{3}}}$	$\frac{\overline{T}R_{_1}}{(r_2)^2}$		Stress Intensification Foctor : i = 0.9/h ²	ANSI B31.1-1977 EDITION
Closely spaced miter bend ^{1,2,3} $s \leq r_2 (1 + \tan \theta)$	1.52 h [%]	$\frac{0.9}{h^{2}/3}$	$\frac{\left(\operatorname{Cot}\theta\right)\overline{T}s}{2\left(r_{2}\right)^{2}}$	ecz v2 ^T tr2 e	Sirress Intensify Actor -	FION
Widely spaced miter bend ^{1,2,4} $s \ge r_2 (1 + \tan \theta)$	1.52 h ⁵ %	0.9 h ² / ₃	$\frac{(1+\cot\theta)\overline{T}}{2} r_2$	4	s intersit	
Welding tee ^{1,2,6} per ANSI B16.9	1	$\frac{0.9}{h^{\frac{2}{3}}}$	$4.4 \frac{\overline{T}}{r_2}$		02 03 04 06 08 10 15 .2 .3 .4 .6 .8 10 1.5 2	
Reinforced fabricated tee, ^{1,2,6,8} with pad or saddle	1	$\frac{0.9}{h^{\frac{2}{3}}}$	$\frac{(\overline{T} + \frac{y_2}{T} \frac{t_e}{s_2})^{\frac{5}{2}}}{\overline{T}^{\frac{3}{2}} r_2}$		Choracteristic h CHART A	
Unreinforced fabricated tee ^{1,2,0}	1	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{T}}{r_2}$		U end flanged: C ₁ = h ^{1/6} 2 ends flanged: C ₁ = h ^{1/6} CHART B	
Threaded pipe joint, or threaded flange	1	2.3				APPENDIX
Corrugated straight pipe, or corrugated or creased bend ⁵	5	2.5				ם אומו

APPENDIX D FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

¹ The flexibility factors k and stress intensification factors i in the table apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective are length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees. ² The values of k and i can be read directly from Chart A above by entering with the character-istic h computed from the formulas given, where:

- $\frac{1}{T}$ = for elbows and miter bends, the nominal wall thickness of the fitting (see note 7), inches (mm).
- \overline{T} = for tees, the nominal wall thickness of the matching pipe, inches (mm).
- B = length of segment at crotch should beequal to or greater than 6 \overline{T} .
- r_1 = mean radius of matching pipe, inches (mm). R_1 = bend radius of welding elbow or pipe \overline{T} = for allows and miler hands, the

 - θ = one-half angle between adjacent miter axes.
 - s = miter spacing at center line.
 - $t_e = \text{pad or saddle thickness, inches (mm)}.$
 - $S = 2R_1 \tan \theta$

³Where flanges are attached to one or both ends, the values of k and i in the table shall be corrected by the factors C_1 given below, which can be read directly from Chart B, entering with the computed h: One end flanged: $h^{1}_{i_{2}}$ Both ends flanged: $h^{1}_{i_{2}}$ is a factor of the standard of the size of the standard of the size of the standard of the size outlet of the size outlet from the size outlet of the size outlet size values are developed. ⁷ The engineer is cautioned that cast butt-welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered. ⁸ When t_e is > $1^{1}_{i_{2}}$ \overline{T} , use h = 4.05 $\frac{\overline{T}}{r_2}$

SIFs are computed in	CAEPIPE as gr	ven below	for the item	s listed.

SI. No.	Component Type	SIF (i)
1.	Flange - Weld neck	1.0
2.	Flange - Double welded	1.2
3.	Flange - Single/Fillet/Socket welded	1.3
4.	Flange – Lap Joint	1.6

Pressure Correction for Bends (Pressure stiffening effect)

In large diameter thin-wall bends, pressure can significantly affect their flexibility and SIF. If pressure correction for bends is turned ON then the Flexibility of the bend is divided by

$$1 + 6 \times \left(\frac{P}{E}\right) \left(\frac{r}{t}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}$$

and the SIF for the bend is divided by

$$1 + 3.25 \times \left(\frac{P}{E}\right) \left(\frac{r}{t}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}$$

where

P = pressure, E = elastic modulus, r = mean radius of matching pipe, t = nominal wall thickness and R = bend radius

ANSI B31.1-1977 EDITION

APPENDIX D

	Table D-2	
Component	Sketch	Stress Intensification Factor
Buttwelds	MEAN RADIUS	$t > 3/16$ and $\delta/t < 0.1$ i = 1.0 $t < 3/16$ or $\delta/t > 0.1$ i = 1.8 for as welded i = 1.0 for flush welds $\delta =$ allowable mismatch
Fillet Welds	See Figures 127,4,4 (a), (b) and (c)	i = 2.1 i = 1.3 for fillet welds as defined in Note 1.
30° Taper Transition per 127.4.2(c) and ANSI B16.25		<i>i</i> = 1.9 max, or <i>i</i> = 1.30 + 0.0036 <i>D</i> / <i>t</i> + 0.225/ <i>t</i>
Concentric Røducer per B16.9 or MSS-SP48	$D_{U/2} \downarrow \uparrow $	i = 2.0 max or $i = 0.5 + 0.01 \alpha (D_{2/t_2})^{5/2}$ (see Note 2)

APPENDIX D STRESS INTENSIFICATION FACTORS

67

APPENDIX D

ANSI B31.1-1977 EDITION

APPENDIX D - Table D-2 (Cont.)

Component	Sketch	Stress Intensification Factor
Branch Connections	See Figure D-1	$i = 1.5 \left(\frac{R_m}{T_r}\right)^{\frac{2}{3}} \left(\frac{r'm}{R_m}\right)^{\frac{1}{2}} \\ \left(\frac{T'b}{T_r}\right)\left(\frac{r'm}{r_p}\right)$ (see Notes 3 and 4)

Notes for Table D-2:

Note 1: Stress intensification factor of 1.3 may be used for socket weld fitting if toe of weld blends smoothly with no undercut with pipe wall as shown in the concave, unequal leg fillet weld of Figure 127.4.4.

Note 2: The equation applies only if the following conditions are met:

(a) Cone angle, α, does not exceed 60°, and the reducer is concentric.

(b) The larger of D₁/t₁ and D₂/t₂ does not exceed 100.
 (c) The wall thickness is not less than t₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t₂.

Note 3: The equation applies only if the following conditions are met:

(a) The reinforcement area requirements of 104.3 are met.

- (b) The axis of the branch pipe is normal to the surface of the run pipe wall.
- (b) The axis of the branch pipe is normal to the surface of the run pipe wall.
 (c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the sum of their radii along the circumference of the run pipe.
 (d) The inside corner radius, r₁ (see Fig. D-1) is between 10 percent and 50 percent of T_r.
 (e) The outer radius, r₂, (see Fig. D-1) is not less than the larger of T_b/2, (T_b + y)/2 [for Fig. D-1(c)] or T_r/2.
 (f) The outer radius, r₃, (see Fig. D-1) is not less than the larger of
 (h) no 22 8d_-

(1) 0.002 θd_o
 (2) 2 (Sin θ)³ times the offset for the configurations shown in Figs. D-1 (a) and D-1 (b).

(b) R_m/T_r ≤ 50 and r'm/Rm ≤ 0.5

Note 4: The following nomenclature applies to Figure D-1:

- rl = inside radius of branch pipe, in. (mm)
- r'm= mean radius of branch pipe, in. (mm)
- Tb' = nominal thickness of branch pipe, in. (mm)
- Rm= mean radius of run pipe, in. (mm)
- Tr = nominal thickness of run pipe, in. (mm)
- do = outside diameter of branch, in. (mm)
- $T_{b},\ \theta,\ r_{1},\ r_{2},\ r_{3},\ r_{p}$ and y are defined in Figure D-1
- tr = minimum required thickness of run pipe, calculated as a plain cylinder

Note 5:

Factors shown apply to bending; flexibility factor for torsion equals 0.9.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated using eq. (4) in para. 104.1.2A.

$$P_a = \frac{2SEt_a}{(D_o - 2Yt_a)}$$

where

 P_a = allowable pressure

SE = maximum allowable stress for the material inclusive of weld joint efficiency factor E (or casting quality factor F) at the design temperature (i.e., at T_{design} input into CAEPIPE). The values of SE or SF are given in Appendix A of B31.1 (1980) Code.

 $t_a{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 D_0 = nominal outside diameter of pipe

Y =coefficient from Table 104.1.2A

		Val	ues of 'Y'	for Tem	perature,	Deg F (De	eg C)
		900	950	1000	1050	1100	1150
		(482)	(510)	(538)	(566)	(593)	(621)
S.		and					and
No.	Material Type	below					above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7
3.	Nonferrous Steels	0.4	0.4	0.4	0.4	0.4	0.4
4.	Cast Iron	0.4	0.4	0.4	0.4	0.4	0.4
5.	Material Types other	0.4	0.4	0.4	0.4	0.4	0.4
	than those stated from						
	Sl. Nos. 1 to 4.						

Notes:

If $D_o/t_a < 6$, for ferritic and austenitic steels designed for temperatures of 900°F (480°C) and below, CAEPIPE calculates Y using eq. (5) in para. 104.1.2.

$$Y = \frac{d}{(d+D_o)}$$

where, d = nominal inside diameter

Sustained Stress

The stress S_L due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para. 102.3.2 D and eq. (11) of para. 104.8.1.

$$S_L = \left| S_{lp} \right| + \frac{0.75iM_A}{Z} \le S_h$$

where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal design pressure that shall be not less than the maximum sustained operating pressure (MSOP) within the piping system, including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from Appendix D and 0.75i shall not be less than 1.0

 M_A = resultant bending moment due to weight and other sustained mechanical loads (excluding

pressure) =
$$\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 104.8.4.

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal metal area

Occasional Stress

The stress S_{LO} , calculated as the sum of stress due to sustained loads S_L and stress due to occasional loads S_O such as earthquake or wind, shall meet the following conditions as per para. 102.3.3 (A) and eq. (12) of para. 104.8.2. Wind and earthquake are not considered concurrently as per para. 101.5.3.

$$\begin{split} S_{LO} &= S_L + \left| S_{lpo} \right| + \frac{0.75 i M_B}{Z} \leq k. \, S_h \\ S_{lpo} &= \text{peak pressure stress} = \left| \frac{(P_o - P)d^2}{D^2 - d^2} \right| \, or \, \left| \frac{(P_o - P)D}{4t_n} \right| \, \text{This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.} \end{split}$$

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

P = Maximum of CAEPIPE input pressures P1 through P10

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 104.8.4.

i = stress intensification factor from Appendix D and 0.75i shall not be less than 1.0

k = 1.2 for Level B

k = 1.8 for Level C

k = 2.40 for Level D

 M_B = resultant bending moment due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc. = $\sqrt{(M_{Bx})^2 + (M_{By})^2 + (M_{Bz})^2}$

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lpo}|$ with $|S_{lpo} + \frac{F_B}{A}|$

where

 F_B = axial force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

A = nominal metal Area

Expansion Stress Range

Stress range (S_E) due to thermal expansion is calculated using eq. (13) in para. 104.8.3 (A).

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from Appendix D

 M_c = resultant bending moment due to the thermal load range under analysis =

$$\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 104.8.4.

 $S_A = f(1.25S_c + 0.25S_h)$ as per eq. (1) in para. 102.3.2 (C).

 S_c = basic allowable stress at minimum metal temperature expected during the thermal stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the thermal stress range under analysis

f = stress range reduction factor from Table 102.3.2 (C)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_E as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_C}{Z} \le S_A$$

where

 F_C = axial force due to reference displacement load range.

A = nominal metal area

Sustained + Expansion Stress

Stress due to pressure, weight, other sustained loads and thermal expansion is calculated using eq. (14) of para. 104.8.3 (B).

$$S_{TE} = |S_{lp}| + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_A + S_h$$

Where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal design pressure that shall be not less than the maximum sustained operating pressure (MSOP) within the piping system, including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from Appendix D and 0.75i shall not be less than 1.0

 M_A = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure) = $\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$

 M_{C} = resultant bending moment due to the thermal load range under analysis = $\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 104.8.4. S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$ and term $\frac{iM_C}{z}$ with $\left|\frac{F_C}{A}\right| + \frac{iM_C}{z}$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

 F_C = axial force due to displacement load range under analysis

A = nominal metal area

ANSI/ASME B31.1-1980 EDITION APPENDIX D, TABLE D-1

AN AMERICAN NATIONAL STANDARD POWER PIPING

	FLEXIBI	LITY AND STRESS	INTENSIFICATION FA	ACTORS
Description	Flexibility Factor <i>k</i>	Stress Intensity Factor /	Flexibility Characteristic h	Sketch
Welding elbow, (Notes (1), (2), (3)]or pipe bend	1.65 h	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{T}R_1}{(r_2)^2}$	
				R ₁ = Bend radiu
Closely spaced miter bend [Notes (1), (2), (3)] $s < r_2(1 + \tan\theta)$	1.52 h ^{5/6}	$\frac{0.9}{h^{2/3}}$	$\frac{(\cot\theta)T_S}{2(r_2)^2}$	$\theta \le 22\% \text{ deg.}$ s r_2 r_2 r_2 $R_1 = \frac{s \cot \theta}{2}$
Widely spaced miter bend [Notes (1), (2), (4)] $s \ge r_2(1 + \tan \theta)$	$\frac{1.52}{h^{5/6}}$	0.9 h ^{2/3}	$\frac{(1+\cot\theta)}{2}\frac{7}{r_2}$	$\frac{47}{1}$
Welding tee [Notes (1), (2), (6)] per ANSI B16.9	1	0.9 h ^{2/3}	$4.4\frac{7}{r_2}$	
Reinforced fabricated tee, [Notes (1), (2), (6), (8)] with pad or saddle	1	$\frac{0.9}{h^{2/3}}$	$\frac{(\bar{T}+\nu_2 \ t_e)^{5/2}}{\bar{T}^{3/2} \ r_2}$	Pad Saddle
Unreinforced fabricated tee (Notes (1), (2), (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{r}}{r_2}$	
Threaded pipe joint, or threaded flange	1	2.3		
orrugated straight pipe, or corrugated or creased bend ENote (5)]	5	2.5	•••	
		16	6	

TABLE D-1 FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

AN AMERICAN NATIONAL STANDARD POWER PIPING

ANSI/ASME B31.1-1980 EDITION APPENDIX D, TABLE D-1

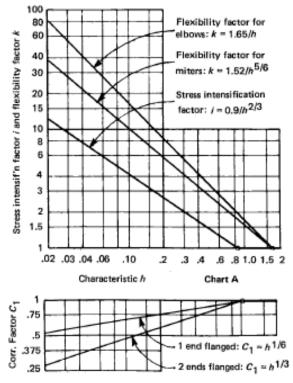


Chart B

NOTES:

- (1) The flexibility factors k and stress intensification factors / in the Table apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees.
- (2) The values of k and i can be read directly from Chart A above by entering with the characteristic h computed from the formulas given, where
 - $r_2 =$ mean radius of matching pipe, in. (mm)
 - 7 = for elbows and miter bends, the nominal wall thick-
 - ness of the fitting [see Note (7)], in. (mm)
 - T = for tees, the nominal wall thickness of the matching pipe, in. (mm)
 - B = length of segment at crotch should be equal to or greater than 67
 - R1 bend radius of welding elbow or pipe bend, in. (mm)
 - θ = one-half angle between adjacent miter axes
 - s miter spacing at center line
 - te = pad or saddle thickness, in. (mm)
 - $S = 2R_1 \tan \theta$
- (3) Where flanges are attached to one or both ends, the values of k and i in the Table shall be corrected by the factors C₁ given below, which can be read directly from Chart B, entering with the computed h:
 - One end flanged: h 1/6 Both ends flanged: h 1/3
- (4) Also includes single-miter joint.
- (5) Factors shown apply to bending; flexibility factor for torsion equals 0.9.
- (6) The stress intensification factors / in the Table were obtained from tests on full size outlet connections. For less than full size outlets, the full size values should be used until more applicable values are developed.
- (7) The engineer is cautioned that cast butt-welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (8) When t, is > 1½7, use h=4.05 7/r₂

AN AMERICAN NATIONAL STANDARD POWER PIPING

ANSI/ASME B31.1-1980 EDITION APPENDIX D, TABLE D-2

Sketch	Stress Intensification Factor
Mean radius	
	$t > 3/16$ and $\delta/t < 0.1$ i=1.0 $t < 3/16$ or $\delta/t > 0.1$ i=1.8 for as welded i=1.0 for flush welds $\delta=$ allowable mismatch
See Figs. 127.4.4 (A), (B), and (C)	i=2.1 i=1.3 for fillet welds as defined in Note (1)
	<i>i</i> =1.9 max., or <i>i</i> =1.30+0.0036 <i>D</i> / <i>t</i> +0.225/ <i>t</i>
$\begin{array}{c c} & & & \\ \hline \\ D_1 \\ \hline \\ 1 \\ 1$	i=2.0 max. or i=0.5+0.01 α (D ₂ /t ₂) [%] [see Note (2)]
	$i=1.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2}$
See Fig. D-1	$\times \left(\frac{T'_{b}}{T_{r}}\right) \left(\frac{r'_{m}}{r_{p}}\right)$
	Mean radius t δ See Figs. 127.4.4 (A), (B), and (C) t t d r_2

TABLE D-2 STRESS INTENSIFICATION FACTORS

Notes to Table D-2 follow on next page

ANSI/ASME B31.1-1980 EDITION APPENDIX D, TABLE D-2

AN AMERICAN NATIONAL STANDARD POWER PIPING

NOTES TO TABLE D-2:

- (1) Stress intensification factor of 1.3 may be used for socket weld fitting if toe of weld blends smoothly with no undercut with pipe wall as shown in the concave, unequal leg fillet weld of Fig. 127.4.4.
- (2) The equation applies only if the following conditions are met.
 - (a) Cone angle α does not exceed 60 deg., and the reducer is concentric.
 - (b) The larger of D_1/t_1 and D_2/t_2 does not exceed 100.
 - (c) The wall thickness is not less than t₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t₂.
- (3) The equation applies only if the following conditions are met.
 - (a) The reinforcement area requirements of Para. 104.3 are met.
 - (b) The axis of the branch pipe is normal to the surface of the run pipe wall.
 - (c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the sum of their radii along the circumference of the run pipe.
 - (d) The inside corner radius r_1 (see Fig. D-1) is between 10% and 50% of T_r .
 - (e) The outer radius r_2 (see Fig. D-1) is not less than the larger of $T_b/2$, $(T_b+y)/2$ [for Fig. D-1 sketch (c)], or $T_r/2$.
 - (f) The outer radius r_3 (see Fig. D-1) is not less than the larger of
 - (1) 0.002 θd_0
 - (2) 2 (sin θ)³ times the offset for the configurations shown in Fig. D-1 sketches (a) and (b).

(g) $R_m/T_r \leq 50$ and $r'_m/R_m \leq 0.5$.

(4) The following nomenclature applies to Fig. D-1:

 r'_m = mean radius of branch pipe, in. (mm)

- $T_b' =$ nominal thickness of branch pipe, in. (mm)
- $R_m =$ mean radius of run pipe, in. (mm)
- $T_r =$ nominal thickness of run pipe, in. (mm)
- $d_0 =$ outside diameter of branch, in. (mm)
- T_{b} , θ , r_1 , r_2 , r_3 , r_p and y are defined in Fig. D-1
- $t_r =$ minimum required thickness of run pipe, calculated

as a plain cylinder

(5) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

SIFs are computed in CAEPIPE as given below for the items listed.

SI. No.	Component Type	SIF (i)
1.	Flange - Weld neck	1.0
2.	Flange - Double welded	1.2
3.	Flange - Single/Fillet/Socket welded	1.3
4.	Flange – Lap Joint	1.6

Pressure Correction for Bends (Pressure stiffening effect)

In large diameter thin-wall bends, pressure can significantly affect their flexibility and SIF. If pressure correction for bends is turned ON then the Flexibility of the bend is divided by

$$1 + 6 \times \left(\frac{P}{E}\right) \left(\frac{r}{t}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}$$

and the SIF for the bend is divided by

$$1 + 3.25 \times \left(\frac{P}{E}\right) \left(\frac{r}{t}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}$$

where

P = pressure, E = elastic modulus, r = mean radius of matching pipe, t = nominal wall thickness and R = bend radius

Allowable Internal Pressure

For straight pipes and bends, the allowable pressure is calculated using Eq. (3a) for straight pipes and Eq. (3c) for bends from paras. 304.1.2. and 304.2.1 respectively.

$$P_a = \frac{2SEt_a}{(D - 2Yt_a)} \cdot \left(\frac{W}{I}\right)$$

where

 P_a = allowable internal pressure

S = allowable stress at Design Temperature (i.e., at T_{design} input into CAEPIPE) as provided in para. 302.3.1 (a) and as per Table A-1

E = joint factor (input as material property) from Table A-1A as per para. 302.3.3 (b) or Table A-1B as per para. 302.3.4 (a).

W = Weld Joint Strength Reduction Factor at Design Temperature (i.e., at T_{design} input into CAEPIPE) from para. 302.3.5 (e) and as per Table 302.3.5. Refer to the Table listed at the end of this section for details on Weld Strength Reduction Factor implemented in CAEPIPE.

t_a= available thickness for pressure design

 $= t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance "c"}$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance "c" in CAEPIPE)

 t_n = nominal pipe thickness

D = outside diameter

- Y = coefficient from Table 304.1.1, valid for $t_a < D/6$. Refer to the Table listed at the end of this Section for details on 'Y' used in CAEPIPE.
- I = 1.0 for straight pipes and at the side wall on the bend / elbow centerline

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE using Eq. (4a) and Eq. (4b) from para. 304.2.3 (a) as

$$P_a = min \left[\frac{SEWt_a^2}{r(t_a + 0.643 \tan \theta \sqrt{rt_a})}, \frac{SEWt_a(R-r)}{r(R-r/2)} \right]$$

For widely spaced miter bends with $\theta \le 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4a) from para. 304.2.3 (b) (1) as

$$P_a = \frac{SEW t_a^2}{r(t_a + 0.643 \tan \theta \sqrt{rt_a})}$$

For widely spaced miter bends with θ > 22.5 deg, the allowable pressure is calculated in CAEPIPE using Eq. (4c) from para. 304.2.3 (b) (2) as

$$P_a = \frac{SEWt_a^2}{r(t_a + 1.25\tan\theta\sqrt{rt_a})}$$

where

- $r = \text{mean radius of pipe using nominal wall thickness} = (D-t_n)/2$
- R = effective bend radius of the miter (see para. 304.2.3 (d) of code for definition) [an input in CAEPIPE for miters]

$$\theta$$
 = miter half angle = $\tan^{-1}\left(\frac{1.0}{\left(\frac{2R}{r}-1.0\right)}\right)$

Note:

As per para. 304.1.2 (a), Eq. 3(a) used above to compute allowable internal pressure is valid only when $t_a < D/6$. Hence, CAEPIPE will issue a warning message and will leave the Allowable Pressure row BLANK for elements where $t_a \ge D/6$ in Code Compliance Results.

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated using Eqs. (23a), (23b), (23c) and (23d) from para. 320.2 and para. 302.3.5 (c).

$$S_L = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_h$$

where

$$S_{a} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Sustained} = I_{a}\left[\frac{P\pi d^{2}/4}{A_{p}} + \frac{R}{A_{p}}\right]_{Sustained}$$

$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Sustained}$$

$$S_{t} = \left[\frac{I_{t}M_{t}}{2Z_{m}}\right]_{Sustained}$$

- P = maximum of CAEPIPE input pressures P1 through P10
- D =outside diameter
- t_s = wall thickness used for sustained stress calculation after deducting corrosion allowance from the nominal thickness
- t_S = nominal thickness corrosion allowance in CAEPIPE, as per para. 320.1
- d = corroded inside diameter $= D 2t_S$
- A_p = sustained <u>corroded</u> cross-sectional area of the pipe computed using t_s as per para. 320.2.
- I_a = longitudinal force index = 1.0
- F_a = longitudinal force due to sustained loads (pressure and weight)
- R = axial force due to weight alone, where weight is computed using nominal thickness.
- I_i = sustained in-plane moment index = $0.75i_i$ or 1.0, whichever is greater.
- I_o = sustained out-of-plane moment index = $0.75i_o$ or 1.0, whichever is greater.
- I_t = sustained torsional moment index = 1.0
- M_i = in-plane bending moment due to sustained loads, e.g., pressure and weight
- M_o = out-of-plane bending moment due to sustained loads, e.g., pressure and weight
- M_t = torsional moment due to sustained loads, e.g., pressure and weight

 $Z_m = \text{corroded}$ section modulus as per para. 320.1

 S_h = basic allowable stress at maximum temperature, i.e., max (T_{ref} , T_1 through T_{10})

 i_i and $i_o =$ in-plane and out-of-plane index from ASME B31J (2017) respectively.

Sustained plus Occasional Stress

The stress (S_{Lo}) due to sustained and occasional loads is calculated as the sum of stress (S_L) due to sustained loads such as pressure and weight and stress (S_o) due to occasional loads such as earthquake or wind. Wind and earthquake are not considered as acting concurrently. See para. 302.3.6 (a).

For temp $\leq 427^{\circ}$ C or 800° F

 $S_{LO} \le 1.33S_h$ as per para. 302.3.6 (a)(1)

For temp > 427° C or 800° F

 $S_{LO} \leq \min(0.9WS_y, 4S_h)$ as per para. 302.3.6 (a)(2) [only 302.3.6 (a)(2)(-a) and 302.3.6 (a)(2)(-b) considered]

where

 $S_{LO} = S_L + S_O$, where S_L is computed as above, and S_O is calculated using Eqs. (23a), (23b), (23c) and (23d) with applicable loads as per para. 302.3.6 (a).

$$S_{0} = \sqrt{(|S_{ao}| + S_{bo})^{2} + (2S_{to})^{2}}$$

$$S_{ao} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Occasional} = I_{a}\left[\frac{(P_{peak} - P)\pi d^{2}/4}{A_{p}} + \frac{R}{A_{p}}\right]_{Occasional}$$

$$S_{bo} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Occasional}$$

$$S_{to} = \left[\frac{I_{t}M_{t}}{2\pi}\right]$$

 $[2Z_m]_{Occasional}$ = peak pressure = (peak pressure factor in CAEPIPE) x PP_{peak} R = axial force due to occasional loads such as earthquake or wind = in-plane bending moment due to occasional loads such as earthquake or wind M_i M_{o} = out-of-plane bending moment due to occasional loads such as earthquake or wind M_t = torsional moment due to occasional loads such as earthquake or wind S_{v} = yield strength at maximum temperature, i.e., max (T_{ref} , T_1 through T_{10}) W = 1.0 for Austenetic stainless steel and 0.8 for other materials as per para. 302.3.6(a)(2) $Z_m = \text{corroded}$ section modulus as per para. 320.1

Note: When the field Yield strength is left BLANK or NOT input, then CAEPIPE will compute the Yield Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 1.5 (=3/2). This is because; the allowable stress for material below creep is generally 2/3 of Yield Strength.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated using Eq. 17 from para. 319.4.4 and shall not exceed (S_A) as per para.302.3.5 (d).

$$S_E = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_A$$

where

$$S_{a} = \left[\frac{i_{a}F_{a}}{A}\right]_{Expansion}$$
$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]_{Expansion}$$

 $S_t = \left[\frac{i_t M_t}{2Z}\right]_{Expansion}$

- A =<u>un-corroded</u> cross-sectional area of the pipe/fitting computed using nominal thickness t_n and outer diameter D, as per para. 319.3.5.
- i_a = axial stress intensification factor = 1.0 for elbows, pipe bends and miter bends and $i_a = i_o$ for other components as per ASME B31J (2017)
- $F_a = \underline{range}$ of axial force between any two thermal conditions being evaluated
- i_i = in-plane stress intensification factor (SIF) as per ASME B31J (2017); shall not be < 1.0

 i_o = out-of-plane SIF as per ASME B31J (2017); shall not be < 1.0

 i_t = torsional SIF as per ASME B31J (2017); shall not be < 1.0

 M_i = in-plane bending moment range between any two conditions being evaluated

 M_o = out-of-plane bending moment range between any two conditions being evaluated

 M_t = torsional moment range between any two conditions being evaluated

Z =<u>un-corroded</u> section modulus as per para. 319.3.5 and para. 319.4.4 (a)

$$S_A = f(1.25S_c + 0.25S_h)$$
, Eq. (1a) of para. 302.3.5(d)

f = stress range reduction factor from Eq. (1c) of para. 302.3.5 (d) = 20(N)^{-0.333} <= f_m & f >= 0.15 $f_m =$ maximum value of stress range factor; 1.2 for ferrous materials with specified minimum tensile strengths <= 75 ksi) and at metal temperatures <=700° F; otherwise $f_m = 1.0$

N= equivalent number of full displacement cycles during expected service of piping (= Number of Thermal Cycles input into CAEPIPE through Options > Analysis > Temperature)

 S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

when S_h is greater than S_L , the allowable stress range may be calculated as

$$S_A = f[1.25(S_C + S_h) - S_L]$$
, Eq. (1b) of para. 302.3.5(d). This equation can be re-written as
 $S_A = f(1.25S_C + 0.25S_h) + f(S_h - S_L)$ (see **Note 3** below)

This is specified as an analysis option "Use liberal allowable stresses", in the menu Layout > Options > Analysis > Code tab.

Notes:

- 1. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. 319.4.4 (a).
- 2. Refer to the end of this appendix for the details of "Thickness and Section Modulus used for weight, allowable pressure and stress calculations".
- 3. Para. 302.3.5 provides maximum value of S_c and S_h as 138 MPa (20 ksi). The reason for this criterion is explicitly stated in Note 2 of para. 102.3.5 (b) (1) of ASME B31.1 (2022) as "For materials with a minimum tensile strength of over 70 ksi (480 MPa), eqs. (1a) and (1b) shall be calculated using Sc or Sh values no greater than 20 ksi (140 MPa), unless otherwise justified."

Compliance to this criterion is checked using the value entered under Tensile Strength field of CAEPIPE Material property input. If this field is NOT entered or left BLANK, then CAEPIPE will compute the Tensile Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 3.5. This is because, the allowable stress for material below creep is generally 1/3.5 of Tensile Strength as stated in Section 1-100 of Mandatory Appendix 1 of ASME Section II, Part D.

For example, if the allowable stress is 22,000 psi for a high strength material at the minimum temperature of -20 deg. F, then the Tensile Strength would be 22,000 x 3.5 = 77,000 psi. So, in this case, CAEPIPE will internally set the values of both S_c and S_h as 20,000 psi as Tensile Strength is greater than 70,000 psi.

In addition, if the option "Use Liberal allowable stresses" is turned ON through Layout Window > Options > Analysis > Code, then if the left over Sustained stress (= $S_h - S_L$) is positive, CAEPIPE will multiply this positive left over Sustained stress by the Stress range reduction factor (f) and add that resulting value to the Expansion allowable stress computed using the above equation (1a).

4. Para. 319.2.1(c), implies that wind sway at a piping support (e.g., piping supported from a tall slender tower) could be considered as an imposed thermal displacement at that support. Since CAEPIPE allows up to 10 thermal loads, the question arises "under which thermal load should this wind sway to be included". Hence, we recommend that wind sway is to be input as a part of "wind displacement under occasional stress condition".

Operating Stress for Impact Test Exemption

The combined stress (S_{opr}) due to pressure, dead loads, live loads and displacement strain for Operating Load Case 1 condition is calculated using Eqs. (23a), (23b), (23c) and (23d) from para. 320.2 as per para. 323.2.2 (b)(3). The combined stress thus computed is then divided by the basic allowable stress at the Operating 1 Temperature (T1) and reported under "Operating Stress for Impact Test Exemption".

This can be seen by turning ON the option "Show Opr. Stress – Impact Test Exemption" by using the Mouse Right Click while in "Sorted Stresses" results of CAEPIPE. See the Section titled "Operating Stress for NDE/Impact Test/Impact Test Exemption" in this manual for further details.

$$S_L = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_h$$

where

$$S_{a} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Operating 1} = I_{a}\left[\frac{P\pi d^{2}/4}{A_{p}} + \frac{R}{A_{p}}\right]_{Operating 1}$$

$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Operating 1}$$

$$S_{t} = \left[\frac{I_{t}M_{t}}{2Z_{m}}\right]_{Operating 1}$$

- P = CAEPIPE input pressure P1
- D =outside diameter
- t_s = wall thickness after deducting corrosion allowance from the nominal thickness
- t_S = nominal thickness corrosion allowance in CAEPIPE, as per para. 320.1
- d = corroded inside diameter $= D 2t_S$
- $A_p = \text{corroded}$ cross-sectional area of the pipe computed using t_s as per para. 323.2.2 (b)(3)
- I_a = longitudinal force index = 1.0
- F_a = longitudinal force due to Operating load case 1
- R = axial force due to Operating load case 1
- I_i = in-plane moment index = 1.0
- I_o = out-of-plane moment index = 1.0
- I_t = torsional moment index = 1.0
- M_i = in-plane bending moment due to Operating load case 1
- M_o = out-of-plane bending moment due to Operating load case 1
- M_t = torsional moment due to Operating load case 1
- $Z_m = \text{corroded}$ section modulus computed using t_s as per para. 323.2.2 (b)(3)
- S_h = basic allowable stress at temperature T1 input in CAEPIPE

Notes on Material Library for B313-2022.mat supplied with CAEPIPE:

Material library for ASME B31.3 (2022) [B313-2022.mat] supplied with CAEPIPE has been created by referring to the values provided in Appendix A and Appendix C of ASME B31.3 (2022).

Process Piping ASME B31.3 (2022)

Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure of components (extracted from Table 304.1.1 of ASME B31.3 – 2022)

			١	/alues of 'γ	" for Temp	erature, De	eg F (Deg C)	
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
		and							and
Sl. No.	Material Type	below							above
1.	Ferritic Steels	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
	(FS)								
2.	Austenitic	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
	Steel (AS)								
3.	Nickel Alloys	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
	(NA)								
4.	Gray Iron /	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Cast Iron (CI)								
5.	Material	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	Types other								
	than those								
	stated from								
	Sl. Nos. 1 to								
	4.								

Process Piping ASME B31.3 (2022)

Weld Joint Strength Reduction Factors used in CAEPIPE to calculate the Allowable Internal Pressure of components (extracted from Table 302.3.5 of ASME B31.3-2022)

	Material				W	eld Joint S	Strength R	eduction	Factor W	for Temp	erature, l	Deg F (De	g C)			
SI.	Type/Material	<=800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500
No.	Description	(427)	(454)	(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)	(704)	(732)	(760)	(788)	(816)
1	Carbon Steel (CS)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	Material Description that contains a string "CrMo"	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.64	0.64	0.64	0.64	0.64	0.64
3	Ferritic Steels (FS) [CSEF & CSEF (N+T)]	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.77	0.77	0.77	0.77	0.77	0.77
4	Austenitic Steel (AS)	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.59	0.55	0.5
5	Nickel Alloy (NA)	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.59	0.55	0.5
6	Stainless Steel (SS)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7	Material Types other than those stated in Sl. Nos. 1 to 6	1.00		W	/ = 1 - 0.0	00909 (T _r	_{nax} — T _{cr}) fo		-	(or 427 d en as 800	•	<= 1500	deg. F (or	816 deg.	C),	

Allowable Internal Pressure

For straight pipes and bends, the allowable pressure is calculated using Eq. (3a) for straight pipes and Eq. (3c) for bends from paras. 304.1.2. and 304.2.1 respectively.

$$P_a = \frac{2SEt_a}{(D_o - 2Yt_a)} \cdot \left(\frac{W}{I}\right)$$

where

 P_a = allowable internal pressure

S = allowable stress at Design Temperature (i.e., at T_{design} input into CAEPIPE) as provided in para. 302.3.1 (a) and as per Table A-1

E = joint factor (input as material property) from Table A-1A as per para. 302.3.3 (b) or Table A-1B as per para. 302.3.4 9 (a).

W = Weld Joint Strength Reduction Factor at Design Temperature (i.e., at T_{design} input into CAEPIPE) from para. 302.3.5 (e) and as per Table 302.3.5. Refer to the Table listed at the end of this section for details on Weld Strength Reduction Factor implemented in CAEPIPE.

 t_a = available thickness for pressure design

= t_n × (1 - mill tolerance/100) - corrosion allowance "c"

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance "c" in CAEPIPE)

 t_n = nominal pipe thickness

- D = outside diameter
- Y = coefficient from Table 304.1.1, valid for $t_a < D/6$. Refer to the Table listed at the end of this Section for details on 'Y' used in CAEPIPE.
- I = 1.0 for straight pipes and at the side wall on the bend / elbow centerline

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE using Eq. (4a) and Eq. (4b) from para. 304.2.3 (a) as

$$P_a = min \left[\frac{SEWt_a^2}{r(t_a + 0.643 \tan \theta \sqrt{rt_a})}, \frac{SEWt_a(R-r)}{r(R-r/2)} \right]$$

For widely spaced miter bends with $\theta \le 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4a) from para. 304.2.3 (b) (1) as

$$P_a = \frac{SEWt_a^2}{r(t_a + 0.643\tan\theta\sqrt{rt_a})}$$

For widely spaced miter bends with θ > 22.5 deg, the allowable pressure is calculated in CAEPIPE using Eq. (4c) from para. 304.2.3 (b) (2) as

$$P_a = \frac{SEWt_a^2}{r(t_a + 1.25\tan\theta\sqrt{rt_a})}$$

where

- $r = \text{mean radius of pipe using nominal wall thickness} = (D-t_n)/2$
- R = effective bend radius of the miter (see para. 304.2.3 (d) of code for definition) [an input in CAEPIPE for miters]

$$\theta$$
 = miter half angle = $\tan^{-1}\left(\frac{1.0}{\left(\frac{2R}{r}-1.0\right)}\right)$

Note:

As per para. 304.1.2 (a), Eq. 3(a) used above to compute allowable internal pressure is valid only when $t_a < D/6$. Hence, CAEPIPE will issue a warning message and will leave the Allowable Pressure row BLANK for elements where $t_a \ge D/6$ in Code Compliance Results.

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated using Eqs. (23a), (23b), (23c) and (23d) from para. 320.2 and para. 302.3.5 (c).

$$S_L = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_h$$

where

$$S_{a} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Sustained} = I_{a}\left[\frac{P\pi d^{2}/4}{A_{p}} + \frac{R}{A_{p}}\right]_{Sustained}$$

$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Sustained}$$

$$S_{t} = \left[\frac{I_{t}M_{t}}{2Z_{m}}\right]_{Sustained}$$

- P = maximum of CAEPIPE input pressures P1 through P10
- D =outside diameter
- t_S = wall thickness used for sustained stress calculation after deducting corrosion allowance from the nominal thickness
- t_s = nominal thickness corrosion allowance in CAEPIPE, as per para. 320.1
- A_p = sustained <u>corroded</u> cross-sectional area of the pipe computed using t_s as per para. 320.2.
- I_a = longitudinal force index = 1.0
- F_a = longitudinal force due to sustained loads (pressure and weight)
- R = axial force due to weight alone, where weight is computed using nominal thickness.
- I_i = sustained in-plane moment index = $0.75i_i$ or 1.0, whichever is greater.
- I_o = sustained out-of-plane moment index = $0.75i_o$ or 1.0, whichever is greater.
- I_t = sustained torsional moment index = 1.0
- M_i = in-plane bending moment due to sustained loads, e.g., pressure and weight
- M_o = out-of-plane bending moment due to sustained loads, e.g., pressure and weight
- M_t = torsional moment due to sustained loads, e.g., pressure and weight
- $Z_m = \text{corroded}$ section modulus as per para. 320.1

 S_h = basic allowable stress at maximum temperature, i.e., max (T_{ref} , T_1 through T_{10}) i_i and i_o = in-plane and out-of-plane index from ASME B31J (2017) respectively.

Sustained plus Occasional Stress

The stress (S_{Lo}) due to sustained and occasional loads is calculated as the sum of stress (S_L) due to sustained loads such as pressure and weight and stress (S_o) due to occasional loads such as earthquake or wind. Wind and earthquake are not considered as acting concurrently. See para. 302.3.6 (a).

For temp $\leq 427^{\circ}$ C or 800° F

 $S_{LO} \le 1.33S_h$ as per para. 302.3.6 (a)(1)

For temp > 427° C or 800° F

 $S_{LO} \leq \min(0.9WS_y, 4S_h)$ as per para. 302.3.6 (a)(2) [only 302.3.6 (a)(2)(-a) and 302.3.6 (a)(2)(-b) considered]

where

 $S_{LO} = S_L + S_O$, where S_L is computed as above, and S_O is calculated using Eqs. (23a), (23b), (23c) and (23d) with applicable loads as per para. 302.3.6 (a).

$$S_{o} = \sqrt{(|S_{ao}| + S_{bo})^{2} + (2S_{to})^{2}}$$

$$S_{ao} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{occasional} = I_{a}\left[\frac{(P_{peak} - P)\pi d^{2}/4}{A_{p}} + \frac{R}{A_{p}}\right]_{occasional}$$

$$S_{bo} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{occasional}$$

$$S_{to} = \left[\frac{I_{t}M_{t}}{Z_{m}}\right]$$

$$t_{to} = \left[\frac{1}{2Z_m}\right]_{Occasional}$$

= peak pressure = (peak pressure factor in CAEPIPE) x P P_{peak} = axial force due to occasional loads such as earthquake or wind R M_i = in-plane bending moment due to occasional loads such as earthquake or wind M_{o} = out-of-plane bending moment due to occasional loads such as earthquake or wind = torsional moment due to occasional loads such as earthquake or wind M_{t} S_{v} = yield strength at maximum temperature, i.e., max $(T_{ref}, T_1 \text{ through } T_{10})$ W = 1.0 for Austenetic stainless steel and 0.8 for other materials as per para. 302.3.6(a)(2) $Z_m =$ corroded section modulus as per para. 320.1

Note: When the field Yield strength is left BLANK or NOT input, then CAEPIPE will compute the Yield Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 1.5 (=3/2). This is because; the allowable stress for material below creep is generally 2/3 of Yield Strength.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated using Eq. 17 from para. 319.4.4 and shall not exceed (S_A) as per para.302.3.5 (d).

$$S_E = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_A$$

where

$$S_{a} = \left[\frac{i_{a}F_{a}}{A}\right]_{Expansion}$$
$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]_{Expansion}$$

 $S_t = \left[\frac{i_t M_t}{2Z}\right]_{Expansion}$

- A =<u>un-corroded</u> cross-sectional area of the pipe/fitting computed using nominal thickness t_n and outer diameter D, as per para. 319.3.5.
- i_a = axial stress intensification factor = 1.0 for elbows, pipe bends and miter bends and $i_a = i_o$ for other components as per ASME B31J (2017)
- $F_a = \underline{range}$ of axial force between any two thermal conditions being evaluated
- i_i = in-plane stress intensification factor (SIF) as per ASME B31J (2017); shall not be < 1.0
- i_o = out-of-plane SIF as per ASME B31J (2017); shall not be < 1.0
- i_t = torsional SIF as per ASME B31J (2017); shall not be < 1.0
- M_i = in-plane bending moment range between any two conditions being evaluated
- M_o = out-of-plane bending moment range between any two conditions being evaluated
- M_t = torsional moment range between any two conditions being evaluated
- Z =<u>un-corroded</u> section modulus as per para. 319.3.5 and para. 319.4.4 (a)
- $S_A = f(1.25S_C + 0.25S_h)$, Eq. (1a) of para. 302.3.5(d)
- f = stress range reduction factor from Eq. (1c) of para. 302.3.5 (d) = 6N^{-0.2} where $f \ge 0.15$ and $f \le 1.0$ (see Note 1 below)
- N= equivalent number of full displacement cycles during expected service of piping (= Number of Thermal Cycles input into CAEPIPE through Options > Analysis > Temperature)
- S_C = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

when S_h is greater than S_L , the allowable stress range may be calculated as

 $S_A = f[1.25(S_C + S_h) - S_L]$, Eq. (1b) of para. 302.3.5(d). This equation can be re-written as

$$S_A = f(1.25S_C + 0.25S_h) + f(S_h - S_L)$$
 (see **Note 3** below)

This is specified as an analysis option "Use liberal allowable stresses", in the menu Layout > Options > Analysis > Code tab.

Notes:

- 5. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. 319.4.4 (a).
- 6. Refer to the end of this appendix for the details of "Thickness and Section Modulus used for weight, allowable pressure and stress calculations".
- 7. Para. 302.3.5 provides maximum value of Sc and Sh as 138 MPa (20 ksi). The reason for this criterion is explicitly stated in Note 2 of para. 102.3.5 (b) (1) of ASME B31.1 (2020) as "For materials with a minimum tensile strength of over 70 ksi (480 MPa), eqs. (1a) and (1b) shall be calculated using Sc or Sh values no greater than 20 ksi (140 MPa), unless otherwise justified."

Compliance to this criterion is checked using the value entered under Tensile Strength field of CAEPIPE Material property input. If this field is NOT entered or left BLANK, then CAEPIPE will compute the Tensile Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 3.5. This is because, the allowable stress for material below creep is generally 1/3.5 of Tensile Strength as stated in Section 1-100 of Mandatory Appendix 1 of ASME Section II, Part D.

For example, if the allowable stress is 22,000 psi for a high strength material at the minimum temperature of -20 deg. F, then the Tensile Strength would be 22,000 x 3.5 = 77,000 psi. So, in this case, CAEPIPE will internally set the values of both S_c and S_h as 20,000 psi as Tensile Strength is greater than 70,000 psi.

In addition, if the option "Use Liberal allowable stresses" is turned ON through Layout Window > Options > Analysis > Code, then if the left over Sustained stress (= $S_h - S_L$) is positive, CAEPIPE will multiply this positive left over Sustained stress by the Stress range reduction factor (f) and add that resulting value to the Expansion allowable stress computed using the above equation (1a).

8. As per para. 319.2.1 (c), wind sway should be input into appropriate thermal load displacement.

Notes on Material Library for B313-2020.mat supplied with CAEPIPE:

Material library for ASME B31.3 (2020) [B313-2020.mat] supplied with CAEPIPE has been created by referring to the values provided in Appendix A and Appendix C of ASME B31.3 (2020).

Process Piping

ASME B31.3 (2020) [Superseded by ASME B31.3 (2022)] Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure of components (extracted from Table 304.1.1 of ASME B31.3 – 2020)

			١	/alues of 'γ	" for Temp	erature, De	eg F (Deg C)	
		900	950	1000	1050	1100	1150	1200	1250
		(482) and	(510)	(538)	(566)	(593)	(621)	(649)	(677) and
Sl. No.	Material Type	below							above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
3.	Nickel Alloys (NA)	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
4.	Gray Iron / Cast Iron (CI)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.	Material Types other than those stated from Sl. Nos. 1 to 4.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Weld Joint Strength Reduction Factors used in CAEPIPE to calculate the Allowable Internal Pressure of components (extracted from Table 302.3.5 of ASME B31.3-2020)

	Material				W	eld Joint S	Strength F	eduction	Factor W	for Temp	erature, l	Deg F (De	g C)			
SI.	Type/Material	<=800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500
No.	Description	(427)	(454)	(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)	(704)	(732)	(760)	(788)	(816)
1	Carbon Steel (CS)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	Material Description that contains a string "CrMo"	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.64	0.64	0.64	0.64	0.64	0.64
3	Ferritic Steels (FS) [CSEF & CSEF (N+T)]	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.77	0.77	0.77	0.77	0.77	0.77
4	Austenitic Steel (AS)	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.59	0.55	0.5
5	Nickel Alloy (NA)	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.59	0.55	0.5
6	Stainless Steel (SS)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7	Material Types other than those stated in Sl. Nos. 1 to 6	1.00		W	/ = 1 - 0.0	00909 (T _r	_{nax} — T _{cr}) fo		-	(or 427 d ken as 800	•	<= 1500	deg. F (or	[•] 816 deg.	C),	

Allowable Internal Pressure

For straight pipes and bends, the allowable pressure is calculated using Eq. (3a) for straight pipes and Eq. (3c) with I = 1.0 for bends from paras. 304.1.2. and 304.2.1. respectively.

$$P_a = \frac{2SEWt_a}{D - 2Yt_a}$$

where

 P_a = allowable pressure

S = allowable stress as provided in para. 302.3.1 (a) and as per Table A-1

E = joint factor (input as material property) from Table A-1A as per para. 302.3.3. or Table A-1B as per para. 302.3.4.

W = Weld Joint Strength Reduction Factor from para. 302.3.5 (e) and as per Table 302.3.5.Refer to the Table listed at the end of this section for details on Weld strength reduction factor implemented in CAEPIPE.

t_a= available thickness for pressure design

 $= t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance "c"}$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance "c" in CAEPIPE)

 $t_n = nominal pipe thickness$

D = outside diameter

d = inside diameter

- Y = coefficient from Table 304.1.1, valid for $t_a < D/6$. Refer to the Table listed at the end of this Section for details on 'Y' used in CAEPIPE.
- $Y = \frac{d+2c}{D+d+2c}$, valid for $t_a \ge D/6$ for all material types.

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE using Eq. (4b) from para. 304.2.3.

$$P_a = \frac{SEWt_a(R-r)}{r(R-r/2)}$$

For widely spaced miter bends with $\theta \le 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4a) from para. 304.2.3 as

$$P_a = \frac{SEWt_a^2}{r(t_a + 0.643\tan\theta\sqrt{rt_a})}$$

For widely spaced miter bends with $\theta > 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4c) from para. 304.2.3 as

$$P_a = \frac{SEWt_a^2}{r(t_a + 1.25\tan\theta\sqrt{rt_a})}$$

where

 $r = \text{mean radius of pipe} = (D-t_n)/2$

R = effective bend radius of the miter (see para. 304.2.3 of code for definition) [an input in CAEPIPE for miters]

$$\theta$$
 = miter half angle = $\tan^{-1}\left(\frac{1.0}{\left(\frac{2R}{r}-1.0\right)}\right)$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated using Eqs. (23a), (23b1), (23b2), (23c) and (23d) from para. 320.2 and para. 302.3.5 (c).

$$S_L = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_h$$

where

$$S_{a} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Sustained} = \left[\frac{PD}{4t_{s}} + \frac{R}{A_{p}}\right]_{Sustained}$$
$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Sustained}$$
For branch (Leg 3 in Fig. 319.4.4B),

$$S_b = \left[\frac{\sqrt{(I_i M_i)^2 + (I_o M_o)^2}}{Z_3}\right]_{Sustained}$$

$$S_t = \left[\frac{I_t M_t}{2Z_m}\right]_{Sustained}$$

- P = maximum of CAEPIPE input pressures P1 through P10
- D =outside diameter
- t_S = wall thickness used for sustained stress calculation after deducting corrosion allowance from the nominal thickness
- t_s = nominal thickness corrosion allowance in CAEPIPE, as per para. 320.1
- $A_p = \text{corroded}$ cross-sectional area of the pipe computed using t_s as per para. 320.1.
- I_a = longitudinal force index = 1.0
- F_a = longitudinal force due to sustained loads (pressure and weight)
- R = axial force due to weight alone, where weight is computed using nominal thickness.

- I_i = sustained in-plane moment index = 0.75 i_i or 1.0, whichever is greater.
- I_o = sustained out-of-plane moment index = $0.75i_o$ or 1.0, whichever is greater.
- I_t = torsional moment index = 1.0
- M_i = in-plane bending moment due to sustained loads e.g., pressure and weight
- M_o = out-of-plane bending moment due to sustained loads e.g., pressure and weight
- M_t = torsional moment due to sustained loads e.g., pressure and weight
- $Z_m = \text{corroded}$ section modulus as per para. 320.1
- Z_3 = effective <u>corroded</u> section modulus (Z_e) when Appendix D of B31.3 is used to compute i_i and i_0 (or) <u>corroded</u> section modulus (Z_m) when B31J is used to compute i_i and i_0
- S_h = basic allowable stress at maximum temperature, i.e., max (T_{ref} , T_1 through T_{10})

Note:

 i_i and i_o are taken from Appendix D of B31.3 (2018) or ASME B31J (2017), when the Analysis option "Use B31J for SIFs and Flexibility Factors" is Turned ON in CAEPIPE.

Sustained plus Occasional Stress

The stress (S_{Lo}) due to sustained and occasional loads is calculated as the sum of stress (S_L) due to sustained loads such as pressure and weight and stress (S_o) due to occasional loads such as earthquake or wind. Wind and earthquake are not considered as acting concurrently (see para. 302.3.6(a)).

For temp $\leq 427^{\circ}$ C or 800° F

 $S_{LO} \le 1.33S_h$ as per para. 302.3.6 (a)(1)

For temp > 427° C or 800° F

 $S_{LO} \leq \min(0.9WS_y, 4S_h)$ as per para. 302.3.6 (a)(2) [only 302.3.6 (a)(2)(-a) and 302.3.6 (a)(2)(-b) considered]

where

 $S_{LO} = S_L + S_O$, where S_L is computed as above, and S_O is calculated using Eqs. (23a), (23b1), (23b2), (23c) and (23d) with applicable loads as per para. 302.3.6 (a).

$$S_{0} = \sqrt{(|S_{ao}| + S_{bo})^{2} + (2S_{to})^{2}}$$

$$S_{ao} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Occasional} = \left[\frac{(P_{peak} - P)D}{4t_{s}} + \frac{R}{A_{p}}\right]_{Occasional}$$

$$S_{bo} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Occasional}$$

For branch (Leg 3 in Fig. 319.4.4B)

$$S_{bo} = \left[\frac{\sqrt{(I_i M_i)^2 + (I_o M_o)^2}}{Z_3}\right]_{Occasional}$$

$$S_{to} = \left[\frac{I_t M_t}{2Z_m}\right]_{occasional}$$

Ppeak = peak pressure = (peak pressure factor in CAEPIPE) x P= axial force due to occasional loads such as earthquake or wind R M_i = in-plane bending moment due to occasional loads such as earthquake or wind M_o = out-of-plane bending moment due to occasional loads such as earthquake or wind M_{t} = torsional moment due to occasional loads such as earthquake or wind S_{v} = yield strength at maximum temperature, i.e., max $(T_{ref}, T_1 \text{ through } T_{10})$ W = 1.0 for Austenetic stainless steel and 0.8 for all other materials as per para. 302.3.6(a) $Z_m = \text{corroded}$ section modulus as per para. 320.1 $Z_3 =$ effective corroded section modulus (Ze) when Appendix D of B31.3 is used to

 Z_3 – effective <u>corroded</u> section modulus (Z_e) when Appendix D of B31.5 is used to compute i_i and $i_o(or)$ <u>corroded</u> section modulus (Z_m) when B31J is used to compute i_i and i_o

Expansion Stress

The stress (S_E) due to thermal expansion is calculated using Eq. 17 from para. 319.4.4

$$S_E = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2}$$

where

$$S_{a} = \left[\frac{i_{a}F_{a}}{A}\right]_{Expansion}$$
$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]_{Expansion}$$

For branch (Leg 3 in Fig. 319.4.4B)

$$S_b = \left[\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z_3}\right]_{Expansion}$$

$$S_t = \left[\frac{i_t M_t}{2Z}\right]_{Expansion}$$

A =<u>un-corroded</u> cross-sectional area of the pipe/fitting computed using nominal thickness t_n and outer diameter D, as per para. 319.3.5.

- i_a = axial stress intensification factor = 1.0 for elbows, pipe bends and miter bends and $i_a = i_o \text{ or } i$ for other components as listed in Appendix D of B31.3 or as per B31J
- $F_a = \underline{range}$ of axial force due to displacement strains between any two thermal conditions being evaluated
- i_i = in-plane stress intensification factor; shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; shall not be less than 1.0
- i_t = torsional stress intensification factor as listed in Appendix D of B31.3or as per B31J
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment
- $Z = \underline{\text{un-corroded}}$ section modulus as per para. 319.3.5 and para. 319.4.4 (a)
- Z_3 = effective <u>un-corroded</u>section modulus (Z_e) when Appendix D of B31.3 is used to compute i_i and i_0 (or) <u>un-corroded</u>section modulus (Z) when B31J is used to compute i_i and i_0
- $S_A = f(1.25S_c + 0.25S_h)$, Eq. (1a) of para. 302.3.5(d)
- f = stress range reduction factor from Eq. (1c) of para. 302.3.5 (d) = 6N^{-0.2} where f \ge 0.15 and f \le 1.0 (see Note 1 below)
- N= equivalent number of full displacement cycles during expected service of piping (= Number of Thermal Cycles input into CAEPIPE through Options > Analysis > Temperature)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- When S_h is greater than S_L , the allowable stress range may be calculated as
- $S_A = f[1.25(S_C + S_h) S_L]$, Eq. (1b) of para. 302.3.5(d).

This is specified as an analysis option "Use liberal allowable stresses", in the menu Layout > Options > Analysis > Code tab.

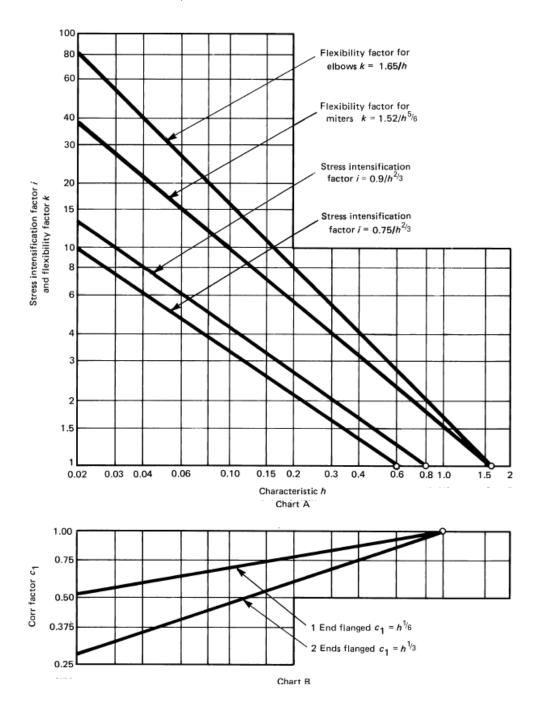
Notes:

- 1. As per para. 302.3.5 (d), f = maximum value of stress range factor; 1.2 for ferrous materials with specified minimum tensile strengths ≤ 517 MPa (75 ksi) and at Metal temperatures $\leq 371^{\circ}C$ (700°F). This criterion is not implemented in CAEPIPE as the provision for entering the minimum tensile strength in material property is not available at this time. Hence $f \leq 1.0$ for all materials including Ferrous materials.
- 2. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. 319.4.4 (a).
- 3. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 4. i_i and i_o are taken from Appendix D of B31.3 (2018) or ASME B31J (2017), when the Analysis option "Use B31J for SIFs and Flexibility Factors" is Turned ON in CAEPIPE.

Notes on Material Library for B313-2018.mat supplied with CAEPIPE:

Material library for ASME B31.3 (2018) [B313-2018.mat] supplied with CAEPIPE has been created by referring to the values provided in Appendix A and Appendix C of ASME B31.3 (2018).

APPENDIX D FLEXIBILITY AND STRESS INTENSIFICATION FACTORS


See Table D300.

	Flexibility	Stress Inte Factor [Not		Flexibility	
Desc ription	Factor, <i>k</i>	Out-of-Plane, <i>i_o</i>	In-Plane, <i>i</i> i	Characteristic, h	Sketc h
Welding elbow or pipe bend [Notes (1), (3)–(6)]	1.65 6	$\frac{0.75}{h^{2/s}}$	$\frac{0.9}{b^{2l_3}}$	$\frac{TR_1}{r_2^2}$	$\overline{R_1} = \frac{1}{2} \frac{1}{2}$
Closely spaced miter bend $s < r_2 (1 + \tan \theta)$ [Notes (1), (3), (4), (6)]	1.52 h ^{sk}	$\frac{0.9}{h^{2\ell_3}}$	0.9 ħ ^{2/3}	$\frac{\cot \theta}{2} \left(\frac{s\overline{I}}{r_2^2} \right)$	$\frac{1}{\theta} = \frac{1}{2} \frac{1}{2} r_2$
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (3), (6)]	<u>1.52</u> δ ^{sk}	$\frac{0.9}{h^{2ls}}$	$\frac{0.9}{h^{2ls}}$	$\frac{1+\cot\theta}{2}\left(\frac{7}{r_2}\right)$	$\frac{1}{\theta} = \frac{1}{R_1} = \frac{1}{2} \frac{1}{2} \frac{1}{r_2}$
Welding tee in accordance with ASME B16.9 [Notes (1), (3), (5), (7), (8)]	l	0.9 h ^{2/5}	³ /4 ^j 0 + ¹ /4	3.1 <u>7</u>	$\frac{1}{r_c} \frac{1}{r_x} \frac{1}{r_2}$
Reinforced fabricated tee with pad or saddle [Notes (1), (3), (8), (9), (10)]	1	$\frac{0.9}{h^{2/3}}$	³ /4 j ₀ + ¹ /4	$\frac{(\overline{T} + \frac{1}{2}, \overline{T}_r)^{2s}}{\overline{T}^{1s} r_2}$	$\begin{array}{c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i

Table D300	Flexibility			ensification Fa	ctor, i (Cont'd)
	Flexibility	Stress Inte Factor [Not		Flexibility	
Description	Factor,	Out-of-Plane, <i>i_o</i>	In - Plane, <i>İ</i> ı	Characteristic, h	Sketch
Unreinforced fabricated tee [Notes (1), (3), (8), (10)]	1	$\frac{0.9}{h^{2/b}}$	³ / ₄ / ₆ + ¹ / ₄	$\frac{7}{r_2}$	
Extruded welding tee with $r_{c} \ge 0.05 \frac{D_{b}}{T_{c}} < 1.5 \overline{T}$ [Notes (1), (3), (8)]	1	$\frac{0.9}{h^{2/3}}$	[≥] ⁄4/ ₀ + ¹ ⁄4	$\left(1+\frac{r_{x}}{r_{2}}\right)\frac{\overline{r}}{r_{2}}$	
Welded-in contour insert [Notes (1), (3), (7), (8)]	1	0.9 6 ^{2/8}	[≥] ⁄ ₄ j ₀ + ¹ ∕ ₄	$3.1\frac{\overline{f}}{r_2}$	
Branch welded-on fitting (integrally reinforced) [Notes (1), (3), (10), (11)]	1	$\frac{0.9}{h^{2/3}}$	0.9 h ^{2/8}	3.3 $\overline{\frac{7}{r_2}}$	

Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>		
Butt welded joint, reducer, or weld neck flange	1	1.0		
Double-welded slip-on flange	1	1.2		
Fillet or socket weld	1	1.3 [Note (12)]		
Lap joint flange (with ASME B16.9 lap joint stub)	1	1.6		
Threaded pipe joint or threaded flange	1	2.3		
Corrugated straight pipe, or corrugated or creased bend [Note (13)]	5	2.5		

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

(14)

GENERAL NOTE: Stress intensification and flexibility factor data in Table D300 are for use in the absence of more directly applicable data (see para. 319.3.6). Their validity has been demonstrated for $D/\overline{T} \leq 100$.

NOTES:

- (1) The flexibility factor, k, in the Table applies to bending in any plane; also see para. 319.3.6. The flexibility factors, k, and stress intensification factors, i, shall apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends, and to the intersection point for tees.
- (2) A single intensification factor equal to $0.9/h^{2/3}$ may be used for both i_i and i_o if desired.
- (3) The values of k and i can be read directly from Chart A by entering with the characteristic h computed from the formulas given above. Nomenclature is as follows:
 - D_b = outside diameter of branch
 - $\vec{R_1}$ = bend radius of welding elbow or pipe bend
 - r_s = see definition in para. 304.3.4(c)
 - $r_2 =$ mean radius of matching pipe

 - $\frac{s}{T}$ = miter spacing at centerune \overline{T} = for elbows and miter bends, the nominal wall thickness of the fitting
 - = for tees, the nominal wall thickness of the matching pipe
 - \underline{T}_{e} = crotch thickness of branch connections measured at the center of the crotch where shown in the illustrations \overline{T}_{e} = pad or saddle thickness

 - $\theta =$ one-half angle between adjacent miter axes
- (4) Where flanges are attached to one or both ends, the values of k and i in the Table shall be corrected by the factors C₁, which can be read directly from Chart B, entering with the computed h.
- (5) The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (6) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the Table, divide *k* by

$$1 + 6 \left(\frac{P_j}{\overline{E}_j}\right) \left(\frac{r_2}{\overline{\tau}}\right)^{V_j} \left(\frac{R_1}{r_2}\right)^{U_j}$$

divide *i* by

$$1 + 3.25 \left(\frac{P_j}{E_j}\right) \left(\frac{r_2}{\overline{\tau}}\right)^{\frac{V_2}{2}} \left(\frac{R_1}{r_2}\right)^{\frac{V_3}{2}}$$

For consistency, use kPa and mm for SI metric, and psi and in. for U.S. customary notation.

- (7) If $r_s \ge \frac{1}{4} D_b$ and $T_s \ge 1.5\overline{T}$, a flexibility characteristic of 4.4 \overline{T}/r_2 may be used.
- (8) Stress intensification factors for branch connections are based on tests with at least two diameters of straight run pipe on each side of the branch centerline. More closely loaded branches may require special consideration.
- (9) When \overline{T}_r is $> 1^{1}/_{2} \overline{T}_r$ use $h = 4 \overline{T}/r_{2}$.
- (10) The out-of-plane stress intensification factor (SIF) for a reducing branch connection with branch-to-run diameter ratio of 0.5 < d/D < 1.0 may be nonconservative. A smooth concave weld contour has been shown to reduce the SIF. Selection of the appropriate SIF is the designer's responsibility.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a fillet weld is made between the pipe and fitting as shown in Fig. 328.5.2C. For welds to socket welded flanges, the stress intensification factor is based on the weld geometry shown in Fig. 328.5.2B, illustration (3) and has been shown to envelope the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 328.5.2A, has been shown to improve the fatigue performance of the weld.
- (13) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure of components (extracted from Table 304.1.1 of ASME B31.3 – 2018)

		Values of 'Y' for Temperature, Deg F (Deg C)										
		900	950	1000	1050	1100	1150	1200	1250			
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)			
SI.		and							and			
No.	Material Type	below							above			
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7			
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7			
3.	Nickel Alloys (NA)	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7			
4.	Gray Iron / Cast Iron (CI)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
5.	Material Types other than those stated from SI. Nos. 1 to 4.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4			

Weld Strength Reduction Factors used in CAEPIPE to calculate the Allowable Design Pressure of components (extracted from Table 302.3.5 of ASME B31.3-2018)

		Weld Strength Reduction Factor for Temperature, Deg F (Deg C)														
		<=80	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500
SI.	Material Type/Material	0														
No.	Description	(427)	(454)	(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)	(704)	(732)	(760)	(788)	(816)
1	Carbon Steel (CS)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	Material Description	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.64	0.64	0.64	0.64	0.64	0.64
	that contains a string															
	"CrMo"															
3	Ferritic Steels (FS)	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.77	0.77	0.77	0.77	0.77	0.77
	[CSEF & CSEF (N+T)]															
4	Austenitic Steel (AS)	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.59	0.55	0.5
5	Nickel Alloy (NA)	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.59	0.55	0.5
6	Stainless Steel (SS)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7	Material Types other	1.00	$W = 1 - 0.000909 (T_{max} - T_{cr})$ for $T_{max} > 800$ deg. F (or 427 deg. C) and <= 1500 deg. F (or 816 deg. C),													
	than those stated in Sl.		where, T _{cr} is taken as 800 deg. F													
	Nos. 1 to 6															

Allowable Internal Pressure

For straight pipes and bends, the allowable pressure is calculated using Eq. (3a) for straight pipes and Eq. (3c) with I = 1.0 for bends from paras. 304.1.2. and 304.2.1. respectively.

$$P_a = \frac{2SEWt_a}{D - 2Yt_a}$$

where

 P_a = allowable pressure

S = allowable stress as provided in para. 302.3.1 (a) and as per Table A-1

E = joint factor (input as material property) from Table A-1A as per para. 302.3.3. or Table A-1B as per para. 302.3.4.

W = Weld Joint Strength Reduction Factor from para. 302.3.5 (e) and as per Table 302.3.5 is implemented in CAEPIPE as follows.

 T_{max} below denotes maximum operating temperature (i.e., max of T1 through T10 and Tref in CAEPIPE).

With Material Type in CAEPIPE = CS [CrMo]

W = 1.0 with Tmax $\leq 800^{\circ}$ F (or 427° C)

W = 0.64 with Tmax> 1200^o F (or 649^o C) and

For T_{max} > 800⁰ F (or 427[°] C) and <= 1200[°] F (or 649[°] C), the values of W are taken from Table 302.3.5.

W for intermediate temperatures is linearly interpolated.

With Material Type in CAEPIPE = FS [CSEF (Subcritical)]

W = 1.0 with Tmax <= 900^o F (or 482^o C)

W = 0.5 with Tmax> 900^o F (or 482^oC)

With Material Type in CAEPIPE = AS or NA

W = 1.0 with Tmax <= 950^o F (or 510^o C)

For Tmax> 950° F (or 510° C), the values of W are taken as per Table 302.3.5.

W for intermediate temperatures is linearly interpolated.

With Material Type in CAEPIPE = SS

W = 1.0 with Tmax <= 1500^o F (or 816^o C)

For Other Material Types in CAEPIPE

W = 1.0 with Tmax <= 800° F (or 427° C)

 $W = 1 - 0.000909 (T_{max} - T_{cr}) \text{ for } T_{max} > 800^{\circ} \text{ F (or } 427^{\circ} \text{ C}) \text{ and} \le 1500^{\circ} \text{F (or } 810^{\circ} \text{C})$

where, T_{cr} is taken as 800^o F

 t_a = available thickness for pressure design

 $= t_n \times (1 - mill tolerance/100) - corrosion allowance "c"$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

D = outside diameter

d = inside diameter

Y = coefficient from Table 304.1.1, valid for $t_a < D/6$. Refer to the Table listed at the end of this Section for details on 'Y' used in CAEPIPE.

$$Y = \frac{a+2c}{D+d+2c}$$
, valid for $t_a \ge D/6$ for all material types.

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE using Eq. (4b) from para. 304.2.3.

$$P_a = \frac{SEWt_a(R-r)}{r(R-r/2)}$$

For widely spaced miter bends with $\theta \le 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4a) from para. 304.2.3 as

$$P_a = \frac{SEWt_a^2}{r(t_a + 0.643\tan\theta\sqrt{rt_a})}$$

For widely spaced miter bends with $\theta > 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4c) from para. 304.2.3 as

$$P_a = \frac{SEWt_a^2}{r(t_a + 1.25\tan\theta\sqrt{rt_a})}$$

where

 $r = \text{mean radius of pipe} = (D-t_n)/2$

R = effective bend radius of the miter (see para. 304.2.3 of code for definition) [an input in CAEPIPE for miters]

$$\theta = \text{miter half angle} = \tan^{-1} \left(\frac{1.0}{\left(\frac{2R}{r} - 1.0\right)} \right)$$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated using Eqs. (23a), (23b1), (23b2), (23c) and (23d) from para. 320.2 and para. 302.3.5 (c).

$$S_L = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_h$$

where

$$S_{a} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Sustained} = \left[\frac{PD}{4t_{s}} + \frac{R}{A_{p}}\right]_{Sustained}$$
$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Sustained}$$
For branch (Leg 3 in Fig. 319.4.4B),

$$S_b = \left[\frac{\sqrt{(I_i M_i)^2 + (I_o M_o)^2}}{Z_e}\right]_{Sustained}$$

$$S_t = \left[\frac{I_t M_t}{2Z_m}\right]_{Sustained}$$

- P = maximum of CAEPIPE input pressures P1 through P10
- D =outside diameter

 t_S = wall thickness used for sustained stress calculation after deducting corrosion allowance from the nominal thickness

- t_s = nominal thickness corrosion allowance in CAEPIPE, as per para. 320.1
- $A_p = \text{corroded}$ cross-sectional area of the pipe computed using t_s as per para. 320.1.
- I_a = longitudinal force index = 1.0
- F_a = longitudinal force due to sustained loads (pressure and weight)
- R = axial force due to weight alone, where weight is computed using nominal thickness.
- I_i = sustained in-plane moment index = 0.75 i_i or 1.0, whichever is greater.
- I_o = sustained out-of-plane moment index = $0.75i_o$ or 1.0, whichever is greater. where i_i and i_o are taken from Appendix D of B31.3 (2016).
- I_t = torsional moment index = 1.0
- M_i = in-plane bending moment due to sustained loads e.g., pressure and weight
- M_o = out-of-plane bending moment due to sustained loads e.g., pressure and weight
- M_t = torsional moment due to sustained loads e.g., pressure and weight
- $Z_m = \underline{\text{corroded}}$ section modulus as per para. 320.1
- Z_e = effective <u>corroded</u> section modulus for branch as per para. 320.2

Sustained plus Occasional Stress

The stress (S_{Lo}) due to sustained and occasional loads is calculated as the sum of stress (S_L) due to sustained loads such as pressure and weight and stress (S_o) due to occasional loads such as earthquake or wind. Wind and earthquake are not considered as acting concurrently (see para. 302.3.6(a)).

For temp $\leq 427^{\circ}$ C or 800° F

 $S_{LO} \leq 1.33S_h$

For temp > 427° C or 800° F

 $S_{LO} \leq 0.9WS_{v}$

where

 $S_{LO} = S_L + S_O$, where S_L is computed as above, and S_O is calculated using Eqs. (23a), (23b1), (23b2), (23c) and (23d) with applicable loads.

$$S_{o} = \sqrt{(|S_{ao}| + S_{bo})^{2} + (2S_{to})^{2}}$$

$$S_{ao} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Occasional} = \left[\frac{(P_{peak} - P)D}{4t_{s}} + \frac{R}{A_{p}}\right]_{Occasional}$$

$$S_{bo} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Occasional}$$

For branch (Leg 3 in Fig. 319.4.4B)

$$S_{bo} = \left[\frac{\sqrt{(I_i M_i)^2 + (I_o M_o)^2}}{Z_e}\right]_{Occasional}$$

 $S_{to} = \left[\frac{I_t M_t}{2Z_m}\right]_{Occasional}$

 P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P

R = axial force due to occasional loads such as earthquake or wind

 M_i = in-plane bending moment due to occasional loads such as earthquake or wind

 M_o = out-of-plane bending moment due to occasional loads such as earthquake or wind

 M_t = torsional moment due to occasional loads such as earthquake or wind

 S_{ν} = yield strength at maximum temperature, i.e., max (T_{ref} , T_1 through T_{10})

W = 1.0 for Austenetic stainless steel and 0.8 for all other materials as per para. 302.3.6(a)

 $Z_m = \text{corroded}$ section modulus as per para. 320.1

 Z_e = effective <u>corroded</u> section modulus for branch as per para. 320.2

Expansion Stress

The stress (S_E) due to thermal expansion is calculated using Eq. 17 from para. 319.4.4

$$S_E = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2}$$

where

$$S_{a} = \left[\frac{i_{a}F_{a}}{A}\right]_{Expansion}$$
$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]_{Expansion}$$

For branch (Leg 3 in Fig. 319.4.4B)

$$S_b = \left[\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z_e}\right]_{Expansion}$$

 $S_t = \left[\frac{i_t M_t}{2Z}\right]_{Expansion}$

- $A = \underline{\text{un-corroded}}$ cross-sectional area of the pipe/fitting computed using nominal thickness t_n and outer diameter D, as per para. 319.3.5.
- i_a = axial stress intensification factor = 1.0 for elbows, pipe bends and miter bends and $i_a = i_o \text{ or } i$ for other components as listed in Appendix D of B31.3 (2016)
- $F_a = \underline{range}$ of axial force due to displacement strains between any two thermal conditions being evaluated
- i_i = in-plane stress intensification factor; shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; shall not be less than 1.0
- i_t = torsional stress intensification factor = 1.0
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment
- $Z = \underline{\text{un-corroded}}$ section modulus as per para. 319.3.5 and para. 319.4.4 (a)
- $Z_e = \underline{\text{un-corroded}}$ effective section modulus as per para. 319.3.5 and para. 319.4.4 (c)

$$S_A = f(1.25S_c + 0.25S_h)$$
, Eq. (1a) of para. 302.3.5(d)

- f = stress range reduction factor from Eq. (1c) of para. 302.3.5 (d) = 6N^{-0.2} where f \ge 0.15 and f \le 1.0 (see Note 1 below)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than S_L , the allowable stress range may be calculated as

 $S_A = f[1.25(S_C + S_h) - S_L]$, Eq. (1b) of para. 302.3.5(d).

Process Piping ASME B31.3 (2016) [Superseded by ASME B31.3 (2018)]

This is specified as an analysis option "Use liberal allowable stresses", in the menu Layout > Options > Analysis > Code tab.

Notes:

- 1. As per para. 302.3.5 (d), f = maximum value of stress range factor; 1.2 for ferrous materials with specified minimum tensile strengths ≤ 517 MPa (75 ksi) and at Metal temperatures $\leq 371^{\circ}$ C (700°F). This criterion is not implemented in CAEPIPE as the provision for entering the minimum tensile strength in material property is not available at this time. Hence $f \leq 1.0$ for all materials including Ferrous materials.
- 2. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. 319.4.4 (a).
- 3. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

Notes on Material Library for B313-2016.mat supplied with CAEPIPE:

Material library for ASME B31.3 (2016) [B313-2016.mat]supplied with CAEPIPE has been created by referring to the values provided in Appendix A and Appendix C of ASME B31.3 (2016).

APPENDIX D FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

See Table D300.

	Flexibility	Stress Inte Factor [Not		Flexibility		
Desc ription	Factor,	Out-of-Plane,	In-Plane, J _i	Characteristic, h	Sketch	
Welding elbow or pipe bend [Notes (1), (3)-(6)]	1.65 ĥ	0.75 h ^{2/s}	0.9 6 ^{2/≥}	$\frac{TR_1}{r_2^2}$	$R_1 = bend radius$	
Closely spaced miter bend $s < r_2$ (1 + tan θ) [Notes (1), (3), (4), (6)]	<u>1.52</u> β ^{sk}	$\frac{0.9}{h^{2/3}}$	0.9 ∱ ^{2/≥}	$\frac{\cot \vartheta}{2} \left(\frac{s\overline{J}}{r_2^2} \right)$	$\int_{\theta}^{\frac{1}{2}} R_1 = \frac{s \cot \theta}{2} r_2$	
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (3), (6)]	<u>1.52</u> β ^{\$&}	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\emptyset}{2}\left(\frac{7}{r_2}\right)$	\vec{r}_{1}	
Welding tee in accordance with ASME B16.9 [Notes (1), (3), (5), (7), (8)]	1	0.9 h ^{2/b}	³ /4 ^j ₀ + ¹ /4	3.1 7		
Reinforced fabricated tee with pad or saddle [Notes (1), (3), (8), (9), (10)]	1	$\frac{0.9}{h^{2/3}}$	³ /4 / ₀ + ¹ /4	$\frac{(\overline{7}+\frac{1}{2},\overline{7}_r)^{2s}}{\overline{7}^{1s}r_2}$	$\frac{1}{\overline{T}_r}$ Pad Saddle	

Table D300	Flexibility Factor, I	k, and	Stress Intens	ificatior	n Factor, <i>i</i>	
------------	-----------------------	--------	---------------	-----------	--------------------	--

Process Piping ASME B31.3 (2016) [Superseded by ASME B31.3 (2018)]

Table D300	Flexibility	Factor, <i>k</i> , and	Stress Int	ensification Fa	ctor, i (Cont'd)	
	Flexibility		Stress Intensification Factor [Notes (1), (2)]			
Description	Factor,	Out-of-Plane,	In - Plane,	Flexibility Characteristic, 方	Sketch	
Unreinforced fabricated tee [Notes (1), (3), (8), (10)]	1	$\frac{0.9}{b^{2/8}}$	<i>i</i> ; ∛₄j₀ + ¹⁄₄	7 1/2		
Extruded welding tee with $r_x \ge 0.05 D_b$ $\overline{T}_c < 1.5 \overline{T}$ [Notes (1), (3), (8)]	1	$\frac{0.9}{h^{2/3}}$	³ / ₄ j ₀ + ¹ / ₄	$\left(1+\frac{r_s}{r_2}\right)\frac{\overline{T}}{r_2}$	$ \begin{array}{c} $	
Welded-in contour insert [Notes (1), (3), (7), (8)]	1	0.9 h ^{2/8}	³ /4/0 + ¹ /4	$3.1 \frac{\overline{f}}{r_2}$		
Branch welded-on fitting (integrally reinforced) [Notes (1), (3), (10), (11)]	1	$\frac{0.9}{h^{2/3}}$	0.9 h ^{2/8}	3.3 7 7 ₂		

Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>1</i>
Butt welded joint, reducer, or weld neck flange	1	1.0
Double-welded slip-on flange	1	1.2
Fillet or socket weld	1	1.3 [Note (12)]
Lap joint flange (with ASME B16.9 lap joint stub)	1	1.6
Threaded pipe joint or threaded flange	1	2.3
Corrugated straight pipe, or corrugated or creased bend [Note (13)]	5	2.5

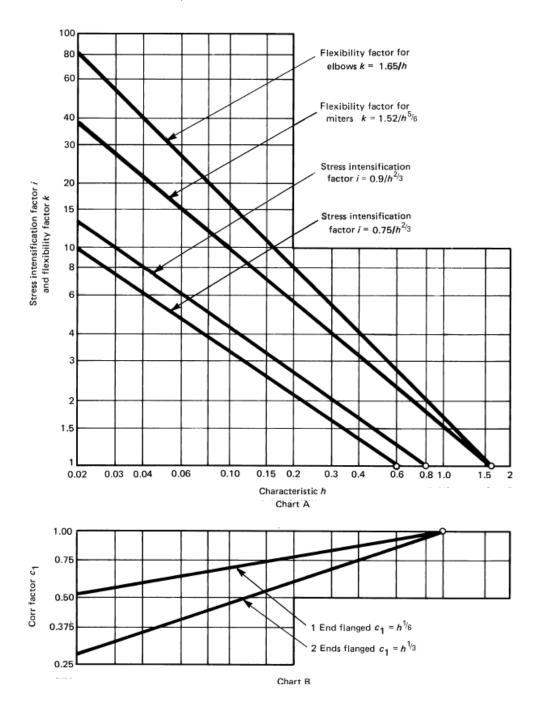


Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

GENERAL NOTE: Stress intensification and flexibility factor data in Table D300 are for use in the absence of more directly applicable data (see para. 319.3.6). Their validity has been demonstrated for $D/\overline{T} \leq 100$. NOTES:

- (1) The flexibility factor, k, in the Table applies to bending in any plane; also see para. 319.3.6. The flexibility factors, k, and stress intensification factors, i, shall apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends, and to the intersection point for tees.
- (2) A single intensification factor equal to $0.9/h^{2/3}$ may be used for both i_i and i_o if desired.
- (3) The values of *k* and *i* can be read directly from Chart A by entering with the characteristic *h* computed from the formulas given above. Nomenclature is as follows:
 - D_b = outside diameter of branch
 - R_1 = bend radius of welding elbow or pipe bend
 - r_s = see definition in para. 304.3.4(c)
 - $r_2 = mean radius of matching pipe$
 - = miter spacing at centerline
 - s = miter spacing at centerune $\overline{T} =$ for elbows and miter bends, the nominal wall thickness of the fitting
 - = for tees, the nominal wall thickness of the matching pipe
 - \underline{T}_{r} = crotch thickness of branch connections measured at the center of the crotch where shown in the illustrations
 - $\overline{T}_r = pad \text{ or saddle thickness}$
 - θ = one-half angle between adjacent miter axes
- (4) Where flanges are attached to one or both ends, the values of i and i in the Table shall be corrected by the factors C_1 , which can be read directly from Chart B, entering with the computed h.
- (5) The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (6) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the Table, divide *k* by

$$1 + 6 \left(\frac{P_j}{E_j}\right) \left(\frac{r_2}{\overline{\tau}}\right)^{1/2} \left(\frac{R_1}{r_2}\right)^{1/2}$$

divide *i* by

$$1 + 3.25 \begin{pmatrix} P_j \\ \overline{F_j} \end{pmatrix} \begin{pmatrix} \underline{r_2} \\ \overline{T} \end{pmatrix}^{\frac{N_2}{2}} \begin{pmatrix} R_1 \\ \underline{r_2} \end{pmatrix}^{\frac{N_2}{2}}$$

For consistency, use kPa and mm for SI metric, and psi and in. for U.S. customary notation.

- (7) If $r_s \ge \frac{1}{4} D_b$ and $T_c \ge 1.5\overline{T}$, a flexibility characteristic of 4.4 \overline{T}/r_2 may be used.
- (8) Stress intensification factors for branch connections are based on tests with at least two diameters of straight run pipe on each side of the branch centerline. More closely loaded branches may require special consideration.
- (9) When \overline{T}_r is > $1^{1/2} \overline{T}_r$ use $h = 4 \overline{T}/r_2$.
- (10) The out-of-plane stress intensification factor (SIF) for a reducing branch connection with branch-to-run diameter ratio of 0.5 < d/D < 1.0 may be nonconservative. A smooth concave weld contour has been shown to reduce the SIF. Selection of the appropriate SIF is the designer's responsibility.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a fillet weld is made between the pipe and fitting as shown in Fig. 328.5.2C. For welds to socket welded flanges, the stress intensification factor is based on the weld geometry shown in Fig. 328.5.2B, illustration (3) and has been shown to envelope the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 328.5.2A, has been shown to improve the fatigue performance of the weld.
- (13) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

(14)

Process Piping ASME B31.3 (2016) [Superseded by ASME B31.3 (2018)]

Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure of components (extracted from Table 304.1.1 of ASME B31.3 – 2016)

			Values of 'Y' for Temperature, Deg F (Deg C)						
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
SI.		and							and
No.	Material Type	below							above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
3.	Nickel Alloys (NA)	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
4.	Gray Iron / Cast Iron (CI)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.	Material Types other than those stated from SI. Nos. 1 to 4.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Allowable Internal Pressure

For straight pipes and bends, the allowable pressure is calculated using Eq. (3a) for straight pipes and Eq. (3c) with I = 1.0 for bends from paras. 304.1.2. and 304.2.1. respectively.

$$P_a = \frac{2SEWt_a}{D - 2Yt_a}$$

where

 P_a = allowable pressure

S = allowable stress as provided in para. 302.3.1 (a) and as per Table A-1

E = joint factor (input as material property) from Table A-1A or A-1B from para. 302.3.3. and para. 302.3.4.

W = Weld Joint Strength Reduction Factor from para. 302.3.5 (e) and as per Table 302.3.5 is implemented in CAEPIPE as follows. T_{max} below denotes maximum operating temperature (i.e., max of T1 through T10 and Tref in CAEPIPE).

With Material Type in CAEPIPE = CS [CrMo]

W = 1.0 with Tmax $\le 800^{\circ}$ F (or 427° C)

W = 0.64 with Tmax> 1200^o F (or 649^o C) and

For T_{max} > 800⁰ F (or 427⁰ C) and <= 1200⁰ F (or 649⁰ C), the values of W are taken from Table 302.3.5.

W for intermediate temperatures is linearly interpolated.

With Material Type in CAEPIPE = FS [CSEF (Subcritical)]

W = 1.0 with Tmax <= 900^o F (or 482^o C)

W = 0.5 with Tmax> 900^o F (or 482^oC)

With Material Type in CAEPIPE = AS or NA

W = 1.0 with Tmax <= 950^o F (or 510^o C)

For Tmax> 950° F (or 510° C), the values of W are taken as per Table 302.3.5.

W for intermediate temperatures is linearly interpolated.

With Material Type in CAEPIPE = SS

W = 1.0 with Tmax <= 1500^o F (or 816^o C)

For Other Material Types in CAEPIPE

W = 1.0 with Tmax <= 800[°] F (or 427[°] C)

W = 1 - 0.000909 ($T_{max} - T_{cr}$) for $T_{max} > 800^{\circ}$ F (or 427° C) and <= 1500°F (or 810°C)

where, $T_{\rm cr}$ is taken as $800^{\rm 0}~{\rm F}$

 t_a = available thickness for pressure design

= t_n × (1 - mill tolerance/100) - corrosion allowance "c"

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

D = outside diameter

d = inside diameter

 $Y = \text{Pressure coefficient from Table 304.1.1, valid for } t_a < D/6, \text{ and}$ $Y = \frac{d+2c}{D+d+2c}, \text{ valid for } t_a \ge D/6$

<u>For closely spaced miter bends</u>, the allowable pressure is calculated using Eq. (4b) from para. 304.2.3.

$$P_a = \frac{SEWt_a(R-r)}{r(R-r/2)}$$

where

 $r = \text{mean radius of pipe} = (D - t_n)/2$

R = effective bend radius of the miter (see para. 304.2.3 of code for definition) For widely spaced miter bends, the allowable pressure is calculated using Eq. (4c) from para. 304.2.3 as

$$P_a = \frac{SEWt_a^2}{r(t_a + 1.25\tan\theta\sqrt{rt_a})}$$

where

 θ = miter half angle

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated using Eq. (23a) and (23b) from para. 320.2 and para. 302.3.5 (c).

$$S_L = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_h$$

where

$$S_{a} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Sustained} = \left[\frac{PD}{4t_{s}} + \frac{R}{A_{p}}\right]_{Sustained}$$
$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Sustained}$$
$$S_{t} = \left[\frac{I_{t}M_{t}}{2Z_{m}}\right]_{Sustained}$$

- P = maximum of CAEPIPE input pressures P1 through P10
- D =outside diameter
- t_S = wall thickness used for sustained stress calculation after deducting corrosion allowance from the nominal thickness
- t_s = nominal thickness corrosion allowance in CAEPIPE, as per para. 320.1
- $A_p = \text{corroded}$ cross-sectional area of the pipe computed using t_s as per para. 320.1.
- I_a = longitudinal force index = 1.0
- F_a = longitudinal force due to sustained loads (pressure and weight)
- R = axial force due to weight
- I_i = in-plane stress intensification factor; the product of 0.75 i_i shall not be less than 1.0
- $I_o = \text{out-of-plane stress intensification factor; the product of <math>0.75i_o$ shall not be less than 1.0
- I_t = torsional moment index = 1.0
- M_i = in-plane bending moment due to sustained loads e.g., pressure and weight
- M_o = out-of-plane bending moment due to sustained loads e.g., pressure and weight
- M_t = torsional moment due to sustained loads e.g., pressure and weight
- $Z_m = \underline{\text{corroded}}$ section modulus as per para. 320.1; for reduced outlets / branch connections, effective section modulus

 Z_m = hot allowable stress at maximum temperature [i.e., at Max(Tref, T1 through T10)]

Sustained plus Occasional Stress

The stress (S_{Lo}) due to sustained and occasional loads is calculated as the sum of stress due to sustained loads such as due to pressure and weight (S_L) and stress due to occasional loads (S_o) such as due to earthquake or wind. Wind and earthquake are not considered concurrently (see para. 302.3.6(a)).

For temp $\leq 427^{\circ}$ C or 800° F

 $S_{LO} \leq 1.33S_h$

For temp > 427° C or 800° F

 $S_{LO} \leq 0.9WS_{\gamma}$

where

 $S_{LO} = S_L + S_O$, where S_L is computed as above, and

$$S_{o} = \sqrt{(|S_{ao}| + S_{bo})^{2} + (2S_{to})^{2}}$$

$$S_{ao} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Occasional} = \left[\frac{(P_{peak} - P)D}{4t_{s}} + \frac{R}{A_{p}}\right]_{Occasional}$$

$$S_{bo} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Occasional}$$

 $S_{to} = \begin{bmatrix} I_t M_t \\ 2Z_m \end{bmatrix}_{occasional}$ $P_{peak} = \text{peak pressure} = (\text{peak pressure factor in CAEPIPE}) \times P$ R = axial force due to occasional loads such as earthquake or wind $M_i = \text{in-plane bending moment due to occasional loads such as earthquake or wind}$ $M_o = \text{out-of-plane bending moment due to occasional loads such as earthquake or wind}$ $M_t = \text{torsional moment due to occasional loads such as earthquake or wind}$ $S_y = \text{yield strength at maximum temperature, i.e., max(T_{ref}, T_1 through T_{10})}$

W = 1.0 for Austenitic stainless steel and 0.8 for all other materials as per para. 302.3.6(a)

Expansion Stress

The stress (S_E) due to thermal expansion is calculated using Eq. 17 from para. 319.4.4

$$S_E = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2}$$

where

$$S_{a} = \left[\frac{i_{a}F_{a}}{A}\right]_{Expansion}$$

$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]_{Expansion}$$

$$S_{t} = \left[\frac{i_{t}M_{t}}{2Z}\right]$$

$$S_t = \begin{bmatrix} 2Z \end{bmatrix}_{Expansion}$$

- $A = \underline{\text{un-corroded}}$ cross-sectional area of the pipe/fitting computed using nominal thickness t_n and outer diameter D, as per para. 319.3.5.
- i_a = axial stress intensification factor = 1.0 for elbows, pipe bends and miter bends and $i_a = i_o$ for other components as listed in Appendix D of B31.3 (2014)
- $F_a = \underline{range}$ of axial force due to displacement strains between any two thermal conditions being evaluated
- i_i = in-plane stress intensification factor; shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; shall not be less than 1.0
- i_t = torsional stress intensification factor = 1.0
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment
- Z =<u>un-corroded</u> section modulus as per para. 319.3.5; for reduced outlets/branch connections, effective section modulus as per para. 319.4.4 (a)
- $S_A = f(1.25S_C + 0.25S_h)$, Eq. (1a) of para. 302.3.5(d)
- f = stress range reduction factor from Eq. (1c) of para. 302.3.5 (d) = 6N^{-0.2} where f \ge 0.15 and f \le 1.0 (see Note 1 below)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than S_L , the allowable stress range may be calculated as

 $S_A = f[1.25(S_C + S_h) - S_L]$, Eq. (1b) of para. 302.3.5(d).

This is specified as an analysis option "Use liberal allowable stresses", in the menu Layout >Options>Analysis >Code tab.

Notes:

- 1. As per para. 302.3.5 (d), f = maximum value of stress range factor; 1.2 for ferrous materials with specified minimum tensile strengths ≤ 517 MPa (75 ksi) and at Metal temperatures $\leq 371^{\circ}$ C (700°F). This criterion is not implemented in CAEPIPE as the provision for entering the minimum tensile strength in material property is not available at this time. Hence $f \leq 1.0$ for all materials including Ferrous materials.
- 2. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

APPENDIX D FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

See Table D300.

	Flexibility	Stress Inte Factor [Not		Flexibility		
Desc ription	Factor, <i>k</i>	Out-of-Plane, <i>i_o</i>	In-Plane, <i>j_i</i>	Characteristic, ħ	Sketc h	
Welding elbow or pipe bend [Notes (1), (3)-(6)]	<u>1.65</u> ĥ	0.75 h ^{2/s}	0.9 ∱2/≥	$\frac{T\rho_1}{r_2^2}$	$R_1 = bend radius$	
Closely spaced miter bend $s < r_2 (1 + \tan \theta)$ [Notes (1), (3), (4), (6)]	<u>1.52</u> h ^{sk}	$\frac{0.9}{h^{2/3}}$	0.9 h ^{2/3}	$\frac{\cot \theta}{2} \left(\frac{s\overline{J}}{r_2^2} \right)$	$s = \frac{1}{\theta} R_1 = \frac{s \cot \theta}{2}$	
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (3), (6)]	1.52 h ^{sk}	0.9 h ^{2/3}	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\left(\frac{7}{r_2}\right)$	\vec{r}_{2}	
Welding tee in accordance with ASME B16.9 [Notes (1), (3), (5), (7), (8)]	1	0.9 h ^{2/\$}	³ /4 ^j 0 + ¹ /4	3.1 7 ½	$\frac{1}{r_c} \frac{1}{r_x} \frac{1}{r_x} r_2$	
Reinforced fabricated tee with pad or saddle [Notes (1), (3), (8), (9), (10)]	1	$\frac{0.9}{h^{2/s}}$	³ / ₄ j ₀ + ¹ / ₄	$\frac{(\overline{T}+\frac{1}{2},\overline{T}_{r})^{2s}}{\overline{T}^{1s}r_{2}}$	$\frac{1}{\overline{\tau}_r}$ Pad Saddle	

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i

Table D300) Flexibility	/ Factor, k, and Stress Inte Factor [Noti	nsification	ensification Fa	ctor, i (Cont'd)
Description	Flexibility Factor, <i>k</i>	Out-of-Plane, <i>j_o</i>	In - Plane, <i>i</i> i	Flexibility Characteristic, /r	Sketch
Unreinforced fabricated tee [Notes (1), (3), (8), (10)]	l	$\frac{0.9}{h^{2/b}}$	³ / ₄ / ₆ + ¹ / ₄	$\frac{7}{r_2}$	
Extruded welding tee with $r_x \ge 0.05 \ D_b$ $\overline{T_c} < 1.5 \ \overline{T}$ [Notes (1), (3), (8)]	1	$\frac{0.9}{b^{2/3}}$	[≥] ⁄ ₄ j ₀ + ¹ ∕ ₄	$\left(1+\frac{r_{s}}{r_{2}}\right)\frac{\overline{f}}{r_{2}}$	
Welded-in contour insert [Notes (1), (3), (7), (8)]	l	0.9 h ^{2/8}	³ /4 ^j ₀ + ¹ /4	$3.1 \frac{\overline{f}}{t_2}$	
Branch welded-on fitting (integrally reinforced) [Notes (1), (3), (10), (11)]	l	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/8}}$	3.3 7 72	

Desc ription	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>
Butt welded joint, reducer, or weld neck flange	1	1.0
Double-welded slip-on flange	1	1.2
Fillet or socket weld	1	1.3 [Note (12)]
Lap joint flange (with ASME B16.9 lap joint stub)	1	1.6
Threaded pipe joint or threaded flange	1	2.3
Corrugated straight pipe, or corrugated or creased bend [Note (13)]	5	2.5

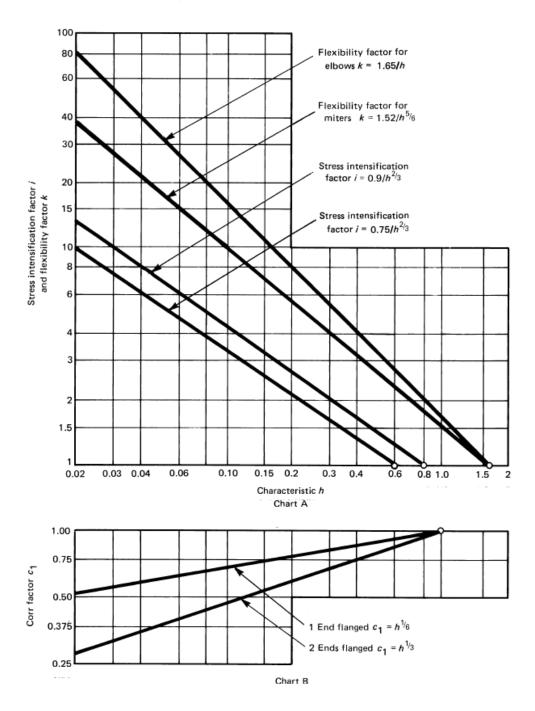


Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

GENERAL NOTE: Stress intensification and flexibility factor data in Table D300 are for use in the absence of more directly applicable data (see para. 319.3.6). Their validity has been demonstrated for $D/\overline{T} \leq 100$. NOTES:

- (1) The flexibility factor, k, in the Table applies to bending in any plane; also see para. 319.3.6. The flexibility factors, k, and stress intensification factors, i, shall apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends, and to the intersection point for tees.
- (2) A single intensification factor equal to $0.9/h^{2/3}$ may be used for both i_i and i_o if desired.
- (3) The values of *k* and *i* can be read directly from Chart A by entering with the characteristic *h* computed from the formulas given above. Nomenclature is as follows:
 - D_b = outside diameter of branch
 - R_1 = bend radius of welding elbow or pipe bend
 - r_s = see definition in para. 304.3.4(c)
 - $r_2 = mean radius of matching pipe$
 - = miter spacing at centerline
 - s = miter spacing at centerune $\overline{T} =$ for elbows and miter bends, the nominal wall thickness of the fitting
 - = for tees, the nominal wall thickness of the matching pipe
 - \underline{T}_{r} = crotch thickness of branch connections measured at the center of the crotch where shown in the illustrations
 - $\overline{T}_r = pad \text{ or saddle thickness}$
 - θ = one-half angle between adjacent miter axes
- (4) Where flanges are attached to one or both ends, the values of i and i in the Table shall be corrected by the factors C_1 , which can be read directly from Chart B, entering with the computed h.
- (5) The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (6) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the Table, divide *k* by

$$1 + 6 \left(\frac{P_j}{E_j}\right) \left(\frac{r_2}{\overline{\tau}}\right)^{1/2} \left(\frac{R_1}{r_2}\right)^{1/2}$$

divide *i* by

$$1 + 3.25 \begin{pmatrix} P_j \\ \overline{F_j} \end{pmatrix} \begin{pmatrix} \underline{r_2} \\ \overline{T} \end{pmatrix}^{\frac{N_2}{2}} \begin{pmatrix} R_1 \\ \underline{r_2} \end{pmatrix}^{\frac{N_2}{2}}$$

For consistency, use kPa and mm for SI metric, and psi and in. for U.S. customary notation.

- (7) If $r_s \ge \frac{1}{4} D_b$ and $T_c \ge 1.5\overline{T}$, a flexibility characteristic of 4.4 \overline{T}/r_2 may be used.
- (8) Stress intensification factors for branch connections are based on tests with at least two diameters of straight run pipe on each side of the branch centerline. More closely loaded branches may require special consideration.
- (9) When \overline{T}_r is > $1^{1/2} \overline{T}_r$ use $h = 4 \overline{T}/r_2$.
- (10) The out-of-plane stress intensification factor (SIF) for a reducing branch connection with branch-to-run diameter ratio of 0.5 < d/D < 1.0 may be nonconservative. A smooth concave weld contour has been shown to reduce the SIF. Selection of the appropriate SIF is the designer's responsibility.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a fillet weld is made between the pipe and fitting as shown in Fig. 328.5.2C. For welds to socket welded flanges, the stress intensification factor is based on the weld geometry shown in Fig. 328.5.2B, illustration (3) and has been shown to envelope the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 328.5.2A, has been shown to improve the fatigue performance of the weld.
- (13) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

(14)

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 403.2.1.

$$P_i = \frac{2St_a}{D}$$

where

 P_i = allowable pressure

S = allowable stress = F x E x S_y

- F = Design Factor = 0.72 as specified in para 403.2.1
- S_y = specified minimum yield strength of pipe at Design Temperature input in CAEPIPE
- E = weld joint factor as defined in Table 403.2.1-1
- t_a = available thickness for pressure design
 - = $t_n \times (1 \text{mill tolerance}/100)$ sum of allowances, as per para. 403.2.1, for corrosion, threading, grooving and erosion.
- D =outside diameter

Stress due to Sustained Loads [Unrestrained (above ground) Piping]

The sum of longitudinal stress due to pressure and due to axial loading (other than thermal expansion and pressure) and the bending stress due to external loads, such as weight of the pipe and contents, etc. is calculated as follows.

For Pipes (as per para. 402.6.2)

$$S_L = \left|\frac{PD}{4t_n} + \frac{F_a}{A}\right|_{Sustained} + \left[\frac{\sqrt{(i_iM_i)^2 + (i_oM_o)^2 + (M_t)^2}}{Z}\right]_{Sustained} \le 0.75S_y$$

as per Table 403.3.1-1

where

- i_i = in-plane stress intensification factor; for straight pipes, i_i = 1.0 (See Note 5)
- i_o = out-of-plane stress intensification factor; for straight pipes, i_o = 1.0 (See Note 5)

For Fittings & Components.(as per para. 402.6.2)

$$S_{L(fc)} = \left|\frac{PD}{4t_n} + \frac{F_a}{A}\right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z}\right]_{Sustained} \le 0.75S_y$$

as per Table 403.3.1-1

where

P = maximum operating pressure = max. of CAEPIPE input pressures P1 through P10 Due considerations shall be given as per para. 401.2.2.2 while inputting pressure values in CAEPIPE.

D = nominal outside diameter

- t_n = nominal thickness as per para. 402.1
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0 (See Note 5)
- i_o = out-of-plane stress intensification factor; the product 0.75 i_o shall not be less than 1.0 (See Note 5)
- M_i = in-plane bending moment due to weight and other external loads
- M_o = out-of-plane bending moment due to weight and other external loads
- M_t = torsional moment due to weight and other external loads
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- F_a = axial force component for external loads
- $A = \underline{\text{nominal}} \text{ metal cross-section area}$
- S_y = specified minimum yield strength of pipe at maximum CAEPIPE temperature [i.e., at max (Tref, T1 through T10)]

Stress due to Sustained Loads + Occasional Loads [Unrestrained (above ground) Piping]

The sum of longitudinal pressure stress due to axial loading (other than thermal expansion and pressure) and the bending stress due to external loads, such as weight of the pipe and contents, seismic or wind, etc. is calculated as follows. Wind and Seismic is not considered to act concurrently.

For Pipes (as per para. 402.6.2)

$$S_{LO} = S_{L} + \left| \frac{\left(P_{peak} - P\right)D}{4t_{n}} + \frac{F_{a}}{A} \right|_{occasional} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{occasional} \leq 0.8S_{y}$$

as per Table 403.3.1-1

For Fittings & Components (as per para. 402.6.2)

$$S_{LO(fc)} = S_{L(fc)} + \left| \frac{(P_{peak} - P)D}{4t_n} + \frac{F_a}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.8S_y$$

as per Table 403.3.1-1

where

 P_{peak} = peak pressure = (peak pressure factor x P) where P = maximum operating pressure, as defined above with $1.0 \le$ peak pressure factor ≥ 1.1 as per para. 403.3.4

Expansion Stress [Unrestrained (above ground) Piping]

The stress range (S_E) due to thermal expansion is calculated from para.402.5.2

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$
as per Table 403.3.1-1 and para. 403.3.2

where

 S_b = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$

 S_t = torsional stress = $\frac{M_t}{2Z}$

 M_i = in-plane bending moment due to thermal expansion

 M_o = out-of-plane bending moment due to thermal expansion

 M_t = torsional moment due to thermal expansion

 $Z = \underline{un-corroded}$ section modulus; for reduced outlets, effective section modulus

$$S_A = f[1.25(S_C + S_h) - S_L]$$

f = stress range reduction factor = $6/N^{0.2}$, where N = number of equivalent full range Cycles, where $f \le 1.2$ (from para. 403.3.2). See Note below.

- $S_c = 0.67S_y$ at the lower of the installed temperature or minimum operating temperature $\leq 20,000$ psi
- $S_h = 0.67S_y$ at the higher of the installed temperature or maximum operating temperature $\leq 20,000$ psi
- S_y = specified minimum yield strength of pipe at maximum operating temperature [i.e., at max (Tref, T1 through T10)]

Note:

As per para. 403.3.2, f cannot exceed 1.2 for ferrous materials with specified minimum tensile strengths ≤ 517 MPa (75 ksi) and at Metal temperatures $\leq 371^{\circ}$ C (700°F). This criterion is not implemented in CAEPIPE as the provision for entering the minimum tensile strength in material property is not available at this time. Hence $f \leq 1.0$ for all materials including Ferrous materials.

Stress due to Sustained, Thermal and Occasional Loads [Restrained (buried) Piping]

The Net longitudinal stress (S_I) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from para. 402.6.1

$$S_{Lp} = S_E + \upsilon S_H + \frac{F_a}{A} + \frac{M}{Z}$$
$$S_{Ln} = S_E + \upsilon S_H + \frac{F_a}{A} - \frac{M}{Z}$$

As per para. 402.6.1, both positive and negative values of M/Z shall be considered for analysis.

Where

 S_E = Thermal expansion stress = $E\alpha_m(T_m - T_i)$, which can either be positive <u>or</u> negative S_H = circumferential (hoop) stress = $\frac{PD}{2t_n}$, which can either be positive or negative as per para. 402.6.1.

v = Poission's ratio = 0.3 as per para. 402.2.3

 F_a = axial force from weight and other sustained and occasional loads. As per para. 402.6.1, F_a can be positive or negative.

M = bending moment from Weight and other Sustained and Occasional loads

<u>For Pipes</u>

$$M = \sqrt{(i_i M_i)^2 + (i_o M_o)^2}$$

For Fittings & Components

$$M = \sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2}$$

where

P = PFO x max. pressure (P1 through P10) entered in CAEPIPE. PFO = Peak Pressure Factor input. PFO = 1.0, if occasional loads are not present. D = outside diameter $t_n = \text{nominal thickness}$ $i_i = \text{in-plane stress intensification factor; the product 0.75i_i shall not be less than 1.0$ $i_o = \text{out-of-plane stress intensification factor; the product 0.75i_oshall not be less than 1.0$ $M_i = \text{in-plane bending moment from Weight and other Sustained and Occasional loads}$ $M_o = \text{out-of-plane bending moment from Weight and other Sustained and Occasional loads}$ $A = \underline{\text{nominal}} \text{ metal cross-section area}$ $Z = \underline{\text{un-corroded section modulus; for reduced outlets, effective section modulus}$ $S_y = \text{specified minimum yield strength of pipe at maximum operating temperature [i.e., at max (Tref, T1 through T10)]$ $T_i = \text{installation temperature} = T_{ref} \text{ in CAEPIPE} (see Note below)$ $\alpha_m = \text{coefficient of thermal expansion at T_m defined above (see Note below)}$

E = young's modulus at ambient (reference) temperature

Note:

If there are more than one thermal load, for example T1 and T2, then CAEPIPE calculates longitudinal stress S_T due to thermal expansion as follows.

For a change in temperature from T_{ref} to T_1 , $S_{T1} = -E\alpha_1(T_1 - T_{ref})$

For a change in temperature from T_{ref} to T_2 , $S_{T2} = -E\alpha_2(T_2 - T_{ref})$

For a change in temperature from T₁ to T₂, $S_{T1-,>T2} = S_{T2} - S_{T1}$

Please note, that negative (-) sign is added in the above equations as the soil is restraining the thermal expansion / contraction of the buried pipe due to friction at the soil-to-pipe interface.

Combining of Stresses [Restrained (buried) Piping]

The longitudinal and circumferential stresses are combined in accordance with the maximum shear stress theory as follows (by default in CAEPIPE) as per para. 402.7.

$$S_{eq1} = 2\sqrt{\left[\left(S_{Lp} - S_{H}\right)/2\right]^{2} + (S_{t})^{2}}$$
 $S_{eq2} = 2\sqrt{\left[\left(S_{Ln} - S_{H}\right)/2\right]^{2} + (S_{t})^{2}}$

where, S_{Lp} and S_{Ln} are calculated as given above.

Alternatively, the stresses may be combined in accordance with the maximum distortion energy theory as follows (see Note 4 below):

$$S_{eq1} = \sqrt{(S_H)^2 - S_H S_{Lp} + (S_{Lp})^2 + 3(S_t)^2} \quad S_{eq2} = \sqrt{(S_H)^2 - S_H S_{Ln} + (S_{Ln})^2 + 3(S_t)^2}$$

$$S_{eq} = max \{S_{eq1}, S_{eq2}\} \le 0.9S_y \text{ as per Table 403.3.1-1}$$

where

where

 S_{eq} = equivalent combined stress

$$S_t$$
 = torsional stress = $\frac{M_t}{27}$

 M_t = torsional moment from Weight and other Sustained and Occasional loads

Notes:

1. Para. 402.6.2 of B31.4 (2022) states that "Longitudinal stress from pressure in an unrestrained line should include consideration of bending stress or axial stress that may be caused by elongation of the pipe due to internal pressure and result in stress at bends and at connections and produce additional loads on equipment and on supports".

The above statement implies that "elongation due to Bourdon effect" is to be included in the Sustained load case (and hence in Operating case and Sustained plus Occasional load case).

In view of the above, Bourdon effect is turned ON always and disabled for editing by the user for ASME B31.4. This can be seen through CAEPIPE Layout Window > Options > Analysis > Pressure.

Please note, since the deformation due to Bourdon effect is being constrained by piping supports, CAEPIPE includes the Bourdon effect, by default as part of Thermal Expansion (when "Solve Thermal Case" is opted) or as part of Operating Case (when "Thermal = Operating – Sustained is opted).

- 2. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. 402.2.2.
- 3. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 4. By default, CAEPIPE combines the stresses for restrained piping using the maximum shear stress theory as stated above. To combine stresses in accordance with the maximum distortion energy theory as stated above, turn ON the analysis option "Combine stresses as per Max. Distortion Energy Theory" through Layout Window > Options > Analysis > Code.
- 5. Stress Intensification Factors (SIFs) and Flexibility Factors (FFs) are computed using ASME B31J (2017) by default.

Notes on Material Library for B314-2022.mat supplied with CAEPIPE:

Material library for ASME B31.4 (2022) [B314-2022.mat] has been created and supplied with CAEPIPE as mentioned below.

- 1. **Coefficient of Thermal Expansion:** As stated in para. 402.2.1 of B31.4 (2022), Coefficient of Thermal Expansion for Carbon and low alloy high tensile steel are entered as 6.5E-6 in./in./⁰F for temperatures up to 250 ⁰F.
- 2. **Modulus of Elasticity:** Modulus of Elasticity for Carbon and low alloy high tensile steel for temperatures up to 250 °F are entered by referring to the values provided in Table 832.5-1 of ASME B31.8 (2022).
- 3. **Yield Strength:** Yield Strength for Carbon and low alloy high tensile steel for temperatures up to 250 ^oF are entered by referring to the values specified in Mandatory Appendix D titled "Specified Minimum Yield Strength for Steel Pipe Commonly Used in Piping Systems" of ASME B31.8 (2022).
- 4. **Density and Poisson's ratio:** Density and Poisson's ratio for Carbon and low alloy high tensile steel are entered as 0.283 lb/in³ and 0.3 respectively.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 403.2.1.

$$P_i = \frac{2St_a}{D}$$

where

- P_i = allowable pressure
- S = allowable stress = F x E x S_v
- F = Design Factor = 0.72 as specified in para 403.2.1
- S_{v} = specified minimum yield strength of pipe at Design Temperature input in CAEPIPE
- E = weld joint factor as defined in Table 403.2.1-1
- t_a = available thickness for pressure design
 - = $t_n \times (1 \text{mill tolerance}/100)$ sum of allowances, as per para. 403.2.1, for corrosion, threading, grooving and erosion.
- D =outside diameter

Stress due to Sustained Loads (Unrestrained Piping)

For Pipes (as per para. 402.6.2)

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{F_{a}}{A} \right|_{Sustained} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{Sustained} \le 0.75S_{y}$$

as per Table 403.3.1-1

where

 i_i = in-plane stress intensification factor; for straight pipes, $i_i = 1.0$ i_o = out-of-plane stress intensification factor; for straight pipes, $i_o = 1.0$

For Fittings & Components.(as per para. 402.6.2)

$$S_{L(fc)} = \left|\frac{PD}{4t_n} + \frac{F_a}{A}\right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z}\right]_{Sustained} \le 0.75S_y$$

as per Table 403.3.1-1

where

- P = maximum operating pressure = max. of CAEPIPE input pressures P1 through P10 Due considerations shall be given as per para. 401.2.2.2 while inputting pressure values in CAEPIPE.
- D =outside diameter
- t_n = nominal thickness as per para. 402.1
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; the product 0.75 i_o shall not be less than 1.0

- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- F_a = axial force component for external loads

 $A = \underline{\text{nominal}} \text{ cross-section area}$

 S_y =specified minimum yield strength of pipe at maximum CAEPIPE temperature [i.e., at max (Tref, T1 through T10)]

Stress due to Sustained Loads + Occasional Loads (Unrestrained Piping)

For Pipes (as per para. 402.6.2)

$$S_{LO} = S_{L} + \left| \frac{\left(P_{peak} - P\right)D}{4t_{n}} + \frac{F_{a}}{A} \right|_{occasional} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{occasional} \leq 0.8S_{y}$$

as per Table 403.3.1-1

For Fittings & Components (as per para. 402.6.2)

$$S_{LO} = S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{F_a}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.8S_y$$

as per Table 403.3.1-1

where

 P_{peak} = peak pressure = (peak pressure factor x P) where P = maximum operating pressure, as defined above with $1.0 \le$ peak pressure factor ≥ 1.1 as per para. 403.3.4

Expansion Stress (Unrestrained Piping)

The stress (S_E) due to thermal expansion is calculated from para.402.5.2

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$
 as per Table 403.3.1-1 and para. 403.3.2

where

$$S_b = \text{resultant bending stress} = \frac{\sqrt{(i_t M_t)^2 + (i_0 M_0)^2}}{Z}$$

 $S_t = \text{torsional stress} = \frac{M_t}{2Z}$
 $M_t = \text{torsional moment}$
 $Z = \underline{\text{un-corroded section modulus; for reduced outlets, effective section modulus}$
Please note, "Liberal allowable" option is always turned ON for ANSI B31.4

$$S_A = f[1.25(S_c + S_h) - S_L]$$

 $f =$ stress range reduction factor = 6/N^{0.2}, where N = number of equivalent full range

Cycles, where $f \leq 1.2$ (from para. 403.3.2).

 $S_c = 0.67S_y$ at the lower of the installed temperature or minimum operating temperature $S_h = 0.67S_y$ at the higher of the installed temperature or maximum operating temperature S_y = specified minimum yield strength of pipe at maximum operating temperature [i.e., at max (Tref, T1 through T10)]

Stress due to Sustained, Thermal and Occasional Loads (Restrained Piping)

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from para. 402.6.1

$$S_{Lp} = S_E + \upsilon S_H + \frac{F_a}{A} + \frac{M}{Z}$$
$$S_{Ln} = S_E + \upsilon S_H + \frac{F_a}{A} - \frac{M}{Z}$$

As per para. 402.6.1, both positive and negative values of M/Z shall be considered for analysis.

Where

 S_E = Thermal expansion stress = $E\alpha(T_i - T_o)$, which can either be positive <u>or</u> negative

 $S_H = \text{circumferential (hoop) stress} = \frac{PD}{2t_n}$

v = Poission's ratio = 0.3 as per para. 402.2.3

As per para. 402.6.1, S_H can be either positive <u>or</u> negative.

 F_a = axial force, such as weight on a riser. As per para. 402.6.1, F_a can be positive or negative.

M = bending moment from Weight and other Sustained and Occasional loads

For Pipes

$$M = \sqrt{(i_i M_i)^2 + (i_o M_o)^2}$$

For Fittings & Components

$$M = \sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2}$$

where

P = PFO x max. pressure (P1 through P10) entered in CAEPIPE.

- PFO = Peak Pressure Factor input. PFO = 1.0, if occasional loads are not present.
- D =outside diameter
- t_n = nominal thickness
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; the product 0.75 i_o shall not be less than 1.0

- M_i = in-plane bending moment from Weight and other Sustained and Occasional loads
- M_o = out-of-plane bending moment from Weight and other Sustained and Occasional loads
- F_a = axial force component for Weight and other Sustained and Occasional loads
- $A = \underline{\text{nominal}} \text{ cross-section area}$
- $Z = \underline{un-corroded}$ section modulus; for reduced outlets, effective section modulus
- S_y = specified minimum yield strength of pipe at maximum operating temperature [i.e., at max (Tref, T1 through T10)]
- T_i = installation temperature = T_{ref} in CAEPIPE
- T_o = warmest or coldest operating temperature
- α = coefficient of thermal expansion at T_o defined above
- E = young's modulus at ambient (reference) temperature

Combining of Stresses (Restrained Piping)

The longitudinal and circumferential stresses are combined in accordance with the maximum shear stress theory as follows (by default in CAEPIPE).

$$S_{eq1} = 2\sqrt{\left[\left(S_{Lp} - S_{H}\right)/2\right]^{2} + (S_{t})^{2}}$$
 $S_{eq2} = 2\sqrt{\left[\left(S_{Ln} - S_{H}\right)/2\right]^{2} + (S_{t})^{2}}$

where S_{Lp} and S_{Ln} are calculated as given above.

Alternatively, the stresses may be combined in accordance with the maximum distortion energy theory as follows (see Note 4 below):

$$S_{eq1} = \sqrt{(S_H)^2 - S_H S_{Lp} + (S_{Lp})^2 + 3(S_t)^2} \quad S_{eq2} = \sqrt{(S_H)^2 - S_H S_{Ln} + (S_{Ln})^2 + 3(S_t)^2}$$

$$S_{eq} = max \{S_{eq1}, S_{eq2}\} \le 0.9S_y$$

 S_{eq} = equivalent combined stress

 S_t = torsional stress = $\frac{M_t}{27}$

 M_t = torsional moment from Weight and other Sustained and Occasional loads

Notes:

1. Para. 402.6.2 of B31.4 (2019) states that "Longitudinal stress from pressure in an unrestrained line should include consideration of bending stress or axial stress that may be caused by elongation of the pipe due to internal pressure and result in stress at bends and at connections and produce additional loads on equipment and on supports".

The above statement seems to imply that "elongation due to Bourdon effect" is to be included in the Sustained load case (and hence in Operating case and Sustained plus Occasional load case).

On the other hand, since the deformation due to Bourdon effect is being constrained by piping supports, CAEPIPE includes the Bourdon effect as part of the results for Thermal Expansion (when "Solve Thermal Case" is opted) or as part of the Operating Case (when "Thermal = Operating – Sustained is opted).

Pipeline Transportation Systems for Liquids and Slurries ASME B31.4 (2019)

- 2. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. 402.2.2.
- 3. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 4. By default, CAEPIPE combines the stresses for restrained piping using the maximum shear stress theory as stated above. To combine stresses in accordance with the maximum distortion energy theory as stated above, set an environmental variable with name "DET_314" with its value as "YES".
- 5. Stress Intensification Factors (SIFs) and Flexibility Factors (FFs) are computed using ASME B31.4 (2019) by default. When the option "Use B31J for SIFs and Flexibility Factors" is Turned ON, then CAEPIPE computes SIFs and FFs as per B31J (2017).

Notes on Material Library for B314-2019.mat supplied with CAEPIPE:

Material library for ASME B31.4 (2019) [B314-2019.mat] has been created and supplied with CAEPIPE as mentioned below.

- 1. **Coefficient of Thermal Expansion:** As stated in para. 402.2.1 of B31.4 (2019), Coefficient of Thermal Expansion for Carbon and low alloy high tensile steel are entered as 6.5E-6 in./in./⁰F for temperatures up to 250 ⁰F.
- 2. **Modulus of Elasticity:** Modulus of Elasticity for Carbon and low alloy high tensile steel for temperatures up to 250 °F are entered by referring to the values provided in Table 832.5-1 of ASME B31.8 (2018).
- 3. **Yield Strength:** Yield Strength for Carbon and low alloy high tensile steel for temperatures up to 250 ^oF are entered by referring to the values specified in Mandatory Appendix D titled "Specified Minimum Yield Strength for Steel Pipe Commonly Used in Piping Systems" of ASME B31.8 (2018).
- 4. **Density and Poisson's ratio:** Density and Poisson's ratio for Carbon and low alloy high tensile steel are entered as 0.283 lb/in³ and 0.3 respectively.

		Stress Intens Facto			
Description	Flexibility Factor, <i>k</i>	<i>i_i</i> [Note (1)]	<i>i_o</i> [Note (2)]	Flexibility Characteristic, <i>h</i>	Sketch
Welding elbow, or pipe bend [Notes (3)-(7)]	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{tR}{r^2}$	R = Bend radius
Closely spaced miter bend, [Notes (3)–(5), and (7)] $s < r(1 + tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{\cot\theta}{2} \frac{ts}{r^2}$	$R = \frac{s \cot \theta}{2}$
Widely spaced miter bend, [Notes (3),(4), (7), and (8)] $s \ge r(1 + \tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{t}{r}$	$R = \frac{r(1 + \cot \theta)}{2}$
Welding tee [Notes (3) and (4)] per ASME B16.9	1	$0.75i_o + 0.25$	$\frac{0.9}{h^{2/3}}$	4.4 $\frac{t}{r}$	
Reinforced tee [Notes (3),(4), and (9)] with pad or saddle	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/3}}$	$\frac{(t+1/2\ 7)^{5/2}}{t^{3/2}\ r}$	r Pad Saddle
Unreinforced fabricated tee [Notes (3) and (4)]	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2/3}}$	$\frac{t}{r}$	
Extruded welding tee [Notes (3),(4), and (10)] $r_o \ge 0.05d$ $t_c < 1.5t$	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2/3}}$	$\left(1 + \frac{r_o}{r}\right)\frac{t}{r}$	
Butt welded joint, reducer, or welding neck flange	1	1.0			
Double welded slip-on flange	1	1.2			
Fillet welded joint (single welded), or single welded slip-on flange	1	1.3			

Table 402.1-1 Flexibility Factor, k, and Stress Intensification Factor, i

Table /02 1-1	Flexibility Factor, k	and Stroce	Intensification	Factor i (Cont'd)
Table 402.1-1	riexibility ractor, k	, and Suess	Intensification	

	Stress Intensification Factor					
Description	Flexibility Factor, <i>k</i>	<i>i_i</i> [Note (1)]	i _o [Note (2)]	Flexibility Characteristic, <i>h</i>	Sketch	
Lapped flange (with ANSI B16.9 lap-joint stub)	1	1.6				
Threaded pipe joint, or threaded flange	1	2.3				
Corrugated straight pipe, or corrugated or creased bend [Note (11)]	5	2.5				

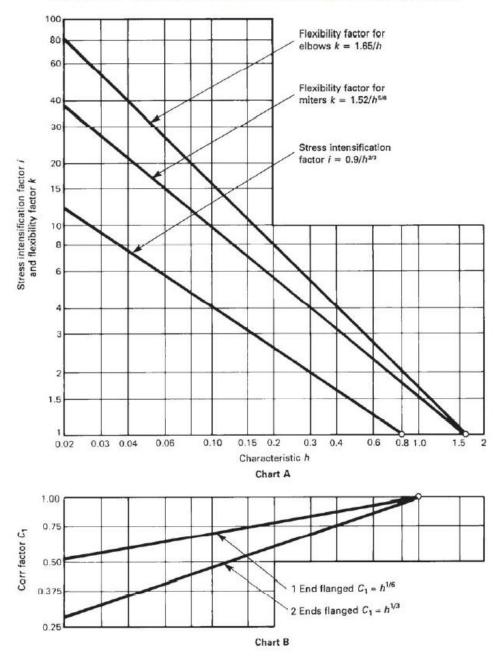
NOTES:

(1) In-plane.

(2) Out-of-plane.

(3) For fittings and miter bends, the flexibility factors, k, and stress intensification factors, i, in the Table apply to bending in any plane and shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees.

- (4) The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the equations given, where
 - d = outside diameter of branch
 - R = bend radius of welding elbow or pipe bend, in. (mm)
 - r = mean radius of matching pipe, in. (mm)
 - $r_o =$ see Note (10)
 - s = miter spacing at center line
 - T = pad or saddle thickness, in. (mm)
 - t = nominal wall thickness of: part itself, for elbows and curved or mited bends; matching pipe, for welding tees; run or header, for fabricated tees (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run O.D. to each side of the branch O.D.)
 - t_c = the crotch thickness of tees
 - θ = one-half angle between adjacent miter axes, deg
- (5) Where flanges are attached to one or both ends, the values of k and i in this Table shall be corrected by the factors C_1 given below, which can be read directly from Chart B, entering with the computed h: one end flanged, $h^{1/6} \ge 1$; both ends flanged, $h^{1/3} \ge 1$.
- (6) The engineer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (7) In large diameter thin wall elbows and bends, pressure can significantly affect the magnitude of flexibility and stress intensification factors. To correct values obtained from this Table for the pressure effect, divide


Flexibility factor, k, by	$1 + 6 \frac{P}{E_c} \left(\frac{r}{t}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}$
Stress Intensification factor, I, by	$1 + 3.25 \frac{P}{E_c} \left(\frac{r}{t}\right)^{5/2} \left(\frac{R}{r}\right)$

2/3

where

- $E_c = \text{cold modulus of elasticity}$
- P = gage pressure
- (8) Also includes single miter joint.
- (9) When $T > 1\frac{1}{2}t$, use h = 4.05 t/r.
- (10) Radius of curvature of external contoured portion of outlet measured in the plane containing the axes of the run and branch. This is subject to the following limitations:
 - (a) minimum radius, ro: the lesser of 0.05d or 38 mm (1.5 in.)
 - (b) maximum radius, r_o shall not exceed
 - (1) for branches DN 200 (NPS 8) and larger, 0.10d + 13 mm (0.50 in.)
 - (2) for branches less than DN 200 (NPS 8), 32 mm (1.25 in.)
 - (c) when the external contour contains more than one radius, the radius on any arc sector of approximately 45 deg shall meet the requirements of (a) and (b) above
 - (d) machining shall not be employed in order to meet the above requirements

(11) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

Table 402.1-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 403.2.1.

$$P_i = \frac{2SEt_a}{D}$$

where

$$P_i$$
 = allowable pressure

- S = allowable stress = 0.72 S_v, where S_y is specified minimum yield strength of pipe
- E = weld joint factor as defined in Table 403.2.1-1
- t_a = available thickness for pressure design
 - $= t_n \times (1 \text{mill tolerance}/100) \text{sum of allowances, as per para. 403.2.1, for corrosion, threading, grooving and erosion.}$

D =outside diameter

Stress due to Sustained Loads (Unrestrained Piping)

For Pipes (as per para. 402.6.2)

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{F_{a}}{A} \right|_{Sustained} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{Sustained} \le 0.75S_{y}$$

as per Table 403.3.1-1

where

 i_i = in-plane stress intensification factor = 1.0 for pipes

 i_0 = out-of-plane stress intensification factor = 1.0 for pipes

For Fittings & Components.(as per para. 402.6.2)

$$S_{L(fc)} = \left| \frac{PD}{4t_n} + \frac{F_a}{A} \right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z} \right]_{Sustained} \le 0.75S_y$$

as per Table 403.3.1-1

where

- P = maximum operating pressure = max of CAEPIPE input pressures (P1 through P10).Due considerations shall be given as per para. 401.2.2.2 while inputting pressure values in CAEPIPE.
- D =outside diameter
- t_n = nominal thickness as per para. 402.1
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; the product 0.75 i_o shall not be less than 1.0
- M_i = in-plane bending moment

Pipeline Transportation Systems for Liquids and Slurries ASME B31.4 (2016)

- M_o = out-of-plane bending moment
- M_t = torsional moment
- $Z = \underline{un-corroded}$ section modulus; for reduced outlets, effective section modulus
- F_a = axial force component for external loads
- $A = \underline{\text{nominal}} \text{ cross-section area}$
- S_y = specified minimum yield strength of pipe

Stress due to Sustained Loads + Occasional Loads (Unrestrained Piping)

For Pipes (as per para. 402.6.2)

$$S_{LO} = S_{L} + \left| \frac{\left(P_{peak} - P\right)D}{4t_{n}} + \frac{F_{a}}{A} \right|_{occasional} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{occasional} \le 0.8S_{y}$$

as per Table 403.3.1-1

For Fittings & Components (as per para. 402.6.2)

$$S_{LO} = S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{F_a}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.8S_y$$

as per Table 403.3.1-1

where

 P_{peak} = peak pressure = (peak pressure factor x P) where P = maximum operating pressure, as defined above with $1.0 \le peak$ pressure factor ≥ 1.1 as per para. 403.3.4

Expansion Stress (Unrestrained Piping)

The stress (S_E) due to thermal expansion is calculated from para.402.5.2

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$
 as per Table 403.3.1-1 and para. 403.3.2

where

$$S_b = \text{resultant bending stress} = \frac{\sqrt{(t_t M_t)^2 + (t_0 M_0)^2}}{Z}$$

$$S_t = \text{torsional stress} = \frac{M_t}{2Z}$$

$$M_t = \text{torsional moment}$$

$$Z = \underline{\text{un-corroded section modulus; for reduced outlets, effective section modulus}$$

Please note, "Liberal allowable" option is always turned ON for ANSI B31.4

- $S_A = f[1.25(S_C + S_h) S_L]$
- f = stress range reduction factor = $6/N^{0.2}$, where N = number of equivalent full range cycles

where $f \le 1.2$ (from para. 403.3.2).

 $S_c = 0.67S_y$ at the lower of the installed temperature or minimum operating temperature

 $S_h = 0.67S_y$ at the higher of the installed temperature or maximum operating temperature where

 S_y = specified minimum yield strength of pipe

Stress due to Sustained, Thermal and Occasional Loads (Restrained Piping)

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from para. 402.6.1

$$S_{Lp} = S_E + \upsilon S_H + \frac{F_a}{A} + \frac{M}{Z}$$
$$S_{Ln} = S_E + \upsilon S_H + \frac{F_a}{A} - \frac{M}{Z}$$

As per para. 402.6.1, both positive and negative values of M/Z shall be considered for analysis.

where

 S_H = circumferential (hoop) stress = $\frac{PD}{2t_n}$

v = Poission's ratio = 0.3 as per para. 402.2.3

As per para. 402.6.1, S_H can be either positive <u>or</u> negative.

 F_a = axial force, such as weight on a riser. As per para. 402.6.1, F_a can be positive or negative.

M = bending moment from Weight and other External loads

<u>For Pipes</u>

$$M = \sqrt{(i_i M_i)^2 + (i_o M_o)^2}$$

For Fittings & Components

$$M = \sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2}$$

 S_E = Thermal expansion stress = $E\alpha(T_i - T_o)$, which can either be positive <u>or</u> negative where

P = PFO x maximum pressure (P₁ through P₁₀) entered in CAEPIPE.

PFO = Peak Pressure Factor input. PFO = 1.0, if occasional loads are not present.

- D =outside diameter
- t_n = nominal thickness
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; the product 0.75 i_o shall not be less than 1.0
- M_i = in-plane bending moment from Weight and other External loads
- M_o = out-of-plane bending moment from Weight and other External loads

Pipeline Transportation Systems for Liquids and Slurries ASME B31.4 (2016)

- F_a = axial force component for Weight and other External loads
- $A = \underline{\text{nominal}} \text{ cross-section area}$
- $Z = \underline{un-corroded}$ section modulus; for reduced outlets, effective section modulus
- S_y = specified minimum yield strength of pipe
- T_i = installation temperature = T_{ref} in CAEPIPE
- T_o = warmest or coldest operating temperature
- α = coefficient of thermal expansion at T_o defined above
- E = young's modulus at ambient (reference) temperature

Combining of Stresses

In restrained pipe, the longitudinal and circumferential stresses are combined in accordance with the maximum shear stress theory as follows (by default in CAEPIPE).

$$S_{eq1} = 2\sqrt{\left[\left(S_{Lp} - S_{H}\right)/2\right]^{2} + (S_{t})^{2}}$$
 $S_{eq2} = 2\sqrt{\left[\left(S_{Ln} - S_{H}\right)/2\right]^{2} + (S_{t})^{2}}$

Where S_{Lp} and S_{Ln} are calculated as given above.

Alternatively, the stresses may be combined in accordance with the maximum distortion energy theory as follows (see Note 4 below):

$$S_{eq1} = \sqrt{(S_H)^2 - S_H S_{Lp} + (S_{Lp})^2 + 3(S_t)^2} \quad S_{eq2} = \sqrt{(S_H)^2 - S_H S_{Ln} + (S_{Ln})^2 + 3(S_t)^2}$$

$$S_{eq} = max \{S_{eq1}, S_{eq2}\} \le 0.9S_y$$

where

 S_{eq} = equivalent combined stress S_t = torsional stress

Notes:

5. Para. 402.6.2 of B31.4 (2016) states that "Longitudinal stress from pressure in an unrestrained line should include consideration of bending stress or axial stress that may be caused by elongation of the pipe due to internal pressure and result in stress at bends and at connections and produce additional loads on equipment and on supports".

The above statement seems to imply that "elongation due to Bourdon effect" is to be included in the Sustained load case (and hence in Operating case and Sustained plus Occasional load case).

On the other hand, since the deformation due to Bourdon effect is being constrained by piping supports, CAEPIPE includes the Bourdon effect as part of the results for Thermal Expansion (when "Solve Thermal Case" is opted) or as part of the Operating Case (when "Thermal = Operating – Sustained is opted).

- 6. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. 402.2.2.
- 7. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

8. By default, CAEPIPE combines the stresses for restrained piping using the maximum shear stress theory as stated above. To combine stresses in accordance with the maximum distortion energy theory as stated above, set an environmental variable with name "DET_314" with its value as "YES".

Notes on Material Library for B314-2016.mat supplied with CAEPIPE:

Material library for ASME B31.4 (2016) [B314-2016.mat] has been created and supplied with CAEPIPE as mentioned below.

- 9. **Coefficient of Thermal Expansion:** As stated in para. 402.2.1 of B31.4 (2016), Coefficient of Thermal Expansion for Carbon and low alloy high tensile steel are entered as 6.5E-6 in./in./⁰F for temperatures up to 250 ⁰F.
- 10. **Modulus of Elasticity:** Modulus of Elasticity for Carbon and low alloy high tensile steel for temperatures up to 250 ⁰F are entered by referring to the values provided in Table 832.5-1 of ASME B31.8 (2016).
- 11. **Yield Strength:** Yield Strength for Carbon and low alloy high tensile steel for temperatures up to 250 ^oF are entered by referring to the values specified in Mandatory Appendix D titled "Specified Minimum Yield Strength for Steel Pipe Commonly Used in Piping Systems" of ASME B31.8 (2016).
- 12. **Density and Poisson's ratio:** Density and Poisson's ratio for Carbon and low alloy high tensile steel are entered as 0.283 lb/in³ and 0.3 respectively.
- 13. Longitudinal Joint Factor: Longitudinal Joint Factor for Carbon and low alloy high tensile steel are entered by referring to the values specified in Table 841.1.7-1 of ASME B31.8 (2016).

		Stress Intensification Factor				
Description	Flexibility Factor, <i>k</i>	<i>i_i</i> [Note (1)]	<i>i_o</i> [Note (2)]	Flexibility Characteristic, <i>h</i>	Sketch	
Welding elbow, or pipe bend [Notes (3)-(7)]	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{tR}{r^2}$	$\mathbf{r} = \text{Bend radius}$	
Closely spaced miter bend, [Notes (3)–(5), and (7)] $s < r(1 + tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{\cot \theta}{2} \frac{ts}{r^2}$	$R = \frac{s \cot \theta}{2}$	
Widely spaced miter bend, [Notes (3),(4), (7), and (8)] $s \ge r(1 + \tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{t}{r}$	$R = \frac{r(1 + \cot \theta)}{2}$	
Welding tee [Notes (3) and (4)] per ASME B16.9	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/3}}$	4.4 $\frac{t}{r}$		
Reinforced tee [Notes (3),(4), and (9)] with pad or saddle	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/3}}$	$\frac{(t+1/2\ 7)^{5/2}}{t^{3/2}\ r}$	r Pad Saddle	
Unreinforced fabricated tee [Notes (3) and (4)]	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/3}}$	$\frac{t}{r}$		
Extruded welding tee [Notes (3),(4), and (10)] $r_o \ge 0.05d$ $t_c < 1.5t$	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2/3}}$	$\left(1 + \frac{r_o}{r}\right)\frac{t}{r}$		
Butt welded joint, reducer, or welding neck flange	1	1.0				
Double welded slip-on flange	1	1.2				
Fillet welded joint (single welded), or single welded slip-on flange	1	1.3				

Table 402.1-1 Flexibility Factor, k, and Stress Intensification Factor, i

Table /02 1-1	Flexibility Factor, k	and Stroce	Intensification	Factor i (Cont'd)
Table 402.1-1	riexibility ractor, k	, and Suess	Intensification	

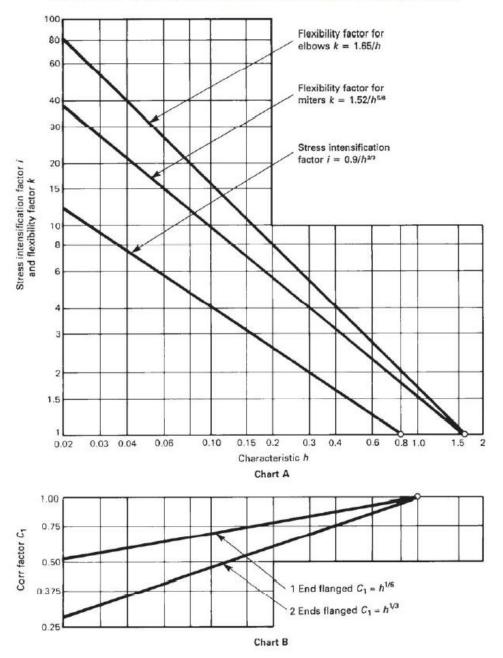
	Stress Intensification Factor					
Description	Flexibility Factor, k	<i>i_i</i> [Note (1)]	i _o [Note (2)]	Flexibility Characteristic, <i>h</i>	Sketch	
Lapped flange (with ANSI B16.9 lap-joint stub)	1	1.6				
Threaded pipe joint, or threaded flange	1	2.3				
Corrugated straight pipe, or corrugated or creased bend [Note (11)]	5	2.5				

NOTES:

(1) In-plane.

(2) Out-of-plane.

(3) For fittings and miter bends, the flexibility factors, k, and stress intensification factors, i, in the Table apply to bending in any plane and shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees.


- (4) The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the equations given, where
 - d = outside diameter of branch
 - R = bend radius of welding elbow or pipe bend, in. (mm)
 - r = mean radius of matching pipe, in. (mm)
 - $r_o =$ see Note (10)
 - s = miter spacing at center line
 - T = pad or saddle thickness, in. (mm)
 - t = nominal wall thickness of: part itself, for elbows and curved or mited bends; matching pipe, for welding tees; run or header, for fabricated tees (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run O.D. to each side of the branch O.D.)
 - t_c = the crotch thickness of tees
 - θ = one-half angle between adjacent miter axes, deg
- (5) Where flanges are attached to one or both ends, the values of k and i in this Table shall be corrected by the factors C_1 given below, which can be read directly from Chart B, entering with the computed h: one end flanged, $h^{1/6} \ge 1$; both ends flanged, $h^{1/3} \ge 1$.
- (6) The engineer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (7) In large diameter thin wall elbows and bends, pressure can significantly affect the magnitude of flexibility and stress intensification factors. To correct values obtained from this Table for the pressure effect, divide

Flexibility factor, k, by	$1 + 6 \frac{P}{E_c} \left(\frac{r}{t}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}$
Stress Intensification factor, I, by	$1 + 3.25 \frac{P}{E_c} \left(\frac{r}{t}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}$

where

- $E_c = \text{cold modulus of elasticity}$
- P = gage pressure
- (8) Also includes single miter joint.
- (9) When $T > 1\frac{1}{2}t$, use h = 4.05 t/r.
- (10) Radius of curvature of external contoured portion of outlet measured in the plane containing the axes of the run and branch. This is subject to the following limitations:
 - (a) minimum radius, ro: the lesser of 0.05d or 38 mm (1.5 in.)
 - (b) maximum radius, r_o shall not exceed
 - (1) for branches DN 200 (NPS 8) and larger, 0.10d + 13 mm (0.50 in.)
 - (2) for branches less than DN 200 (NPS 8), 32 mm (1.25 in.)
 - (c) when the external contour contains more than one radius, the radius on any arc sector of approximately 45 deg shall meet the requirements of (a) and (b) above
 - (d) machining shall not be employed in order to meet the above requirements

(11) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

Table 402.1-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 403.2.1.

$$P_i = \frac{2SEt_a}{D}$$

where

 P_i = allowable pressure

S = allowable stress = 0.72 S_v

 S_y = specified minimum yield strength of pipe

E = weld joint factor as defined in Table 403.2.1-1

 t_a = available thickness for pressure design

 $= t_n \times (1 - \text{mill tolerance}/100) - \text{sum of allowances, as per para. 403.2.1, for corrosion, threading, grooving and erosion.}$

D =outside diameter

Stress due to Sustained Loads (Unrestrained Piping)

For Pipes (as per para. 402.6.2)

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{F_{a}}{A} \right|_{Sustained} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{Sustained} \le 0.75S_{y}$$

as per Table 403.3.1-1

where

 i_i = in-plane stress intensification factor = 1.0 for pipes

 i_o = out-of-plane stress intensification factor = 1.0 for pipes

For Fittings & Components.(as per para. 402.6.2)

$$S_{L(fc)} = \left| \frac{PD}{4t_n} + \frac{F_a}{A} \right|_{sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z} \right]_{sustained} \le 0.75S_y$$

as per Table 403.3.1-1

where

- P = maximum operating pressure = max of CAEPIPE input pressures (P1 through P10). Due considerations shall be given as per para. 401.2.2.2 while inputting pressure values in CAEPIPE.
- D =outside diameter
- t_n = nominal thickness as per para. 402.1
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0

- i_o = out-of-plane stress intensification factor; the product 0.75 i_o shall not be less than 1.0
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- F_a = axial force component for external loads
- $A = \underline{\text{nominal}} \text{ cross-section area}$
- S_v = specified minimum yield strength of pipe

Stress due to Sustained Loads + Occasional Loads (Unrestrained Piping)

For Pipes (as per para. 402.6.2)

$$S_{LO} = S_{L} + \left| \frac{\left(P_{peak} - P\right)D}{4t_{n}} + \frac{F_{a}}{A} \right|_{occasional} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{occasional} \leq 0.8S_{y}$$

as per Table 403.3.1-1

For Fittings & Components (as per para. 402.6.2)

$$S_{LO} = S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{F_a}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.8S_y$$

as per Table 403.3.1-1

where

 P_{peak} = peak pressure = (peak pressure factor x P) where P = maximum operating pressure, as defined above with $1.0 \le$ peak pressure factor ≥ 1.1 as per para. 403.3.4

Expansion Stress (Unrestrained Piping)

The stress (S_E) due to thermal expansion is calculated from para.402.5.2

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$
 as per Table 403.3.1-1 and para. 403.3.2

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(t_i M_i)^2 + (t_0 M_0)^2}}{Z}$
 S_t = torsional stress = $\frac{M_t}{2Z}$
 M_t = torsional moment
 Z = un-corroded section modulus; for reduced outlets, effective section modulus

Please note, "Liberal allowable" option is always turned ON for ANSI B31.4

$$S_A = f[1.25(S_C + S_h) - S_L]$$

f = stress range reduction factor = 6/N^{0.2}, where N = number of equivalent full range cycles

where $f \le 1.2$ (from para. 403.3.2).

 $S_c = 0.67S_y$ at the lower of the installed temperature or minimum operating temperature

= $0.67S_y$ at the higher of the installed temperature or maximum operating temperature where

 S_c = specified minimum yield strength of pipe

Stress due to Sustained, Thermal and Occasional Loads (Restrained Piping)

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from para. 402.6.1

$$S_L = \max(|S_p + S_x + S_B|, |S_p + S_x - S_B|)_{sustained} + \max(|S_p + S_x + S_B|, |S_p + S_x - S_B|)_{occasional} + \max(|S_T|_{warmest}, |S_T|_{coldest}) \le 0.9S_y$$

where

Pressure stress = $S_p = v \frac{PD}{2t_n}$ = where v = 0.3 as per para. 402.2.3 and can be either positive <u>or</u> negative

Stress due to axial loading (other than temperature and pressure)= $S_x = \frac{F_a}{A}$

and can be positive or negative.

Nominal bending stress SB from Weight and / or other External loads for

<u>For Pipes</u>

$$S_B = \frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2 + (M_t)^2}}{7}$$

<u>For Fittings & Components</u>

$$S_B = \frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z}$$

Thermal expansion stress $S_T = E\alpha(T_i - T_o)$, which can either be positive <u>or</u> negative

where

- $P = \text{maximum operating pressure} = \text{max} (P_1 \text{ through } P_{10})$
- D =outside diameter
- t_n = nominal thickness
- i_i = in-plane stress intensification factor; the product $0.75i_i$ shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; the product $0.75i_o$ shall not be less than 1.0
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment

- F_a = axial force component for external loads
- $A = \underline{\text{nominal}} \text{ cross-section area}$
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- S_v = specified minimum yield strength of pipe
- T_i = installation temperature = T_{ref} in CAEPIPE
- T_o = warmest or coldest operating temperature
- α = coefficient of thermal expansion at T_o defined above
- E = young's modulus at ambient (reference) temperature

Note:

1. Para. 402.6.2 of B31.4 (2012) states that "Longitudinal stress from pressure in an unrestrained line should include consideration of bending stress or axial stress that may be caused by elongation of the pipe due to internal pressure and result in stress at bends and at connections and produce additional loads on equipment and on supports".

The above statement seems to imply that "elongation of pipe and opening of bends due to Bourdon effect" are to be included in the Sustained load case (and hence in Operating case and Sustained plus Occasional load case).

On the other hand, since the deformation due to Bourdon effect is being constrained by piping supports, CAEPIPE includes the Bourdon effect as part of the results for Thermal Expansion (when "Solve Thermal Case" is opted) or as part of the Operating Case (when "Thermal = Operating – Sustained is opted).

- 2. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. 402.2.2.
- 3. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids ASME B31.4 (2012) [Superseded by ASME B31.4 (2016)]

		Stress Intens Facto			
Description	Flexibility Factor, <i>k</i>	<i>i_i</i> [Note (1)]	i _o [Note (2)]	Flexibility Characteristic, <i>h</i>	Sketch
Welding elbow, or pipe bend [Notes (3)–(7)]	$\frac{1.65}{h}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{tR}{r^2}$	R = Bend radius
					م د للسبة الل
Closely spaced miter bend, [Notes (3)–(5), and (7)] $s < r(1 + tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{\cot \theta}{2} \frac{ts}{r^2}$	$R = \frac{s \cot \theta}{2}$
Widely spaced miter bend, [Notes (3),(4), (7), and (8)] $s \ge r(1 + \tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{t}{r}$	$R = \frac{r(1 + \cot \theta)}{2}$
Welding tee [Notes (3) and (4)] per ASME B16.9	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/3}}$	4.4 $\frac{t}{r}$	
Reinforced tee [Notes (3),(4), and (9)] with pad or saddle	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2/3}}$	$\frac{(t+1/2\ T)^{5/2}}{t^{3/2}\ r}$	r Pad Saddle
Jnreinforced fabricated tee [Notes (3) and (4)]	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2/3}}$	$\frac{t}{r}$	
Extruded welding tee [Notes (3),(4), and (10)] $r_o \ge 0.05d$ $t_c < 1.5t$	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2/3}}$	$\left(1 + \frac{r_0}{r}\right)\frac{t}{r}$	
Butt welded joint, reducer,	1	1.0			···
or welding neck flange	4	4.0			
Double welded slip-on flange Fillet welded joint (single welded), or single welded slip-on flange	1	1.2 1.3			

Table 402.1-1	Flexibility I	Factor. <i>k</i> .	and Stress	Intensification	Factor, i	(Cont'd)

		Stress Intensification Factor				
Description	Flexibility Factor, <i>k</i>	<i>i_i</i> [Note (1)]	i _o [Note (2)]	Flexibility Characteristic, <i>h</i>	Sketch	
Lapped flange (with ANSI B16.9 lap-joint stub)	1	1.6				
Threaded pipe joint, or threaded flange	1	2.3				
Corrugated straight pipe, or corrugated or creased bend [Note (11)]	5	2.5				

NOTES:

(1) In-plane.

(2) Out-of-plane.

(3) For fittings and miter bends, the flexibility factors, k, and stress intensification factors, i, in the Table apply to bending in any plane and shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees.

(4) The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the equations given, where

- d = outside diameter of branch
- R = bend radius of welding elbow or pipe bend, in. (mm)
- r = mean radius of matching pipe, in. (mm)
- $r_o =$ see Note (10)
- s = miter spacing at center line
- T = pad or saddle thickness, in. (mm)

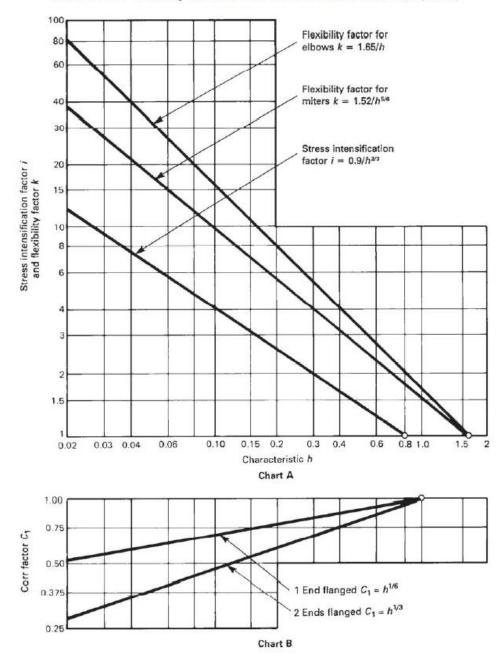
t = nominal wall thickness of: part itself, for elbows and curved or mited bends; matching pipe, for welding tees; run or header, for fabricated tees (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run O.D. to each side of the branch O.D.)

- t_c = the crotch thickness of tees
- θ = one-half angle between adjacent miter axes, deg
- (5) Where flanges are attached to one or both ends, the values of k and i in this Table shall be corrected by the factors C_1 given below, which can be read directly from Chart B, entering with the computed h: one end flanged, $h^{1/6} \ge 1$; both ends flanged, $h^{1/3} \ge 1$.
- (6) The engineer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (7) In large diameter thin wall elbows and bends, pressure can significantly affect the magnitude of flexibility and stress intensification factors. To correct values obtained from this Table for the pressure effect, divide

Flexibility factor, k, by	$1 + 6 \frac{P}{E_c} \left(\frac{r}{t}\right)^{\tau/3} \left(\frac{R}{r}\right)^{1/3}$
ress intensification factor, <i>I</i> , by	$1 + 3.25 \frac{P}{E_c} \left(\frac{r}{t}\right)^{5/2} \left(\frac{R}{r}\right)^{5/2}$

where

- $E_c = \text{cold modulus of elasticity}$ P = gage pressure
- (8) Also includes single miter joint.
- (9) When $T > 1^{1/2}t$, use h = 4.05 t/r.


(10) Radius of curvature of external contoured portion of outlet measured in the plane containing the axes of the run and branch. This is subject to the following limitations:

(a) minimum radius, ro: the lesser of 0.05d or 38 mm (1.5 in.)

St

- (b) maximum radius, ro shall not exceed
 - (1) for branches DN 200 (NPS 8) and larger, 0.10d + 13 mm (0.50 in.)
- (2) for branches less than DN 200 (NPS 8), 32 mm (1.25 in.)
- (c) when the external contour contains more than one radius, the radius on any arc sector of approximately 45 deg shall meet the requirements of (a) and (b) above
- (d) machining shall not be employed in order to meet the above requirements

(11) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

Table 402.1-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 504.1.2.

$$P = \frac{2SEt_a}{D - 2Yt_a}$$

where

P = allowable pressure

S = basic allowable stress at Design Temperature (i.e., at T_{design} input into CAEPIPE)

E = longitudinal or spiral joint factor (input as material property) from para. 502.3.1 and Table 502.3.1-1

Table 502.3.1-1 provides maximum allowable hoop stress values (SE) as a function of metal temperature and includes Longitudinal or Spiral Joint Factor (E) for various materials. Divide SE value by E value provided in Table 502.3.1-1 to obtain basic allowable stress S. For materials where E is not given explicitly in Table 502.3.1-1, use E = 1.0.

SE in the above formula for allowable pressure P is the allowable hoop stress per para. 502.3.1 and Table 502.3.1-1.

 t_a = available thickness for pressure design (as per para. 504.1.1)

= $t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance)

 t_n = nominal pipe thickness

D =outside diameter

d = inside diameter

Y = pressure coefficient

For ductile non-ferrous materials and ferritic and austenitic steels from para. 504.1.1,

Y = 0.4 and $Y = \frac{d}{d+D}$, for $4 \le D/t_a < 6$ Y = 0.0 for Cast Iron

Sustained Stress (in corroded condition)

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para. 502.3.2(d). Also, refer to Note 1 below.

$$S_{L} = \left| \frac{Pd^{2}}{(D^{2} - d^{2})} \right| + \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{c}} \le S_{h}$$

where

P = maximum of CAEPIPE input pressures P_1 through P_{10}

D =outside diameter

 t_c = nominal thickness – corrosion allowance, as per para. 502.3.2 (d)

 $d = \text{inside diameter} = D - 2. t_c$

 i_i = in-plane stress intensification factor from Table 519.3.6-1

- i_o = out-of-plane stress intensification factor from Table 519.3.6-1
- M_i = in-plane bending moment due to sustained loads, e.g., pressure and weight
- M_o = out-of-plane bending moment due to sustained loads, e.g., pressure and weight
- Z_c = corroded section modulus as per para. 502.3.2 (d)
- S_h = basic allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀

Occasional Stress (in corroded condition)

The stress (S_{Lo}) due to occasional loads is calculated as the sum of stress due to sustained loads such as pressure, weight and other sustained mechanical loads (S_L) and stress due to occasional loads (S_o) such as earthquake or wind. Wind and earthquake are not considered concurrently (see para. 502.3.3 (a)). Also, refer to Note 1 and Note 3 below.

$$S_{LO} = S_{LO} + \left[\left| \frac{(P_{peak} - P)d^2}{(D^2 - d^2)} \right| + \frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z_c} \right] \le 1.33. (S_h E)$$

where

 P_{peak} = peak pressure = (peak pressure factor) x P, where P is defined above M_i = in-plane bending moment due to occasional loads such as earthquake or wind M_o = out-of-plane bending moment due to occasional loads such as earthquake or wind Z_c = corroded section modulus as per para. 502.3.2 (d) D = outside diameter t_c = nominal thickness – corrosion allowance, as per para. 502.3.2 (d)

- $d = \text{inside diameter} = D 2. t_c$
- i_i = in-plane stress intensification factor from Table 519.3.6-1
- i_0 = out-of-plane stress intensification factor from Table 519.3.6-1
- S_h = basic allowable stress (input as material property) at maximum of CAEPIPE input temperatures T₁ through T₁₀
- E = longitudinal or spiral joint factor (input as material property) from para. 502.3.1 and Table 502.3.1-1

Expansion Stress (in un-corroded condition)

The stress range (S_E) due to thermal expansion is calculated from para. 519.4.5 and para. 519.3. See Note 3 below.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

 S_b = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$

 S_t = torsional stress = $\frac{M_t}{2Z}$

- M_i = in-plane bending moment range between any two conditions being evaluated
- M_o = out-of-plane bending moment range between any two conditions being evaluated
- M_t = torsional moment range between any two conditions being evaluated
- Z = un-corroded section modulus; for reduced outlets, effective section modulus

- i_i = in-plane stress intensification factor from Table 519.3.6-1
- i_o = out-of-plane stress intensification factor from Table 519.3.6-1
- $S_A = f(1.25S_{cold} + 0.25S_{hot})$ (see para. 502.3.2 (c))
- f = stress range reduction factor from Figure 502.3.2-1. f >= 0.5 and f <= 1.0
- S_{cold} = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_{hot} = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than S_L , the allowable stress range may be calculated as

$$S_A = S_A + f(S_h - S_L)$$

where, S_h = basic allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options->Analysis on the Code tab.

Notes:

- 1. As per para. 502.3.2 (d), the pressure stress should be calculated using the formula $Pd^2/(D^2 d^2)$, where d is the internal diameter $= D 2t_c$. Hence, " $Pd^2/(D^2 d^2)$ " (available through CAEPIPE Layout > Options > Analysis > Pressure) is set as "default" and is disabled for user to modify.
- 2. As per para. 519.4.5(a), Bending and torsional stress shall be computed using the asinstalled modulus of elasticity, i.e., Ec at installation temperature. Hence, "Use modulus at reference temperature" (available through CAEPIPE Layout > Options > Analysis > Temperature) is set as "default" and is disabled for user to modify.
- 3. Para. 519.2.2 requires wind sway (displacement at support due to wind) to be included as a part of Thermal Load Displacement. Since CAEPIPE allows up to 10 thermal loads, the question arises "under which thermal load should this wind sway to be included". Hence, we recommend that wind sway is to be input as a part of "wind displacement under occasional stress condition".
- 4. Table 502.3.1-1 provides maximum allowable hoop stress values (SE) as a function of metal temperature and includes Longitudinal or Spiral Joint Factor (E) for various materials. Hence, while entering Allowable Stress (S) into CAEPIPE Material Properties or in Material Library, divide SE value by E value provided in Table 502.3.1-1 to obtain basic allowable stress S. For materials where E is not given explicitly in Table 502.3.1-1, use E = 1.0.

Operating Stress for Impact Test

Allowable stress for Impact Test is specified for the materials given in Table 502.3.1 of ASME B31.5 (2022) Code. Accordingly, "Sall" is computed and shown above.

The equation used to calculate the operating stresses is modeled along the lines of a piping code specified stress equation. The three components of the equation are:

- 1. Axial stress combined with the longitudinal pressure stress,
- 2. Bending stress from in-plane and out-of-plane bending moments, and
- 3. A torsional stress from the torsion term.

The allowable stress for this case is simply a combination of the sustained and the thermal allowable stresses.

Note that the Operating Stress is calculated and shown only for the first Operating case (W+P1+T1). Details follow.

The stress (S_{opt}) due to operating loads (pressure, weight and thermal load T_1) is calculated as

$$S_{opr} = S_a + \sqrt{(S_a)^2 + (2S_t)^2} \leq S_{all}$$

where

$$S_{a} = \left[\frac{1}{4_{t}} + \frac{1}{A}\right]_{Operating1}$$
$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{z}\right]_{Operating1}$$

$$S_t = \left[\frac{M_t}{2Z}\right]_{Operating1}$$

 $\mathbf{S} = \begin{bmatrix} PD \\ \bot \end{bmatrix} \begin{bmatrix} F \end{bmatrix}$

- P = maximum of CAEPIPE input pressures P1 through P10
- D = outside diameter
- t = nominal wall thickness
- A = un-corroded cross-sectional area of the pipe
- F = longitudinal force

 i_i = in-plane stress intensification factor according to analysis code selected in CAEPIPE

 i_o = out-of-plane stress intensification factor according to analysis code selected in CAEPIPE

Note: If the analysis code selected provides only the stress intensification *i*, then $i_i = i_o = i$.

- M_i = in-plane bending moment
- M_o = factor for loose type flanges (from Fig. 2-7.5)
- M_t = factor for loose type flanges (from Fig. 2-7.4)
- Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus
- $S_{all} = f(1.25S_{cold} + 0.25S_{hot}) + S_{hot}$ for all codes excepting ASME B31.5. For ASME B31.5, it is calculated as 0.35 S_{hot}.

- f = stress range reduction factor = $6/N^{0.2}$
- N = Number of equivalent full-range thermal cycles
- S_{cold} = basic allowable stress at T_{ref}
- S_{hot} = basic allowable stress at CAEPIPE input temperature T₁

Refer to Section titled "Operating Stress for NDE/Impact Test/Impact Test Exemption" in this manual for details regarding the requirements and implementation of Impact Test in CAEPIPE for this code.

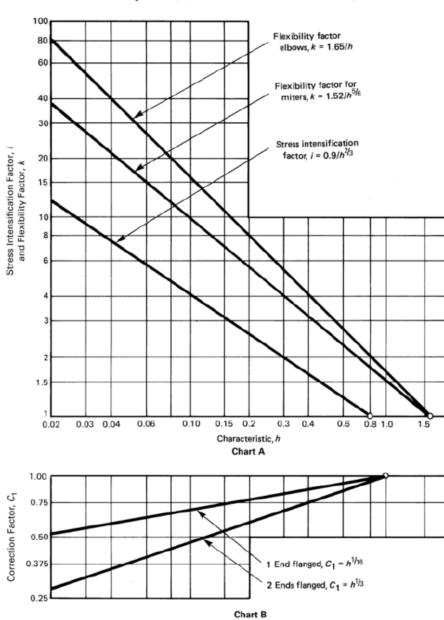


Table 519.3.6-1 Flexibility Factor, k, and Stress Intensification Factor, i

			Stress Intensif	ication Factor	
Description	Flexibility Characteristic, h	Flexibility Factor, k	<i>i</i> , [Note (1)]	i _o [Note (2)]	Illustration
Welding elbow or pipe bend [Notes (3) through (7)]	$\frac{TR}{r^2}$	$\frac{1.65}{h}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{k^{2/3}}$	R = bend radiu
Closely spaced miter bend [Notes (3), (4), (5), and (7)], $s < r(1 + \tan \theta)$	$\frac{\overline{l}^{s}}{r^{2}}\left(\frac{\cot\theta}{2}\right)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{k^{2/3}}$	$\frac{s}{R} = \frac{s \cot \theta}{2}$
Widely spaced miter bend [Notes (3), (4), (7), and (8)], $s \ge r[1 + \tan \theta]$	$\frac{r}{r}\left(\frac{1+\cot\theta}{2}\right)$	$\frac{1.52}{k^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{k^{2/3}}$	$\theta = \frac{r(1+\cot\theta)}{2}$
Welding tee ASME B16.9 [Notes (3) and (4)]	$4.4\frac{\overline{T}}{r}$	1	$0.75i_o + 0.25$	$\frac{0.9}{k^{2/3}}$	Ť Ť
Reinforced fabricated tee with pad or saddle [Notes (3), (4), and (9)]	$\frac{(\overline{T} + 1/2\Gamma)^{5/2}}{t^{3/2}r}$	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{k^{2/3}}$	Pad saddle
Unreinforced fabricated tee [Notes (3) and (4)]	$\frac{T}{r}$	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{k^{2/3}}$	
Butt welded joint, reducer, or welding neck flange		1	1.0	1.0	
Double-welded slip-on flange		1	1.2	1.2	
Fillet welded joint (single-welded), socket welded flange, or single-welded slip- on flange		1	1.3	1.3	
Lap flange (with ASME B16.9 lap-joint stub)		1	1.6	1.6	
Threaded pipe joint or threaded flange		1	2.3	2.3	

			Stress Intensi	fication Factor	
Description	Flexibility Characteristic, h	Flexibility Factor, k	i, [Note (1)]	i. [Note (2)]	Illustration
Corrugated straight pipe, or corrugated or creased bend [Note (10)]	1.5778	5	2.5	2.5	
[Note (10)] ENERAL NOTE: For refer	ence, see Chart A and C	hart B on first pag	ge of this table.		

(3) For fittings and miter bends the flexibility factors, k, and stress intensification factors, i, in the Table apply to bending in any plane and shall not be less than unity; factors for torsion equal unity.

(4) Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter elbows and to the intersection point for tees. The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the equations given where

R = bend radius of welding elbow or pipe bend, in. (mm)

r = mean radius of matching pipe, in. [mm]

- s = miter spacing at centerline, in. (mm)
- T = pad or saddle thickness, in. (mm)

 \bar{T} = nominal wall thickness, in. (mm), of: part itself for elbows and curved or miter bends; matching pipe for welding tees; run or header for fabricated tees (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diameter)

- θ = one-half angle between adjacent miter axes, deg
- [5] Where flanges are attached to one or both ends, the values of k and T in the Table shall be corrected by the factors C_1 given below, which can be read directly from Chart B; entering with the computed h: one end flanged, $h^{5} \ge 1$; both ends flanged, $h^{5} \ge 1$.
- (6) The engineer is cautioned that cast but welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- [7] In large-diameter thin-wall elbows and bends, pressure can significantly affect the magnitude of flexibility and stress intensification factors. To correct values obtained from the Table for the pressure effect, divide (a) flexibility factor, k, by

$$1 + 6 \frac{p}{E_{\rm c}} \left(\frac{r}{\overline{T}}\right)^{1/3} \left(\frac{R}{r}\right)^{1/3}$$

(b) stress intensification factor, i, by

$$1 + 325 \frac{P}{E_c} \left(\frac{r}{\overline{T}}\right)^{5/2} \left(\frac{R}{r}\right)^{1/3}$$

where

- $E_c = cold modulus of elasticity, ksi (MPa)$
- P = internal design pressure. psi (kPa)
- (8) Also includes single-miter joint.
- [9] When T > 1.5T, use h = 4.05T/r.
- [10] Factors shown apply to bending; flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 504.1.2.

$$P = \frac{2SEt_a}{D - 2Yt_a}$$

where

P = allowable pressure

- S = basic allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀
- E = longitudinal or spiral joint factor (input as material property) from para. 502.3.1 and Table 502.3.1-1

Table 502.3.1-1 provides maximum allowable hoop stress values (SE) as a function of metal temperature and includes Longitudinal or Spiral Joint Factor (E) for various materials. Divide SE value by E value provided in Table 502.3.1-1 to obtain basic allowable stress S. For materials where E is not given explicitly in Table 502.3.1-1, use E = 1.0.

SE in the above formula for allowable pressure P is the allowable hoop stress per para. 502.3.1 and Table 502.3.1-1.

 t_a = available thickness for pressure design (as per para. 504.1.1)

= $t_n \times (1 - \text{mill tolerance}/100)$ - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance)

 t_n = nominal pipe thickness

D =outside diameter

- d = inside diameter
- Y = pressure coefficient

For ductile non-ferrous materials and ferritic and austenitic steels from para. 504.1.1,

$$Y = 0.4$$
 and $Y = \frac{d}{d+D}$, for $4 \le D/t_a < 6$
Y = 0.0 for Cast Iron

Sustained Stress (in corroded condition)

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para. 502.3.2(d). Also, refer to Note 1 below.

$$S_{L} = \frac{PD}{4t_{c}} + \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{c}} \le S_{h}$$

where

- P = maximum of CAEPIPE input pressures P_1 through P_{10}
- D =outside diameter
- t_c = nominal thickness corrosion allowance, as per para. 502.3.2 (d)
- i_i = in-plane stress intensification factor from Table 519.3.6-1

- i_o = out-of-plane stress intensification factor from Table 519.3.6-1
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- Z_c = corroded section modulus as per para. 502.3.2 (d)

 S_h = basic allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀

Occasional Stress (in corroded condition)

The stress (S_{Lo}) due to occasional loads is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_o) such as earthquake or wind. Wind and earthquake are not considered concurrently (see para. 502.3.3 (a)). Also, refer to Note 1 below.

$$S_{LO} = \frac{P_{peak}D}{4t_c} + \left[\frac{\sqrt{(i_iM_i)^2 + (i_oM_o)^2}}{Z_c}\right]_{sustained} + \left[\frac{\sqrt{(i_iM_i)^2 + (i_oM_o)^2}}{Z_c}\right]_{occasional} \le 1.33S_h$$

where

 P_{peak} = peak pressure = (peak pressure factor) x P, where P is defined above

Expansion Stress (in un-corroded condition)

The stress (S_E) due to thermal expansion is calculated from para. 519.4.5 and para. 519.3.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_0 M_0)^2}}{Z}$
 S_t = torsional stress = $\frac{M_t}{Z}$

$$S_t$$
 = torsional stress $-\frac{1}{2Z}$

 M_t = torsional moment

Z = un-corroded section modulus; for reduced outlets, effective section modulus

 i_i = in-plane stress intensification factor from Table 519.3.6-1

 i_o = out-of-plane stress intensification factor from Table 519.3.6-1

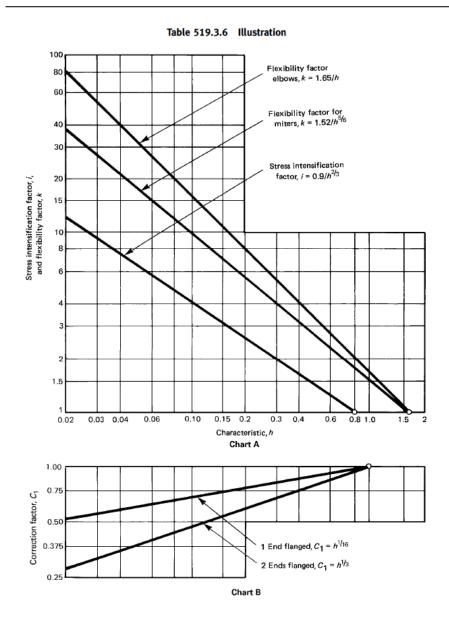
$$S_A = f(1.25S_{cold} + 0.25S_{hot})$$
(see para. 502.3.2 (c))

f = stress range reduction factor from Figure 502.3.2-1. f >= 0.5 and f <= 1.0

 S_{cold} = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis

 S_{hot} = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than S_L , the allowable stress range may be calculated as


$$S_A = S_A + f(S_h - S_L)$$

where, S_h = basic allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options->Analysis on the Code tab.

Notes:

- 1. As per para. 502.3.2 (d), the pressure stress should be calculated using the formula $Pd^2/(D^2 d^2)$, where d is the internal diameter $= D 2t_c$. Hence, " $Pd^2/(D^2 d^2)$ " (available through CAEPIPE Layout > Options > Analysis > Pressure) is set as "default" and is disabled for user to modify.
- As per para. 519.4.5(a), Bending and torsional stress shall be computed using the asinstalled modulus of elasticity, i.e., E_c at installation temperature. Hence, "Use modulus at reference temperature" (available through CAEPIPE Layout > Options > Analysis > Temperature) is set as "default" and is disabled for user to modify.
- 3. As per para. 519.2.2, wind sway should be input into the appropriate Thermal Load Displacement.
- 4. Refer to Section titled "Operating Stress for NDE/Impact Test" in this manual for details regarding the requirements and implementation of Impact Test in CAEPIPE for this code.

	Flexibility	Flexibility Factor, <i>k</i>	Stress Inten Facto		
Description	Characteristic, <i>h</i>		<i>i_i</i> [Note (1)]	<i>i_o</i> [Note (2)]	Illustration
Welding elbow or pipe bend [Notes (3)–(7)]	$\frac{\overline{TR}}{r^2}$	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	\overline{T} $R = \text{bend radius}$
Closely spaced miter bend [Notes (3), (4), (5), and (7)], $s < r(1 + \tan \theta)$	$\frac{\overline{Ts}}{r^2}\left(\frac{\cot \theta}{2}\right)$	1.52 h ⁵ ⁄6	$\frac{0.9}{h^{2}/_{3}}$	$\frac{0.75}{h^{2/3}}$	$B = \frac{s \cot \theta}{2}$
Widely spaced miter bend [Notes (3), (4), (7), and (8)], $s \ge r(1 + \tan \theta)$	$\frac{\overline{T}}{r}\left(\frac{1+\cot\theta}{2}\right)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2_3'}}$	$\theta = \frac{r}{2}$
Welding tee ASME B16.9 [Notes (3) and (4)]	$4.4\frac{\overline{T}}{r}$	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/3}}$	
Reinforced fabricated tee with pad or saddle [Notes (3), (4), and (9)]	$\frac{(\overline{T} + \frac{1}{2}T)^{5/2}}{t^{3/2}r}$	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2}/_{3}}$	$\frac{1}{7}$ Pad saddle
Jnreinforced fabricated tee [Notes (3) and (4)]	$\frac{\overline{T}}{r}$	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/3}}$	
Butt welded joint, reducer, or welding neck flange		1	1.0	1.0	
Double-welded slip-on flange		1	1.2	1.2	

Table 519.3.6 Flexibility Factor, *k*, and Stress Intensification Factor, *i*

Table 519.3.6 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

	Flexibility	Flexibility Factor, <i>k</i>		ensification ctor	
Description	Characteristic, <i>h</i>		<i>i_i</i> [Note (1)]	i _o [Note (2)]	Illustration
Fillet welded joint (single- welded), socket welded flange, or single-welded slip-on flange		1	1.3	1.3	
Lap flange (with ASME B16.9 lap-joint stub)		1	1.6	1.6	
Threaded pipe joint or threaded flange		1	2.3	2.3	
Corrugated straight pipe, or corrugated or creased bend [Note (10)]		5	2.5	2.5	

GENERAL NOTE: For reference, see Table 519.3.6 Illustration on page 41.

- (1) In-plane.
- (2) Out-plane.
- (3) For fittings and miter bends the flexibility factors, *k*, and stress intensification factors, *i*, in the Table apply to bending in any plane and shall not be less than unity; factors for torsion equal unity.
- (4) Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter elbows and to the intersection point for tees. The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the equations given where
 - R = bend radius of welding elbow or pipe bend, in. (mm)
 - r = mean radius of matching pipe, in. (mm)
 - s = miter spacing at centerline, in. (mm)
 - \underline{T} = pad or saddle thickness, in. (mm)
 - $\overline{\tau}$ = nominal wall thickness, in. (mm), of: part itself for elbows and curved or miter bends; matching pipe for welding tees; run or header for fabricated tees (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diameter).
 - θ = one-half angle between adjacent miter axes, deg
- (5) Where flanges are attached to one or both ends, the values of k and T in the Table shall be corrected by the factors C_1 given below, which can be read directly from Chart B; entering with the computed h: one end flanged, $h^{\frac{1}{2}} \ge 1$; both ends flanged, $h^{\frac{1}{2}} \ge 1$.
- (6) The engineer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (7) In large-diameter thin-wall elbows and bends, pressure can significantly affect the magnitude of flexibility and stress intensification factors. To correct values obtained from the Table for the pressure effect, divide
 (a) flexibility factor, *k*, by

$$1 + 6 \frac{P}{E_c} \left(\frac{r}{T}\right)^{\frac{1}{3}} \left(\frac{R}{r}\right)^{\frac{1}{3}}$$

(b) stress intensification factor, i, by

$$1 + 3.25 \frac{P}{E_c} \left(\frac{r}{T}\right)^{5/_2} \left(\frac{R}{r}\right)^{2/_3}$$

where

- E_c = cold modulus of elasticity, ksi (MPa)
- P = internal design pressure, psi (kPa)
- (8) Also includes single-miter joint.
- (9) When $T > 1.5\overline{T}$, use $h = 4.05\overline{T}/r$.
- (10) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

NOTES:

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 504.1.2.

$$P = \frac{2SEt_a}{D - 2Yt_a}$$

where

- P = allowable pressure
- S = basic allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀
- E =longitudinal or spiral joint factor (input as material property) from para. 502.3.1 and Table 502.3.1

Table 502.3.1 provides maximum allowable hoop stress values (SE) as a function of metal temperature and includes Longitudinal or Spiral Joint Factor (E) for various materials. Divide SE value by E value provided in Table 502.3.1 to obtain basic allowable stress S. For materials where E is not given explicitly in Table 502.3.1, use E = 1.0.

Hence, SE in the above formula for allowable pressure P is the allowable hoop stress per para. 502.3.1 and Table 502.3.1.

 t_a = available thickness for pressure design (as per para. 504.1.1)

= $t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance)

- t_n = nominal pipe thickness
- D =outside diameter
- d = inside diameter
- Y = pressure coefficient

For ductile non-ferrous materials and ferritic and austenitic steels,

$$Y = 0.4$$
 for $D/t_a \ge 6$ and $Y = \frac{d}{d+D}$, for $4 \le D/t_a < 6$
Y = 0.0 for Cast Iron

Sustained Stress (in corroded condition)

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para. 502.3.2(d). Also, refer to Note 1 below.

$$S_{L} = \frac{PD}{4t_{c}} + \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{c}} \le S_{h}$$

where

P = maximum of CAEPIPE input pressures P_1 through P_{10}

D =outside diameter

- t_c = nominal thickness corrosion allowance, as per para. 502.3.2 (d)
- i_i = in-plane stress intensification factor
- i_o = out-of-plane stress intensification factor
- M_i = in-plane bending moment

- M_o = out-of-plane bending moment
- Z_c = corroded section modulus as per para. 502.3.2 (d)
- S_h = basic allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀

Occasional Stress (in corroded condition)

The stress (S_{Lo}) due to occasional loads is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_o) such as earthquake or wind. Wind and earthquake are not considered concurrently (see para. 502.3.3 (a)). Also, refer to Note 1 below.

$$S_{LO} = \frac{P_{peak}D}{4t_c} + \left[\frac{\sqrt{(i_iM_i)^2 + (i_oM_o)^2}}{Z_c}\right]_{sustained} + \left[\frac{\sqrt{(i_iM_i)^2 + (i_oM_o)^2}}{Z_c}\right]_{occasional} \le 1.33S_h$$

where

 P_{peak} = peak pressure = (peak pressure factor) x P, where P is defined above

Expansion Stress (in un-corroded condition)

The stress (S_E) due to thermal expansion is calculated from para. 519.4.5 and para. 519.3.5.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_0 M_0)^2}}{Z}$

$$S_t$$
 = torsional stress = $\frac{M_t}{2Z}$

 M_t = torsional moment

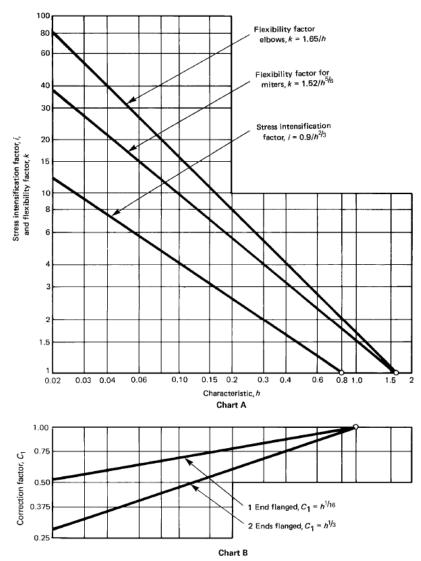
Z = un-corroded section modulus; for reduced outlets, effective section modulus

 $S_A = f(1.25S_{cold} + 0.25S_{hot})$ (see para. 502.3.2 (c))

f = stress range reduction factor from Figure 502.3.2

- S_{cold} = basic allowable stress as minimum metal temperature expected during the displacement cycle under analysis
- S_{hot} = basic allowable stress as maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than S_L , the allowable stress range may be calculated as


 $S_A = S_A + f(S_h - S_L)$

where, S_h = basic allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options->Analysis on the Code tab.

Notes:

- 1. As per para. 502.3.2 (d), the pressure stress should be calculated using the formula $Pd^2/(D^2 d^2)$, where d is the internal diameter = $D 2t_c$. This can be selected through Options > Analysis > Pressure.
- As per para. 519.4.5(a), Bending and torsional stress shall be computed using the asinstalled modulus of elasticity, i.e., E_c at installation temperature. Hence, "Use modulus at reference temperature" (available through CAEPIPE Layout > Options > Analysis > Temperature) is set as "default" and is disabled for user to modify.
- 3. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

Table 519.3.6 Illustration

Table 519.3.6 Flexibility Factor, k, and Stress Intensification Factor, i							
	Flexibility Characteristic, <i>h</i>	Flexibility Factor, <i>k</i>	Stress Intensification Factor				
Description			<i>i_i</i> [Note (1)]	i _o [Note (2)]	Illustration		
Welding elbow or pipe bend [Notes (3)–(7)]	$\frac{\overline{TR}}{r^2}$	<u>1.65</u> h	$\frac{0.9}{h^{2}/_{3}}$	$\frac{0.75}{h^{2_{3}^{2}}}$	\overline{T} r $R = bend radius$		
Closely spaced miter bend [Notes (3), (4), (5), and (7)], $s < r(1 + \tan \theta)$	$\frac{\overline{Ts}}{r^2}\left(\frac{\cot \theta}{2}\right)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2}/_{3}}$	$\frac{0.75}{h^{2/3}}$	$\theta = \frac{s \cot \theta}{2}$		
Widely spaced miter bend [Notes (3), (4), (7), and (8)], $s \ge r(1 + \tan \theta)$	$\frac{\overline{T}}{r}\left(\frac{1+\cot\theta}{2}\right)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/_3}}$	$\theta = \frac{r(1+\cot\theta)}{2}$		
Welding tee ASME B16.9 [Notes (3) and (4)]	$4.4\frac{\overline{T}}{r}$	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/_3}}$			
Reinforced fabricated tee with pad or saddle [Notes (3), (4), and (9)]	$\frac{(\overline{T} + \frac{1}{2}T)^{5/2}}{t^{3/2}r}$	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2/_3}}$	$\frac{1}{\frac{1}{7}}$ Pad saddle		
Unreinforced fabricated tee [Notes (3) and (4)]	$\frac{\overline{T}}{r}$	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/_3}}$			
Butt welded joint, reducer, or welding neck flange		1	1.0	1.0			
Double-welded slip-on flange		1	1.2	1.2			

Table 519.3.6 Elexibility Factor, k, and Stress Intensification Factor, i

Description	Flexibility Characteristic, <i>h</i>	Flexibility Factor, <i>k</i>	Stress Intensification Factor		
			<i>i_i</i> [Note (1)]	<i>i_o</i> [Note (2)]	Illustration
Fillet welded joint (single- welded), socket welded flange, or single-welded slip-on flange		1	1.3	1.3	
Lap flange (with ASME B16.9 lap-joint stub)		1	1.6	1.6	
Threaded pipe joint or threaded flange		1	2.3	2.3	
Corrugated straight pipe, or corrugated or creased bend [Note (10)]		5	2.5	2.5	

Table 519.3.6 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

GENERAL NOTE: For reference, see Table 519.3.6 Illustration on page 41.

NOTES:

(1) In-plane.

(2) Out-plane.

(3) For fittings and miter bends the flexibility factors, *k*, and stress intensification factors, *i*, in the Table apply to bending in any plane and shall not be less than unity; factors for torsion equal unity.

(4) Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter elbows and to the intersection point for tees. The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the equations given where

- R = bend radius of welding elbow or pipe bend, in. (mm)
- r = mean radius of matching pipe, in. (mm)
- s = miter spacing at centerline, in. (mm)
- T = pad or saddle thickness, in. (mm)

T = nominal wall thickness, in. (mm), of: part itself for elbows and curved or miter bends; matching pipe for welding tees; run or header for fabricated tees (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diameter).

- $\theta~=~{
 m one-half}$ angle between adjacent miter axes, deg
- (5) Where flanges are attached to one or both ends, the values of k and T in the Table shall be corrected by the factors C_1 given below, which can be read directly from Chart B; entering with the computed h: one end flanged, $h^{\frac{1}{2}} \ge 1$; both ends flanged, $h^{\frac{1}{2}} \ge 1$.
- (6) The engineer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (7) In large-diameter thin-wall elbows and bends, pressure can significantly affect the magnitude of flexibility and stress intensification factors. To correct values obtained from the Table for the pressure effect, divide
 (a) flexibility factor, *k*, by

$$1 + 6 \frac{P}{E_c} \left(\frac{r}{T}\right)^{\frac{1}{3}} \left(\frac{R}{r}\right)^{\frac{1}{3}}$$

(b) stress intensification factor, i, by

$$1 + 3.25 \frac{P}{E_c} \left(\frac{r}{T}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}$$

where

- E_c = cold modulus of elasticity, ksi (MPa)
- P = internal design pressure, psi (kPa)
- (8) Also includes single-miter joint.
- (9) When $T > 1.5\overline{T}$, use $h = 4.05 \overline{T}/r$.
- (10) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends) of Steel gas piping systems, the allowable pressure is calculated from para. 841.1.1.

$$P = \frac{2SEt_nFT}{D}$$
$$P = \frac{2SEt_nFT}{D - t_n}$$

where

P = allowable pressure

When $D/t_n < 30$, then

- S = specified minimum yield strength from para. 841.1.1 (a), as input in CAEPIPE material properties
- E = longitudinal joint factor (input as material property), obtained from Table 841.1.7-1 and para. 817.1.3 (d)
- t_n = nominal pipe thickness

D = nominal outside diameter

F =construction location design factor, obtained from Table 841.1.6-1

T = temperature derating factor, obtained from Table 841.1.8-1 and para. 841.1.8

Note:

Allowable pressure calculation for Ductile Iron and Plastic piping systems as per this code are not included in CAEPIPE.

Stress due to Sustained & Occasional Loads [Unrestrained (above ground) Piping]

The sum of longitudinal stress due to internal pressure and due to axial loading (other than thermal expansion and pressure) and the bending stress due to external loads, such as weight of the pipe and contents, occasional loads such as seismic or wind, etc. is calculated according to paras. 833.6 (a) and 833.6 (b) along with paras. 805.2.3, 833.2 (b), 833.2 (d), 833.2 (e) and 833.2 (f). Wind and seismic are not considered to act concurrently.

Please note, the "include axial force in stress calculations" option is turned ON by default for ASME B31.8 in CAEPIPE.

Sustained StressS_L:

For Pipes and Long Radius Bends

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{R}{A} \right|_{Sustained} + \left[\frac{\sqrt{(M_{i})^{2} + (M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{Sustained} \le 0.75 \text{ST}$$

For other Fittings and Components.

$$S_{L(fc)} = \left|\frac{PD}{4t_n} + \frac{R}{A}\right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z}\right]_{Sustained} \le 0.75ST$$

Sustained + Occasional Stress S_{L0}:

For Pipes and Long Radius Bends

$$S_{LO} = S_L + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75ST$$

For other Fittings and Components

$$S_{LO(fc)} = S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75ST$$

where

 $P = \text{maximum operating pressure} = \text{max} (P_1 \text{ through } P_{10})$ $P_{peak} = \text{Peak pressure factor x P}$ D = outside diameter $t_n = \text{nominal thickness}$ $i_i = \text{in-plane stress intensification factor; the product 0.75i_i \text{ shall not be less than 1.0}$ $i_o = \text{out-of-plane stress intensification factor; the product 0.75i_o \text{shall not be less than 1.0}}$ $M_i = \text{in-plane bending moment due to weight and other external loads}$ $M_c = \text{out-of-plane bending moment due to weight and other external loads}$ $M_t = \text{torsional moment due to weight and other external loads}$ R = axial force due to external loads (other than due to thermal expansion and pressure) $A = \underline{\text{un-corroded pipe metal cross-section area}}$ S = specified minimum yield strength from para. 841.1.1(a) T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=min (T_1 through T_{10}, T_{ref})]$ is used to form the stiffness matrix for Sustained and Occasional load calculations in accordance with para. 832.3(g).

Expansion Stress [Unrestrained (above ground) Piping]

The stress (S_E) due to thermal expansion is calculated from para.833.8.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$

 S_t = torsional stress = $\frac{M_t}{2Z}$

 M_i = in-plane bending moment due to thermal expansion

 M_o = out-of-plane bending moment to thermal expansion

 M_t = torsional moment due to thermal expansion

- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- $S_A = f[1.25(S_C + S_h) S_L]$
- f = stress range reduction factor = $6/N^{0.2}$, where N = number of equivalent full range cycles

where $f \le 1.0$ (from para. 833.8 (b)).

- S_L = sustained stress computed as per equation given above
- $S_C = 0.33$ SuT at the minimum installed or operating temperature
- $S_h = 0.33$ SuT at the maximum installed or operating temperature

where

- S_u = specified minimum ultimate tensile strength = 1.5 S_y (assumed), and
- S_y = specified minimum yield strength as per para. 841.1.1(a)
- T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[= \min(T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix for Expansion load calculations in accordance with para. 832.3 (g).

Sustained, Thermal & Occasional Stress [Restrained (buried) Piping]

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from paras. 833.3 (a), 833.3 (b) along with paras. 805.2.3, 833.2 (a), 833.2 (c), 833.2 (d), 833.2 (e) and 833.2 (f)

 $S_{Lp} = S_p + S_T + S_X + S_B$

 $S_{Ln} = S_p + S_T + S_X - S_B$

As per 833.4 (d), both the tensile and compressive values of $S_{\rm B}$ shall be considered in analysis.

where

 $S_p = 0.3S_H = 0.3\frac{PD}{2t_n}$ = longitudinal stress due to internal pressure in restrained pipeline S_H = hoop stress = $\frac{PD}{2t_n}$ as per para. 805.2.3

 S_T = longitudinal stress due to thermal expansion in restrained pipeline = $E\alpha_m(T_i - T_m)$ (see Note 1 below)

 S_X = stress due to axial loading (other than thermal expansion and pressure) = $\frac{R}{A}$

 S_B = nominal bending stress due to weight and other external loads (other than thermal expansion)

For Pipes and Long Radius Bends

$$S_B = \frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z}$$

For other Fittings and Components.

$$S_B = \frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z}$$

As per para 833.3(a), note that S_B, S_L, S_T or S_X can be positive or negative where

P = maximum operating pressure = max(P1 through P10)

D =outside diameter

 t_n =nominal thickness

 i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0

 i_o = out-of-plane stress intensification factor; the product 0.75i_o shall not be less than 1.0

- M_i = in-plane bending moment due to weight and other external loads (other than thermal expansion)
- M_o = out-of-plane bending moment due to weight and other external loads (other than thermal expansion)
- M_t = torsional moment due to weight and other external loads (other than thermal expansion)
- R = axial force due to weight and other external loads (other than thermal expansion and pressure)
- A =<u>un-corroded</u> pipe metal cross-sectional area (i.e., before deducting for corrosion)
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- S = Specified Minimum Yield Strength (SMYS) from para. 841.1.1 (a)
- T = Temperature derating factor from para. 841.1.8 and Table 841.1.8-1
- E = Young's modulus at ambient temperature from para. 833.2 (c), i.e., at T_{ref} in CAEPIPE
- T_i = installation temperature = T_{ref} in CAEPIPE (see Note 1 below)

 T_m = warmest or coldest operating temperature (see Note 1 below)

 α_m = coefficient of thermal expansion at T_m in CAEPIPE (see Note 1 below)

Note 1:

If there are more than one thermal load, for example T1 and T2, then CAEPIPE calculates longitudinal stress S_T due to thermal expansion as follows.

For a change in temperature from T_{ref} to T_1 , $S_{T1} = -E\alpha_1(T_1 - T_{ref})$

For a change in temperature from T_{ref} to T_2 , $S_{T2} = -E\alpha_2(T_2 - T_{ref})$

For a change in temperature from T_1 to T_2 , $S_{T1-.>T2} = S_{T2} - S_{T1}$

Please note, that negative (-) sign is added in the above equations as the soil is restraining the thermal expansion / contraction of the buried pipe due to friction at the soil-to-pipe interface.

Combined Stress for Restrained Pipe

The combined biaxial stress state of the pipeline in the operating mode is evaluated using maximum shear stress theory as per the calculation given below <u>by default</u> in CAEPIPE as per para. 833.4.

$$S_{eq} = \max\{S_{eq1}, S_{eq2}\} \le 0.9ST$$

where

 S_{eq} = equivalent combined stress

$$S_{eq1} = \max\{|S_H - S_{Lp}|, |S_H|, |S_{Lp}|\}$$

 $S_{eq2} = \max\{|S_H - S_{Ln}|, |S_H|, |S_{Ln}|\}$

Alternatively, the stresses may be combined in accordance with the maximum distortion energy theory as follows (see Note 3 below):

$$S_{eq1} = \sqrt{(S_{Lp})^2 - S_H S_{Lp} + (S_H)^2}$$

$$S_{eq2} = \sqrt{(S_{Ln})^2 - S_H S_{Ln} + (S_H)^2}$$

Notes:

- 1. Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min(T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix in accordance with para. 832.3 (g).
- 2. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 3. By default, CAEPIPE combines the stresses for restrained piping using the maximum shear stress theory as stated above. To combine stresses in accordance with the maximum distortion energy theory as stated above, turn ON the analysis option "Combine stresses as per Max. Distortion Energy Theory" through Layout Window > Options > Analysis > Code.

Notes on Material Library for B318-2022.mat supplied with CAEPIPE:

Material library for ASME B31.8 (2022) [B318-2022.mat] has been created and supplied with CAEPIPE as mentioned below.

- 1. **Coefficient of Thermal Expansion:** As stated in para. 832.2 of B31.8 (2022), Coefficient of Thermal Expansion for Carbon and low alloy steel are entered by referring to the values given in Table 832.2-1 of ASME B31.8 (2022).
- 2. **Modulus of Elasticity:** Modulus of Elasticity for Carbon and low alloy steel are entered by referring to the values given in Table 832.5-1 of ASME B31.8 (2022).
- 3. Yield Strength: Yield Strength for Carbon and low alloy steel are entered by referring to the values specified in Mandatory Appendix D titled "Specified Minimum Yield Strength for Steel Pipe Commonly Used in Piping Systems" of ASME B31.8 (2022).
- 4. **Density and Poisson's ratio:** Density and Poisson's ratio for Carbon and low alloy high tensile steel are entered as 0.283 lb/in³ and 0.3 respectively.
- 5. Longitudinal Joint Factor: Longitudinal Joint Factor for Carbon and low alloy steel are entered by referring to the values specified in Table 841.1.7-1 of ASME B31.8 (2022).

	Flexibility	Stress Inte	ensification otes (1), (2)]	Flexibility	
Description	Factor,	Out-Plane, <i>i_o</i>	In-Plane, <i>i_i</i>	Characteristic, h	Illustration
Welding elbow or pipe bend [Notes (1)-(5)]	$\frac{1.65}{h}$	$\frac{0.75}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{T} R_1}{r_2^2}$	$R_1 = bend radius$
Closely spaced miter bend $s < r_2 (1 + \tan \theta)$ [Notes (1), (2), (3), (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\cot\theta}{2}\frac{\overline{T}s}{r_2^2}$	$s = \frac{1}{\theta} r_2$ $R_1 = \frac{s \cot \theta}{2}$
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (2), (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{\overline{T}}{r_2}$	\vec{r}_{1}
Welding tee per ASME B16.9 with $r_o \ge d/8$ $T_c \ge 1.5T$ [Notes (1), (2), (6)]	1	$\frac{0.9}{h^{2/3}}$	³ / ₄ i _o + ¹ / ₄	$4.4\frac{\overline{T}}{r_2}$	$-\frac{1}{r_o} + \frac{1}{r_o} + r_2$
Reinforced fabricated tee with pad or saddle [Notes (1), (2), (7)-(9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$\frac{\left(\overline{T} + \frac{1}{2}t_{e}\right)^{5/2}}{\overline{T}^{3/2}r_{2}}$	$\frac{1}{\frac{1}{t_e}}$
Unreinforced fabricated tee [Notes (1), (2), (9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$\frac{\overline{T}}{r_2}$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
Extruded outlet $r_o \ge 0.05d$ $T_c < 1.5 \overline{T}$ [Notes (1), (2), (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4i_o} + \frac{1}{4}$	$\left(1 + \frac{r_0}{r_2}\right) \frac{\overline{T}}{r_2}$	$ \begin{array}{c} $
Nelded-in contour insert $r_o \ge d/8$ $T_c \ge 1.5\overline{T}$ [Notes (1), (2), (10)]	1	$\frac{0.9}{h^{2/3}}$	³ / ₄ <i>i</i> _o + ¹ / ₄	$4.4\frac{\overline{T}}{r_2}$	

Table E-1 lexibility Factor, k, and Stress Intensification Factor,

Flexi	ibility Factor		ble E-1 ss Intensifica	tion Factor, i (Cont'd)
	Flexibility		ensification otes (1), (2)]	Flexibility	
Description	Factor, k	Out-Plane, i _o	In-Plane, <i>i_i</i>	Characteristic, h	Illustration
Branch welded-on fitting (inte- grally reinforced) in accordance with MSS SP-97 [Notes (1), (2), (9), (11)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$3.3\frac{\overline{T}}{r_2}$	
Description	Fac	bility tor,		tensification	Illia da ada a
Description Butt weld [Notes (1), (12)]	k		ra	ctor, i	Illustration
$\overline{T} \ge 0.237 \text{ in. (6.02 mm)}, \\ \delta_{\text{max}} \le \frac{1}{16} \text{ in. (1.59 mm)}, \\ \text{and } \delta_{\text{avg}}/\overline{T} \le 0.13$:	L		1.0	
$ \begin{array}{l} \overline{T} \geq 0.237 \mbox{ in. (6.02 mm),} \\ \delta_{\max} \leq {}^{1}\!$:	L	1.9 max. or [0.9 + 2.7 $(\delta_{avg}/\overline{T})$], but not less than 1.0		$\frac{\overline{\tau}}{1} \underbrace{\sum_{\delta} t_{\delta}}^{\tau}$
Tapered transition per ASME B16.25 [Note (1)]	:	L		max. or $36\frac{D_o}{T} + 3.6\frac{\delta}{T}$	Ţ
Concentric reducer per		L		1 1	$D_o \uparrow \frac{1}{\delta}$
ASME B16.9 [Notes (1), (13)]			2.0 0.5 + 0.0	max. or $01\alpha \left(\frac{D_{02}}{\overline{T}_2}\right)^{1/2}$	$ \begin{array}{c} \overline{T}_{1}\\ \uparrow\\ D_{o1}\\ \downarrow \end{array} $
Double-welded slip-on flange [Note (14)]	-	L		1.2	
Socket welding flange or fitting [Notes (14), (15)]	:	L		r 2.1 \overline{T}/C_x but is than 1.3	
Lap joint flange (with vASME B16.9 lap joint stub) [Note (14)]	:			1.6	
Threaded pipe joint or threaded flange [Note (14)]	:	L		2.3	
Corrugated straight pipe, or corrugated or creased bend [Note (16)]	:	5		2.5	

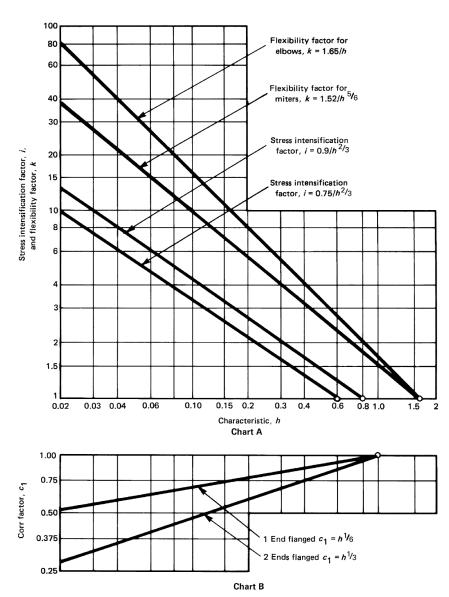


 Table E-1

 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

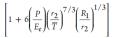

GENERAL NOTE: The stress intensification and flexibility factors from ASME B31J may be used instead of the stress intensification and flexibility factors herein. When using the stress intensification factors from ASME B31J, the maximum of in-plane (i_i) and out-plane (i_o) stress intensification factors shall be used in calculating stresses in accordance with para. 833.2 or para. A842.2.2. Alternatively, stress intensification factors and branch connection flexibility factors may be developed using ASME B31J, Nonmandatory Appendix A.

Table E-1

Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

NOTES:

- (1) The nomenclature is as follows:
 - D_0 = outside diameter, in. (mm)
 - d = outside diameter of branch, in. (mm)
 - R_1 = bend radius of welding elbow or pipe bend, in. (mm)
 - r_0 = radius of curvature of external contoured portion of outlet, measured in the plane containing the axes of the header and branch, in. (mm) r_2 = mean radius of matching pipe, in. (mm)
 - s = miter spacing at centerline, in. (mm)
 - \overline{T} = nominal wall thickness of piping component, in. (mm)
 - = for elbows and miter bends, the nominal wall thickness of the fitting, in. (mm)
 - = for welding tees, the nominal wall thickness of the matching pipe, in. (mm)
 - = for fabricated tees, the nominal wall thickness of the run or header (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diameter), in. (mm)
 - $T_c\,$ = the crotch thickness of tees, in. (mm)
 - t_e = pad or saddle thickness, in. (mm)
 - α = reducer cone angle, deg
 - δ = mismatch, in. (mm)
 - θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factor, *k*, applies to bending in any plane. The flexibility factors, *k*, and stress intensification factors, *i*, shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends and to the intersection point for tees. The values of *k* and *i* can be read directly from Chart A by entering with the characteristic, *h*, computed from the formulas given.
- (3) Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factors, C_w, which can be read directly from Chart B, entering with the computed h.
- (4) The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the table, divide k by

divide *i* by

$$\left[1 + 3.25 \left(\frac{P}{E_e}\right) \left(\frac{r_2}{\overline{T}}\right)^{5/2} \left(\frac{R_1}{r_2}\right)^{2/3}\right]$$

where

 $E_e = \text{cold modulus of elasticity, psi (MPa)}$

P = gage pressure, psi (MPa)

- (6) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.12/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (7) When $t_e > 1\frac{1}{2}T$, use $h = 4.05T/r_2$.
- (8) The minimum value of the stress intensification factor shall be 1.2.
- (9) When the branch-to-run diameter ratio exceeds 0.5, but is less than 1.0, and the number of design displacement cycles exceeds 200, the outplane and in-plane stress intensification factors shall be calculated as 1.8/h^{2/3} and (0.67/h^{2/3}) + 1/4, respectively, unless the transition weld between the branch and run is blended to a smooth concave contour. If the transition weld is blended to a smooth concave contour, the stress intensification factors in the table still apply.
- (10) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design displacement cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) The stress intensification factors apply to girth butt welds between two items for which the nominal wall thicknesses are between $0.875\overline{T}$ and $1.10\overline{T}$ for an axial distance of $\sqrt{D_0 \overline{T}}$. D_0 and \overline{T} are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.
- (13) The equation applies only if the following conditions are met:
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_{o1}/\overline{T} and D_{o2}/\overline{T} does not exceed 100.

(c) The wall thickness is not less than \overline{T}_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than \overline{T}_2 .

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

NOTES: (Cont'd)

(14) For some flanged joints, leakage may occur at expansion stresses otherwise permitted herein. The moment to produce leakage of a flanged joint with a gasket having no self-sealing characteristics can be estimated by the following equation:

$$M_L = (C/4) (S_b A_b - P A_p)$$

where

 A_b = total area of flange bolts, in.² (mm³) A_p = area to outside of gasket contact, in.² (mm²) C = bolt circle, in. (mm) M_L = moment to produce flange leakage, in.-lb (mm·N)

 \tilde{P} = internal pressure, psi (MPa)

 S_b = bolt stress, psi (MPa)

(15) C_x is the fillet weld length. For unequal lengths, use the smaller leg for C_x . (16) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 841.1.1.

$$P = \frac{2SEt_nFT}{D}$$
$$P = \frac{2SEt_nFT}{D}$$

When $D/t_n < 30$, then

$$P = \frac{2SEt_nFT}{D - t_n}$$

where

- Р = allowable pressure
- S = specified minimum yield strength from para. 841.1.1 (a)
- Ε = longitudinal joint factor (input as material property), obtained from Table 841.1.7-1 and para. 817.1.3 (d)
- = nominal pipe thickness t_n
- = nominal outside diameter D
- F = construction location design factor selected (obtained from Table 841.1.6-1)
- Т = temperature derating factor, obtained from Table 841.1.8-1 and para. 841.1.8

Note:

Allowable Pressure calculation for Ductile Iron and Plastic piping systems as per this code are not included in CAEPIPE.

Stress due to Sustained & Occasional Loads [Unrestrained (above ground) Piping]

The sum of longitudinal stress due to internal pressure and due to axial loading (other than thermal expansion and pressure) and the bending stress due to external loads, such as weight of the pipe and contents, seismic or wind, etc. is calculated according to paras. 833.6 (a) and 833.6 (b) along with paras. 805.2.3, 833.2 (b), 833.2 (d), 833.2 (e) and 833.2 (f).

Please note, the "include axial force in stress calculations" option is turned ON by default for ANSI B31.8 in CAEPIPE.

Sustained Stress S₁:

For Pipes and Long Radius Bends

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{R}{A} \right|_{Sustained} + \left[\frac{\sqrt{(M_{i})^{2} + (M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{Sustained} \le 0.75 \text{ST}$$

For other Fittings and Components.

$$S_{L(fc)} = \left|\frac{PD}{4t_n} + \frac{R}{A}\right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z}\right]_{Sustained} \le 0.75ST$$

Sustained + Occasional Stress S_{L0}:

For Pipes and Long Radius Bends

$$S_{LO} = S_L + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75ST$$

For Fittings and Components

$$S_{LO} = S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75ST$$

where

 $P = \text{maximum operating pressure} = \text{max} (P_1 \text{ through } P_{10})$ $P_{peak} = \text{Peak pressure factor x P}$ D = outside diameter $t_n = \text{nominal thickness}$ $i_i = \text{in-plane stress intensification factor; the product 0.75i_i \text{ shall not be less than 1.0}$ $i_o = \text{out-of-plane stress intensification factor; the product 0.75i_o \text{shall not be less than 1.0}$ $M_i = \text{in-plane bending moment}$ $M_c = \text{out-of-plane bending moment}$ $M_t = \text{torsional moment}$ $Z = \underline{\text{un-corroded section modulus; for reduced outlets, effective section modulus}$ R = axial force component for external loads (other than thermal expansion and pressure) $A = \underline{\text{un-corroded pipe metal cross-section area}}$ S = specified minimum yield strength from para. 841.1.1(a)

T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min (T_1 through T_{10}, T_{ref})]$ is used to form the stiffness matrix for Sustained and Occasional load calculations in accordance with para. 832.3(g).

Expansion Stress (Unrestrained Piping)

The stress (S_E) due to thermal expansion is calculated from para.833.8.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$

 S_t = torsional stress = $\frac{M_t}{2Z}$

 M_t = torsional moment

 $Z = \underline{un-corroded}$ section modulus; for reduced outlets, effective section modulus *Please note, "Liberal allowable" option is always turned ON for ANSI B31.8.*

- $S_A = f[1.25(S_C + S_h) S_L]$
- f = stress range reduction factor = $6/N^{0.2}$, where N = number of equivalent full range cycles

where $f \le 1.0$ (from para. 833.8 (b)).

- S_L = sustained stress computed as per equation given above
- $S_C = 0.33$ SuT at the minimum installed or operating temperature
- $S_h = 0.33$ SuT at the maximum installed or operating temperature

where

 S_u = specified minimum ultimate tensile strength = 1.5 S_y (assumed), and

 S_y = specified minimum yield strength as per para. 841.1.1(a)

T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min(T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix for Expansion load calculations in accordance with para. 832.4 (g).

Stress due to Sustained, Thermal and Occasional Loads (Restrained Piping)

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from paras. 833.3 (a), 833.3 (b) along with paras. 805.2.3, 833.2 (a), 833.2 (c), 833.2 (d), 833.2 (e) and 833.2 (f)

 $S_{Lp} = S_p + S_T + S_X + S_B$

 $S_{Ln} = S_p + S_T + S_X - S_B$

As per 833.4 (d), both the tensile and compressive values of $S_{\scriptscriptstyle B}$ shall be considered in analysis.

 $S_p = 0.3S_H = 0.3\frac{PD}{2t_n}$ = longitudinal stress due to internal pressure in restrained pipeline S_H = hoop stress = $\frac{PD}{2t_n}$ as per para. 805.2.3

 S_T = longitudinal stress due to thermal expansion in restrained pipeline = $E\alpha(T_i - T_o)$ (see Note 1 below)

 S_X = stress due to axial loading (other than thermal expansion and pressure) = $\frac{R}{A}$

 S_B = nominal bending stress due to weight and other external loads (other than thermal expansion)

For Pipes and Long Radius Bends

$$S_B = \frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z}$$

For other Fittings and Components.

$$S_B = \frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z}$$

As per para 833.3(a), note that S_B, S_L, S_T or S_X can be positive or negative where

P = maximum operating pressure = max(P1 through P10)

D =outside diameter

- t_n = nominal thickness
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; the product 0.75i_oshall not be less than 1.0
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment
- R = axial force component for external loads (other than thermal expansion and pressure)
- A =<u>un-corroded</u> pipe metal cross-sectional area (i.e., before deducting for corrosion)
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- S = Specified Minimum Yield Strength (SMYS) from para. 841.1.1 (a)
- T = Temperature derating factor from para. 841.1.8 and Table 841.1.8-1
- E = Young's modulus at ambient temperature from para. 833.2 (c) = T_{ref} in CAEPIPE
- T_i = installation temperature = T_{ref} in CAEPIPE
- T_o = warmest or coldest operating temperature
- α = coefficient of thermal expansion at T₀ in CAEPIPE

Note 1:

If there are more than one thermal load, for example T1 and T2, then CAEPIPE calculates longitudinal stress due to thermal expansion as follows.

$$E\alpha_1(T_1 - T_{ref})$$
 for T1, $E\alpha_2(T_2 - T_{ref})$ for T2 and for
 $(T_2 - T_1) = E\alpha_n(T_n - T_{ref}) - E\alpha_m(T_m - T_{ref})$, where n = 1 and m = 2

Combined Stress for Restrained Pipe

The combined biaxial stress state of the pipeline in the operating mode is evaluated using the calculation given below <u>by default</u> in CAEPIPE as per para. 833.4.

$$S_{eq} = \max\{S_{eq1}, S_{eq2}\} \le 0.9S7$$

where

 S_{eq} = equivalent combined stress

$$S_{eq1} = \max\{|S_H - S_{Lp}|, |S_H|, |S_{Lp}|\}$$

$$S_{eq2} = \max\{|S_H - S_{Ln}|, |S_H|, |S_{Ln}|\}$$

Alternatively, the stresses may be combined in accordance with the maximum distortion energy theory as follows (see Note 3 below):

$$S_{eq1} = \sqrt{(S_{Lp})^2 - S_H S_{Lp} + (S_H)^2}$$

$$S_{eq2} = \sqrt{(S_{Ln})^2 - S_H S_{Ln} + (S_H)^2}$$

Notes:

- 1. Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min(T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix in accordance with para. 832.3 (g).
- 2. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 3. To combine stresses in accordance with the maximum distortion energy theory as stated above, set an environmental variable with name "DET_318" with its value as "YES".

Notes on Material Library for B318-2020.mat supplied with CAEPIPE:

Material library for ASME B31.8 (2020) [B318-2020.mat] has been created and supplied with CAEPIPE as mentioned below.

- 1. **Coefficient of Thermal Expansion:** As stated in para. 832.2 of B31.8 (2020), Coefficient of Thermal Expansion for Carbon and low alloy steel are entered by referring to the values given in Table 832.2-1 of ASME B31.8 (2020).
- 2. **Modulus of Elasticity:** Modulus of Elasticity for Carbon and low alloy steel are entered by referring to the values given in Table 832.5-1 of ASME B31.8 (2020).
- 3. Yield Strength: Yield Strength for Carbon and low alloy steel are entered by referring to the values specified in Mandatory Appendix D titled "Specified Minimum Yield Strength for Steel Pipe Commonly Used in Piping Systems" of ASME B31.8 (2020).
- 4. **Density and Poisson's ratio:** Density and Poisson's ratio for Carbon and low alloy high tensile steel are entered as 0.283 lb/in³ and 0.3 respectively.
- 5. **Longitudinal Joint Factor:** Longitudinal Joint Factor for Carbon and low alloy steel are entered by referring to the values specified in Table 841.1.7-1 of ASME B31.8 (2020).

	Flexibility	Stress Intensification Factor, <i>i</i> [Notes (1) and (2)		Flexibility	
Description	Factor, <i>k</i>	Out-plane, <i>i</i> o	In-plane, <i>i</i> i	Characteristic, <i>h</i>	Sketch
Welding elbow or pipe bend [Notes (1)–(5)]	<u>1.65</u> h	$\frac{0.75}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{T} R_1}{r_2^2}$	$R_1 = \frac{1}{radius}$
Closely spaced miter bend [Notes (1), (2), (3), and (5)] $s < r_2 (1 + \tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\cot\theta}{2}\frac{\overline{Ts}}{r_2^2}$	$s_{\theta} = \frac{1}{R_1} = \frac{s \cot \theta}{2}$
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (2), and (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{\overline{T}}{r_2}$	$\vec{r}_{1} = \frac{\vec{r}_{2}(1 + \cot \theta)}{2}$
Welding tee per ASME B16.9 with $r_0 \geq \frac{4}{7_c}$ $T_c \geq 1.5 \overline{T}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$4.4 \frac{\overline{T}}{r_2}$	T_{o} r_{o} r_{2}
Reinforced fabricated tee with pad or saddle [Notes (1), (2), (7)–(9)]	1	$\frac{0.9}{h^{2/3}}$	³ /4 <i>i</i> ₀ + ¹ /4	$\frac{(\overline{r} + \frac{1}{2} t_0)^{5/2}}{\overline{r}^{3/2} r_2}$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ \hline & & & &$
Inreinforced fabricated tee [Notes (1), (2), and (9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_0 + \frac{1}{4}$	$\frac{\overline{T}}{r_2}$	
Extruded outlet $r_o \ge 0.05d$ $T_c < 1.5 \overline{T}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}$ $i_0 + \frac{1}{4}$	$\left(1+\frac{r_o}{r_2}\right)\frac{\overline{T}}{r_2}$	
Welded-in contour insert $r_o \geq \frac{d}{8}$ $T_c \geq 1.5 \overline{T}$ [Notes (1), (2), and (10)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_0 + \frac{1}{4}$	$4.4 \frac{\overline{T}}{r_2}$	
Branch welded-on fitting (inte- grally reinforced) [Notes (1), (2), (9), and (11)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$3.3\frac{\overline{7}}{r_2}$	

Table E-1	Flexibility Factor, k , and Stress Intensification Factor, i (Cont'd)					
Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch			
Buttweld [Notes (1) and (12)]						
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{max.} \le \frac{1}{16}$ in. (1.59 mm), and $\delta_{avg}/\overline{T} \le 0.13$	1	1.0				
Buttweld [Notes (1) and (12)]						
$ \begin{array}{l} \overline{T} \geq 0.237 \text{ in. (6.02 mm),} \\ \delta_{\max} \leq \frac{1}{2} \text{ in. (3.18 mm),} \\ \text{ and } \delta_{\text{avg}}/\overline{T} = \text{ any value} \end{array} $	1	1.9 max. or $[0.9 + 2.7(\delta_{avg}/\overline{n})]$, but not less than	$\frac{\overline{\tau}}{t_{\delta}}$			
Buttweld [Notes (1) and (12)]		1.0				
$ \overline{7} \leq 0.237 \text{ in. (6.02 mm),} \\ \delta_{\max} \leq \frac{1}{16} \text{ in. (1.59 mm),} \\ \text{and } \delta_{\text{avg}}/\overline{7} \leq 0.33 $						
Tapered transition per ASME B16.25 [Note (1)]	1	1.9 max. or 1.3 + 0.0036 $\frac{D_o}{\overline{7}}$ + 3.6 $\frac{\delta}{\overline{7}}$				
	1	2.0 max. or	\overline{T}_1			
Concentric reducer per ASME B16.9 [Notes (1) and (13)]		$0.5 + 0.01 \alpha \left(\frac{D_{o2}}{\overline{T}^2}\right)^{1/2}$				
Double-welded slip-on flange [Note (14)]	1	1.2				
Socket welding flange or fit- ting [Notes (14) and (15)]	1	2.1 max or 2.1 \overline{T}/C_x but not less than 1.3				
Lap joint flange (with ASME B16.9 lap joint stub) [Note (14)]	1	1.6				
Threaded pipe joint or threaded flange [Note (14)]	1	2.3				
Corrugated straight pipe, or corrugated or creased bend [Note (16)]	5	2.5				

Table E-1	Flexibility Factor.	k.	and Stress	Intensification	Factor, <i>i</i> (Cont'd)	

[Note (16)]

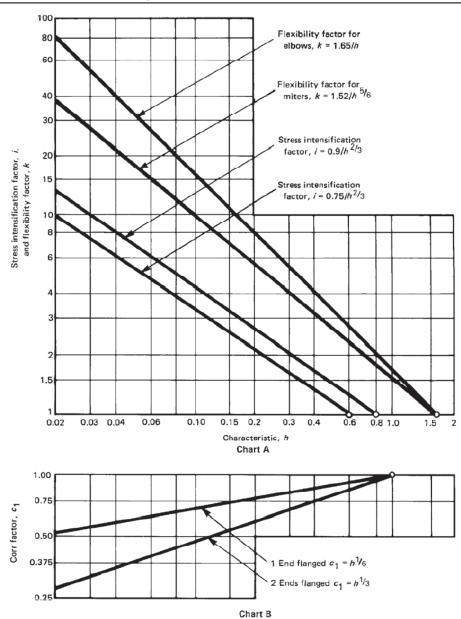


 Table E-1
 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table E-1	Flexibility	/ Factor, k	, and	Stress	Intensification	Factor,	i ((Cont'd)	

NOTES:

- The nomenclature is as follows: (1)
 - d = outside diameter of branch, in. (mm)
 - R_1 = bend radius of welding elbow or pipe bend, in. (mm)
 - r_o = radius of curvature of external contoured portion of outlet, measured in the plane containing the axes of the header and branch, in, (mm)
 - r_2 = mean radius of matching pipe, in. (mm)
 - $\frac{s}{T}$ = miter spacing at centerline, in. (mm) $\frac{s}{T}$ = nominal wall thickness of piping component, in. (mm)
 - = for elbows and miter bends, the nominal wall thickness of the fitting, in. (mm)
 - = for welding tees, the nominal wall thickness of the matching pipe, in. (mm)
 - = for fabricated tees, the nominal wall thickness of the run or header (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diame ter), in. (mm)
 - T_c = the crotch thickness of tees, in. (mm)
 - t_e = pad or saddle thickness, in. (mm)
 - α = reducer cone angle, deg
 - θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factor, k, applies to bending in any plane. The flexibility factors, k, and stress intensification factors, i, shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter bends and to the intersection point for tees.
- The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the formulas given. Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factors, C_{ik} which can be read (3)
- directly from Chart B, entering with the computed h.
- (4)The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the table, divide k by

$$\left[1+6\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{T}}\right)^{7/3}\left(\frac{R_1}{r_2}\right)^{1/3}\right]$$

divide *i* by

$$\left[1+3.25\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{T}}\right)^{5/2}\left(\frac{R_1}{r_2}\right)^{2/3}\right]$$

where

- $E_e = \text{cold modulus of elasticity, psi (MPa)}$ P = gage pressure, psi (MPa)
- If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.12/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4_0}$ respectively.
- (7)When $t_{a} > 1^{1}/_{2}T_{a}$ use $h = 4.05T/r_{2}$.
- (8)The minimum value of the stress intensification factor shall be 1.2.
- When the branch-to-run diameter ratio exceeds 0.5, but is less than 1.0, and the number of design displacement cycles exceeds (9)200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively, unless the transition weld between the branch and run is blended to a smooth concave contour. If the transition weld is blended to a smooth concave contour, the stress intensification factors in the table still apply.
- (10) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design displacement cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between $0.875\overline{T}$ and $1.10\overline{T}$ for an axial distance of $\sqrt{D_o T} \cdot D_o$ and \overline{T} are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.

- (13) The equation applies only if the following conditions are met.
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_{o1}/\overline{T} and D_{o2}/\overline{T} does not exceed 100.
 - (c) The wall thickness is not less than \overline{T}_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than \overline{T}_2 .
- (14) For some flanged joints, leakage may occur at expansion stresses otherwise permitted herein. The moment to produce leakage of a flanged joint with a gasket having no self-sealing characteristics can be estimated by the following equation:

$M_L = (C/4) (S_b A_b - PA_p)$

- (16) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 841.1.1.

$$P = \frac{2SEt_nFT}{D}$$
$$P = \frac{2SEt_nFT}{D-t}$$

When $D/t_n < 30$, then

$$P = \frac{2DLt_n T}{D - t_n}$$

where

- Р = allowable pressure
- S = specified minimum yield strength from para. 841.1.1 (a) and para. 817.1.3 (h)
- Ε = longitudinal joint factor (input as material property), obtained from Table 841.1.7-1 and para. 817.1.3 (d)
- = nominal pipe thickness t_n
- = outside diameter D
- F = construction type design factor, obtained from Table 841.1.6-1
- Т = temperature derating factor, obtained from Table 841.1.8-1 and para. 841.1.8

Stress due to Sustained and Occasional Loads (Unrestrained Piping)

The sum of longitudinal pressure stress due to axial loading (other than thermal expansion and pressure) and the bending stress due to external loads, such as weight of the pipe and contents, seismic or wind, etc. is calculated according to paras. 833.6 (a) and 833.6 (b) along with paras. 805.2.3, 833.2 (b), 833.2 (d), 833.2 (e) and 833.2 (f).

Please note, the "include axial force in stress calculations" option is turned ON by default for ANSI B31.8 in CAEPIPE.

Sustained Stress*S_L*:

For Pipes and Long Radius Bends

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{R}{A} \right|_{Sustained} + \left[\frac{\sqrt{(M_{i})^{2} + (M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{Sustained} \le 0.75 \text{ST}$$

For other Fittings and Components.

$$S_{L(fc)} = \left|\frac{PD}{4t_n} + \frac{R}{A}\right|_{Sustained} + \left[\frac{\sqrt{(0.75i_1M_i)^2 + (0.75i_0M_o)^2 + (M_t)^2}}{Z}\right]_{Sustained} \le 0.75ST$$

Sustained + Occasional Stress S_{L0}:

For Pipes and Long Radius Bends

$$S_{L0} = S_L + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75ST$$

For Fittings and Components

$$S_{LO} = S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75ST$$

where

 $P = \text{maximum operating pressure} = \max (P_1 \text{ through } P_{10})$ $P_{peak} = \text{Peak pressure factor x P}$ D = outside diameter $t_n = \text{nominal thickness}$ $i_i = \text{in-plane stress intensification factor; the product 0.75i_i \text{ shall not be less than 1.0}}$ $i_o = \text{out-of-plane stress intensification factor; the product 0.75i_o \text{shall not be less than 1.0}}$ $M_i = \text{in-plane bending moment}$ $M_c = \text{out-of-plane bending moment}$ $M_t = \text{torsional moment}$ $Z = \underline{\text{un-corroded section modulus; for reduced outlets, effective section modulus}$ R = axial force component for external loads (other than thermal expansion and pressure) $A = \underline{\text{un-corroded cross-section area}$

S = specified minimum yield strength from para. 841.1.1(a)

T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min (T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix for Sustained and Occasional load calculations in accordance with para. 832.3(g).

Expansion Stress (Unrestrained Piping)

The stress (S_E) due to thermal expansion is calculated from para.833.8.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_t M_t)^2 + (i_0 M_0)^2}}{Z}$
 S_t = torsional stress = $\frac{M_t}{2Z}$
 M_t = torsional moment
 Z = un-corroded section modulus; for reduced outlets, effective section modulus
Please note, "Liberal allowable" option is always turned ON for ANSI B31.8.

- $S_A = f[1.25(S_C + S_h) S_L]$
- f = stress range reduction factor = $6/N^{0.2}$, where N = number of equivalent full range cycles

where $f \leq 1.0$ (from para. 833.8 (b)).

- S_L = sustained stress computed as per equation given above
- $S_C = 0.33$ SuT at the minimum installed or operating temperature

 $S_h = 0.33$ SuT at the maximum installed or operating temperature where

 S_u = specified minimum ultimate tensile strength = 1.5 S_v (assumed), and

 S_{γ} = specified minimum yield strength as per para. 841.1.1(a)

T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=min(T_1 through T_{10}, T_{ref})]$ is used to form the stiffness matrix for Expansion load calculations in accordance with para. 832.4(b).

Stress due to Sustained, Thermal and Occasional Loads (Restrained Piping)

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from paras. 833.3 (a), 833.3 (b) along with paras. 805.2.3, 833.2 (a), 833.2 (c), 833.2 (d), 833.2 (e) and 833.2 (f)

$$S_{Lp} = S_p + S_T + S_X + S_B$$

 $S_{Ln} = S_p + S_T + S_X - S_B$

As per 833.4 (d), both the tensile and compressive values of $S_{\scriptscriptstyle\rm B}$ shall be considered in analysis.

where

 $S_p = 0.3S_H = 0.3\frac{PD}{2t_n}$ = longitudinal stress due to internal pressure in restrained pipeline

 $S_H = \text{hoop stress}$

 S_T = longitudinal stress due to thermal expansion in restrained pipeline = $E\alpha(T_i - T_o)$ (see Note 1 below)

 S_X = stress due to axial loading (other than thermal expansion and pressure) = $\frac{R}{A}$

 S_B = nominal bending stress due to weight and other external loads(other than thermal expansion)

For Pipes and Long Radius Bends

$$S_B = \frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z}$$

For other Fittings and Components.

$$S_B = \frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z}$$

As per para 833.3(a), note that S_B, S_L, S_T or S_X can be positive or negative where

P = maximum operating pressure = max(P1 through P10)

- D =outside diameter
- t_n = nominal thickness
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; the product 0.75i_o shall not be less than 1.0
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment
- R = axial force component for external loads (other than thermal expansion and pressure)
- A =<u>un-corroded</u> cross-sectional area (i.e., before deducting for corrosion)
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- S = Specified Minimum Yield Strength (SMYS) from para. 841.1.1 (a)
- T = Temperature derating factor from para. 841.1.8 and Table 841.1.8-1
- E = Young's modulus at ambient temperature = T_{ref} in CAEPIPE
- T_i = installation temperature = T_{ref} in CAEPIPE
- T_o = warmest or coldest operating temperature
- α = coefficient of thermal expansion at T₀ in CAEPIPE

Note 1:

If there are more than one thermal load, for example T1 and T2, then CAEPIPE calculates longitudinal stress due to thermal expansion from T1 to T2 in restrained pipeline as follows.

 $E\alpha(T_n - T_m) = E\alpha_n(T_n - T_{ref}) - E\alpha_m(T_m - T_{ref})$, where n = 1 and m = 2

Combined Stress for Restrained Pipe

The combined biaxial stress state of the pipeline in the operating mode is evaluated using the calculation given below <u>by default</u> in CAEPIPE.

$$S_{eq1} = \max\{|S_H - S_{Lp}|, |S_H|, |S_{Lp}|\}$$

$$S_{eq2} = \max\{|S_H - S_{Ln}|, |S_H|, |S_{Ln}|\}$$

Alternatively, the stresses may be combined in accordance with the maximum distortion energy theory as follows (see Note 3 below):

$$S_{eq1} = \sqrt{(S_{Lp})^2 - S_H S_{Lp} + (S_H)^2}$$

$$S_{eq2} = \sqrt{(S_{Ln})^2 - S_H S_{Ln} + (S_H)^2}$$

$$S_{eq} = \max\{S_{eq1}, S_{eq2}\} \le 0.9ST$$

where

 S_{eq} = equivalent combined stress

Notes:

- 6. Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min(T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix in accordance with para. 832.4(b).
- 7. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 8. To combine stresses in accordance with the maximum distortion energy theory as stated above, set an environmental variable with name "DET_318" with its value as "YES".

Notes on Material Library for B318-2018.mat supplied with CAEPIPE:

Material library for ASME B31.8 (2018) [B318-2018.mat] has been created and supplied with CAEPIPE as mentioned below.

- 9. **Coefficient of Thermal Expansion:** As stated in para. 832.2 of B31.8 (2018), Coefficient of Thermal Expansion for Carbon and low alloy steel are entered by referring to the values given in Table 832.2-1 of ASME B31.8 (2018).
- 10. **Modulus of Elasticity:** Modulus of Elasticity for Carbon and low alloy steel are entered by referring to the values given in Table 832.5-1 of ASME B31.8 (2018).
- 11. **Yield Strength:** Yield Strength for Carbon and low alloy steel are entered by referring to the values specified in Mandatory Appendix D titled "Specified Minimum Yield Strength for Steel Pipe Commonly Used in Piping Systems" of ASME B31.8 (2018).
- 12. **Density and Poisson's ratio:** Density and Poisson's ratio for Carbon and low alloy high tensile steel are entered as 0.283 lb/in³ and 0.3 respectively.
- 13. Longitudinal Joint Factor: Longitudinal Joint Factor for Carbon and low alloy steel are entered by referring to the values specified in Table 841.1.7-1 of ASME B31.8 (2018).

	Flexibility	Stress Intensification Factor, <i>i</i> [Notes (1) and (2)]		Flexibility	
Description	Factor,	Out-plane, <i>i</i> o	In-plane, <i>i_i</i>	Characteristic, h	Sketch
Welding elbow or pipe bend [Notes (1)–(5)]	$\frac{1.65}{h}$	$\frac{0.75}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{T} R_1}{r_2^2}$	$R_1 = bend radius$
Closely spaced miter bend [Notes (1), (2), (3), and (5)] $s < r_2 (1 + \tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\cot\theta}{2}\frac{\overline{Ts}}{r_2^2}$	$s = \frac{\frac{1}{2}}{\theta} R_1 = \frac{s \cot \theta}{2}$
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (2), and (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{\overline{T}}{r_2}$	$\frac{1}{\theta} = \frac{r_2}{R_1} = \frac{r_2(1 + \cot \theta)}{2}$
Welding tee per ASME B16.9 with $r_0 \geq \frac{q}{8}$ $\overline{r_c} \geq 1.5 \overline{\overline{T}}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$4.4 \frac{\overline{T}}{r_2}$	T_{o}
Reinforced fabricated tee with pad or saddle [Notes (1), (2), (7)–(9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_{o} + \frac{1}{4}$	$\frac{(\overline{\tau} + \frac{1}{2} t_{e})^{5/2}}{\overline{\tau}^{3/2} r_{2}}$	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $
Unreinforced fabricated tee [Notes (1), (2), and (9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$\frac{\overline{T}}{r_2}$	
Extruded outlet $r_o \ge 0.05d$ $T_c < 1.5 \overline{T}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_0 + \frac{1}{4}$	$\left(1+\frac{r_o}{r_2}\right)\frac{\overline{T}}{r_2}$	
Welded-in contour insert $r_0 \geq \frac{4}{8}$ $T_c \geq 1.5 \overline{T}$ [Notes (1), (2), and (10)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{0} + \frac{1}{4}$	$4.4 \frac{\overline{T}}{r_2}$	
Branch welded-on fitting (inte- grally reinforced) [Notes (1), (2), (9), and (11)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$3.3 \frac{\overline{7}}{r_2}$	

Table E-1	Flexibility Factor, k , and Stress Intensification Factor, i (Cont'd)					
Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch			
Buttweld [Notes (1) and (12)]						
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{max.} \le \frac{1}{16}$ in. (1.59 mm), and $\delta_{avg}/\overline{T} \le 0.13$	1	1.0				
Buttweld [Notes (1) and (12)]						
$ \begin{array}{l} \overline{T} \geq 0.237 \text{ in. (6.02 mm),} \\ \delta_{\max} \leq \frac{1}{2} \text{ in. (3.18 mm),} \\ \text{ and } \delta_{\text{avg}}/\overline{T} = \text{ any value} \end{array} $	1	1.9 max. or $[0.9 + 2.7(\delta_{avg}/\overline{n})]$, but not less than	$\frac{\overline{\tau}}{\overline{t}}$			
Buttweld [Notes (1) and (12)]		1.0				
$ \overline{7} \leq 0.237 \text{ in. (6.02 mm),} \\ \delta_{\max} \leq \frac{1}{16} \text{ in. (1.59 mm),} \\ \text{and } \delta_{\text{avg}}/\overline{7} \leq 0.33 $						
Tapered transition per ASME B16.25 [Note (1)]	1	1.9 max. or 1.3 + 0.0036 $\frac{D_o}{\overline{7}}$ + 3.6 $\frac{\delta}{\overline{7}}$				
	1	2.0 max. or	\overline{T}_1			
Concentric reducer per ASME B16.9 [Notes (1) and (13)]		$0.5 + 0.01 \alpha \left(\frac{D_{o2}}{\overline{T}^2}\right)^{1/2}$				
Double-welded slip-on flange [Note (14)]	1	1.2				
Socket welding flange or fit- ting [Notes (14) and (15)]	1	2.1 max or 2.1 \overline{T}/C_x but not less than 1.3				
Lap joint flange (with ASME B16.9 lap joint stub) [Note (14)]	1	1.6				
Threaded pipe joint or threaded flange [Note (14)]	1	2.3				
Corrugated straight pipe, or corrugated or creased bend [Note (16)]	5	2.5				

Table E-1 Elevibility Factor k and Stress Intensification Factor i (Cont'd)

[Note (16)]

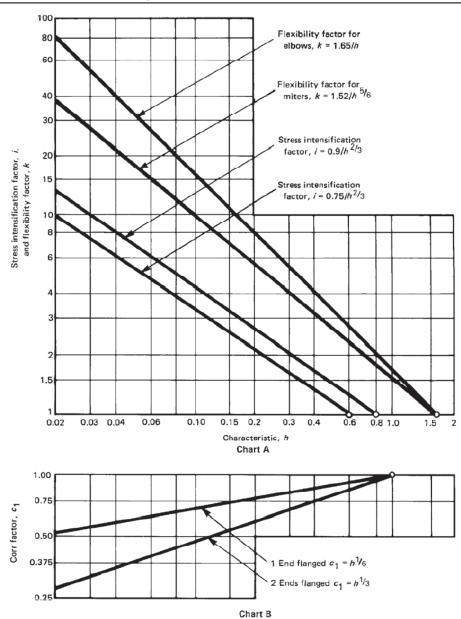


 Table E-1
 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table E-1	Flexibility	Factor, k	and	Stress	Intensification	Factor,	i ((Cont'd)

NOTES:

- The nomenclature is as follows: (1)
 - d = outside diameter of branch, in. (mm)
 - R_1 = bend radius of welding elbow or pipe bend, in. (mm)
 - r_o = radius of curvature of external contoured portion of outlet, measured in the plane containing the axes of the header and branch, in, (mm)
 - r_2 = mean radius of matching pipe, in. (mm)
 - $\frac{s}{T}$ = miter spacing at centerline, in. (mm) $\frac{s}{T}$ = nominal wall thickness of piping component, in. (mm)
 - = for elbows and miter bends, the nominal wall thickness of the fitting, in. (mm)
 - = for welding tees, the nominal wall thickness of the matching pipe, in. (mm)
 - = for fabricated tees, the nominal wall thickness of the run or header (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diame ter), in. (mm)
 - T_c = the crotch thickness of tees, in. (mm)
 - t_e = pad or saddle thickness, in. (mm)
 - α = reducer cone angle, deg
 - θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factor, k, applies to bending in any plane. The flexibility factors, k, and stress intensification factors, i, shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter bends and to the intersection point for tees.
- The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the formulas given. Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factors, C_{ik} which can be read (3)
- directly from Chart B, entering with the computed h.
- (4)The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the table, divide k by

$$\left[1+6\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{T}}\right)^{7/3}\left(\frac{R_1}{r_2}\right)^{1/3}\right]$$

divide *i* by

$$\left[1+3.25\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{T}}\right)^{5/2}\left(\frac{R_1}{r_2}\right)^{2/3}\right]$$

where

- $E_e = \text{cold modulus of elasticity, psi (MPa)}$ P = gage pressure, psi (MPa)
- If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.12/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4_0}$ respectively.
- (7)When $t_{a} > 1^{1}/_{2}T_{a}$ use $h = 4.05T/r_{2}$.
- (8)The minimum value of the stress intensification factor shall be 1.2.
- When the branch-to-run diameter ratio exceeds 0.5, but is less than 1.0, and the number of design displacement cycles exceeds (9)200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively, unless the transition weld between the branch and run is blended to a smooth concave contour. If the transition weld is blended to a smooth concave contour, the stress intensification factors in the table still apply.
- (10) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design displacement cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between $0.875\overline{T}$ and $1.10\overline{T}$ for an axial distance of $\sqrt{D_o T} \cdot D_o$ and \overline{T} are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.

- (13) The equation applies only if the following conditions are met.
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_{o1}/\overline{T} and D_{o2}/\overline{T} does not exceed 100.
 - (c) The wall thickness is not less than \overline{T}_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than \overline{T}_2 .
- (14) For some flanged joints, leakage may occur at expansion stresses otherwise permitted herein. The moment to produce leakage of a flanged joint with a gasket having no self-sealing characteristics can be estimated by the following equation:

$M_L = (C/4) (S_b A_b - PA_p)$

- (16) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 841.1.1.

$$P = \frac{2SEt_nFT}{D}$$

where

Р = allowable pressure

- = specified minimum yield strength from para. 817.1.3 (h) and para. 841.1.4 (a) S
- Ε = longitudinal joint factor (input as material property), obtained from Table 841.1.7-1 and para. 817.1.3 (d)
- = nominal pipe thickness t_n

D = outside diameter

- F = construction type design factor, obtained from Table 841.1.6-2
- Т = temperature derating factor, obtained from Table 841.1.8-1 and para. 841.1.8

Stress due to Sustained and Occasional Loads (Unrestrained Piping)

The sum of longitudinal pressure stress due to axial loading (other than thermal expansion and pressure) and the bending stress due to external loads, such as weight of the pipe and contents, seismic or wind, etc. is calculated according to paras. 833.6 (a) and 833.6 (b) along with paras. 805.2.3, 833.2 (b), 833.2 (d), 833.2 (e) and 833.2 (f).

Please note, the "include axial force in stress calculations" option is turned ON by default for ANSI B31.8 in CAEPIPE.

Sustained Stress S_L:

For Pipes and Long Radius Bends

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{R}{A} \right|_{sustained} + \left[\frac{\sqrt{(M_{i})^{2} + (M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{sustained} \le 0.75 \text{ST}$$

For other Fittings or Components.

$$S_{L(fc)} = \left|\frac{PD}{4t_n} + \frac{R}{A}\right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z}\right]_{Sustained} \le 0.75ST$$

Sustained + Occasional Stress S_{L0}:

For Pipes and Long Radius Bends

$$\begin{split} \mathbf{S}_{\mathrm{LO}} &= \mathbf{S}_{\mathrm{L}} + \left| \frac{\left(\mathbf{P}_{\mathrm{peak}} - \mathbf{P} \right) \mathbf{D}}{4\mathbf{t}_{\mathrm{n}}} + \frac{\mathbf{R}}{\mathbf{A}} \right|_{\mathrm{occasional}} + \left[\frac{\sqrt{\left(M_{i} \right)^{2} + \left(M_{o} \right)^{2} + \left(M_{t} \right)^{2}}}{\mathbf{Z}} \right]_{\mathrm{occasional}} \leq 0.75 \mathrm{ST} \\ \underline{For \ Fittings \ or \ Components}} \\ S_{LO} &= S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) \mathbf{D}}{4t_{n}} + \frac{\mathbf{R}}{\mathbf{A}} \right|_{occasional}} + \left[\frac{\sqrt{\left(0.75i_{i}M_{i} \right)^{2} + \left(0.75i_{o}M_{o} \right)^{2} + \left(M_{t} \right)^{2}}}{\mathbf{Z}} \right]_{occasional} \leq 0.75 \mathrm{ST} \end{split}$$

]_{occasional}

where

 $P = \text{maximum operating pressure} = \text{max} (P_1 \text{ through } P_{10})$ $P_{peak} = \text{Peak pressure factor x P}$ D = outside diameter $t_n = \text{nominal thickness}$ $i_i = \text{in-plane stress intensification factor; the product 0.75i_i \text{ shall not be less than 1.0}$ $i_o = \text{out-of-plane stress intensification factor; the product 0.75i_o \text{shall not be less than 1.0}$ $M_i = \text{in-plane bending moment}$ $M_o = \text{out-of-plane bending moment}$ $M_t = \text{torsional moment}$ $Z = \underline{\text{un-corroded section modulus; for reduced outlets, effective section modulus}$ P = avial forms approach for outernal loads (other than thermal expansion and pressure)

R = axial force component for external loads (other than thermal expansion and pressure)

A =<u>un-corroded</u> cross-section area

S = specified minimum yield strength from para. 841.1.1(a)

T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=min (T_1 through T_{10}, T_{ref})]$ is used to form the stiffness matrix for Sustained and Occasional load calculations in accordance with para. 832.4(b).

Expansion Stress (Unrestrained Piping)

The stress (S_E) due to thermal expansion is calculated from para.833.8.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$

 S_t = torsional stress = $\frac{M_t}{2Z}$

 M_t = torsional moment

 $Z = \underline{un-corroded}$ section modulus; for reduced outlets, effective section modulus *Please note, "Liberal allowable" option is always turned ON for ANSI B31.8.*

$$S_A = f[1.25(S_C + S_h) - S_L]$$

f = stress range reduction factor = $6/N^{0.2}$, where N = number of equivalent full range cycles

where $f \le 1.0$ (from para. 833.8 (b)).

 $S_c = 0.33$ SuT at the minimum installed or operating temperature

$$S_h = 0.33$$
SuT at the maximum installed or operating temperature where

 S_u = specified minimum ultimate tensile strength = 1.5 S_y (assumed), and

- S_{γ} = specified minimum yield strength as per para. 841.1.1(a)
- T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=min(T_1 through T_{10}, T_{ref})]$ is used to form the stiffness matrix for Expansion load calculations in accordance with para. 832.4(b).

Stress due to Sustained, Thermal and Occasional Loads (Restrained Piping)

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from paras. 833.3 (a), 833.3 (b) along with paras. 805.2.3, 833.2 (a), 833.2 (c), 833.2 (d), 833.2 (e) and 833.2 (f)

$$S_{Lp} = S_p + S_T + S_X + S_B$$

 $S_{Ln} = S_p + S_T + S_X - S_B$

As per 833.4 (d), both the tensile and compressive values of $S_{\scriptscriptstyle\rm B}$ shall be considered in analysis.

where

 $S_p = 0.3S_H = 0.3\frac{PD}{2t_n}$ = longitudinal stress due to internal pressure in restrained pipeline

 $S_H = \text{hoop stress}$

 S_T = longitudinal stress due to thermal expansion in restrained pipeline = $E\alpha(T_i - T_o)$

 S_X = stress due to axial loading (other than thermal expansion and pressure) = $\frac{R}{4}$

 S_B = nominal bending stress due to weight and other external loads(other than thermal expansion)

For Pipes and Long Radius Bends

$$S_B = \frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z}$$

For other Fittings or Components.

$$S_B = \frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z}$$

As per para 833.3(a), note that S_B, S_L, S_T or S_X can have negative values. where

- P = maximum operating pressure = max(P1 through P10)
- D =outside diameter
- t_n = nominal thickness
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; the product 0.75i_o shall not be less than 1.0
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment

- R = axial force component for external loads (other than thermal expansion and pressure)
- A =<u>un-corroded</u> cross-sectional area (i.e., after deducting for corrosion)
- $Z = \underline{un-corroded}$ section modulus; for reduced outlets, effective section modulus
- S = Specified Minimum Yield Strength (SMYS) from para. 841.1.1 (a)
- T = Temperature derating factor from para. 841.1.8 and Table 841.1.8-1
- E = Young's modulus at ambient (reference) temperature
- T_i = installation temperature = T_{ref} in CAEPIPE
- T_o = warmest or coldest operating temperature
- α = coefficient of thermal expansion at T_o defined above

Combined Stress for Restrained Pipe

The combined biaxial stress state of the pipeline in the operating mode is evaluated using the calculation given below by default in CAEPIPE.

$$S_{eq1} = \max\{|S_H - S_{Lp}|, |S_H|, |S_{Lp}|\}$$

$$S_{eq2} = \max\{|S_H - S_{Ln}|, |S_H|, |S_{Ln}|\}$$

Alternatively, the stresses may be combined in accordance with the maximum distortion energy theory as follows (see Note 3 below):

$$S_{eq1} = \sqrt{(S_{Lp})^2 - S_H S_{Lp} + (S_H)^2}$$
$$S_{eq2} = \sqrt{(S_{Ln})^2 - S_H S_{Ln} + (S_H)^2}$$
$$S_{eq} = \max\{S_{eq1}, S_{eq2}\} \le 0.9ST$$

where

 S_{eq} = equivalent combined stress

Notes:

- 1. Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min(T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix in accordance with para. 832.4(b).
- 2. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 3. To combine stresses in accordance with the maximum distortion energy theory as stated above, set an environmental variable with name "DET_318" with its value as "YES".

Notes on Material Library for B318-2016.mat supplied with CAEPIPE:

Material library for ASME B31.8 (2016) [B318-2016.mat] has been created and supplied with CAEPIPE as mentioned below.

- 1. **Coefficient of Thermal Expansion:** As stated in para. 832.2 of B31.8 (2016), Coefficient of Thermal Expansion for Carbon and low alloy steel are entered by referring to the values given in Table 832.2-1 of ASME B31.8 (2016).
- 2. **Modulus of Elasticity:** Modulus of Elasticity for Carbon and low alloy steel are entered by referring to the values given in Table 832.5-1 of ASME B31.8 (2016).
- 3. Yield Strength: Yield Strength for Carbon and low alloy steel are entered by referring to the values specified in Mandatory Appendix D titled "Specified Minimum Yield Strength for Steel Pipe Commonly Used in Piping Systems" of ASME B31.8 (2016).
- 4. **Density and Poisson's ratio:** Density and Poisson's ratio for Carbon and low alloy high tensile steel are entered as 0.283 lb/in³ and 0.3 respectively.
- 5. Longitudinal Joint Factor: Longitudinal Joint Factor for Carbon and low alloy steel are entered by referring to the values specified in Table 841.1.7-1 of ASME B31.8 (2016).

	Flexibility		nsification s (1) and (2)]	Flexibility	
Description	Factor,	Out-plane, <i>i</i> o	In-plane, <i>i_i</i>	Characteristic, h	Sketch
Welding elbow or pipe bend [Notes (1)–(5)]	<u>1.65</u> h	$\frac{0.75}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{T} R_1}{r_2^2}$	$R_1 = bend radius$
Closely spaced miter bend [Notes (1), (2), (3), and (5)] $s < r_2 (1 + \tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\cot\theta}{2}\frac{\overline{Ts}}{r_2^2}$	$s = \frac{1}{\theta} $
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (2), and (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{\overline{T}}{r_2}$	$\vec{r}_{1} = \frac{\vec{r}_{2}(1 + \cot \theta)}{2}$
Welding tee per ASME B16.9 with $r_0 \geq \frac{4}{8}$ $T_c \geq 1.5 \overline{T}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$4.4 \frac{\overline{T}}{r_2}$	T_{c} r_{o} r_{2}
Reinforced fabricated tee with pad or saddle [Notes (1), (2), (7)–(9)]	1	$\frac{0.9}{h^{2/3}}$	³ /4 <i>i</i> _o + ¹ /4	$\frac{(\overline{T} + \frac{1}{2} t_0)^{5/2}}{\overline{T}^{3/2} r_2}$	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
Inreinforced fabricated tee [Notes (1), (2), and (9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_0 + \frac{1}{4}$	$\frac{\overline{T}}{r_2}$	
Extruded outlet $r_o \ge 0.05d$ $T_c < 1.5 \overline{T}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}_{4}i_{0} + \frac{1}{4}$	$\left(1+\frac{r_o}{r_2}\right)\frac{\overline{T}}{r_2}$	
Welded-in contour insert $r_o \ge \frac{4}{8}$ $T_c \ge 1.5 \overline{T}$ [Notes (1), (2), and (10)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_0 + \frac{1}{4}$	$4.4 \frac{\overline{T}}{r_2}$	
Branch welded-on fitting (inte- grally reinforced) [Notes (1), (2), (9), and (11)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$3.3 \frac{\overline{r}}{r_2}$	

Table E-1	Flexibility Factor, k , and Stress Intensification Factor, i (Cont'd)						
Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch				
Buttweld [Notes (1) and (12)]							
$\overline{7} \ge 0.237$ in. (6.02 mm), $\delta_{\text{max.}} \le \frac{1}{16}$ in. (1.59 mm), and $\delta_{\text{avg}}/\overline{7} \le 0.13$	1	1.0					
Buttweld [Notes (1) and (12)]							
$ \begin{array}{l} \overline{T} \geq 0.237 \text{ in. (6.02 mm),} \\ \delta_{\max} \leq \frac{1}{2} \text{ in. (3.18 mm),} \\ \text{ and } \delta_{\text{avg}}/\overline{T} = \text{ any value} \end{array} $	1	1.9 max. or $[0.9 + 2.7(\delta_{avg}/\overline{h})]$, but not less than	$\frac{\overline{\tau}}{t_{\delta}}$				
Buttweld [Notes (1) and (12)]		1.0					
$ \overline{T} \leq 0.237 \text{ in. (6.02 mm),} \\ \delta_{\max} \leq \frac{1}{16} \text{ in. (1.59 mm),} \\ \text{and } \delta_{\text{avg}}/\overline{T} \leq 0.33 $							
Tapered transition per ASME B16.25 [Note (1)]	1	1.9 max. or 1.3 + 0.0036 $\frac{D_o}{\overline{7}}$ + 3.6 $\frac{\delta}{\overline{7}}$					
	1	2.0 max. or	\overline{T}_{1}				
Concentric reducer per ASME B16.9 [Notes (1) and (13)]		$0.5 + 0.01 \alpha \left(\frac{D_{o2}}{\overline{T}^2}\right)^{1/2}$	$ \begin{array}{c} \hline \hline \hline \\ D_{01} \\ \hline				
Double-welded slip-on flange [Note (14)]	1	1.2					
Socket welding flange or fit- ting [Notes (14) and (15)]	1	2.1 max or 2.1 \overline{T}/C_x but not less than 1.3					
Lap joint flange (with ASME B16.9 lap joint stub) [Note (14)]	1	1.6					
Threaded pipe joint or threaded flange [Note (14)]	1	2.3					
Corrugated straight pipe, or corrugated or creased bend [Note (16)]	5	2.5					

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

[Note (16)]

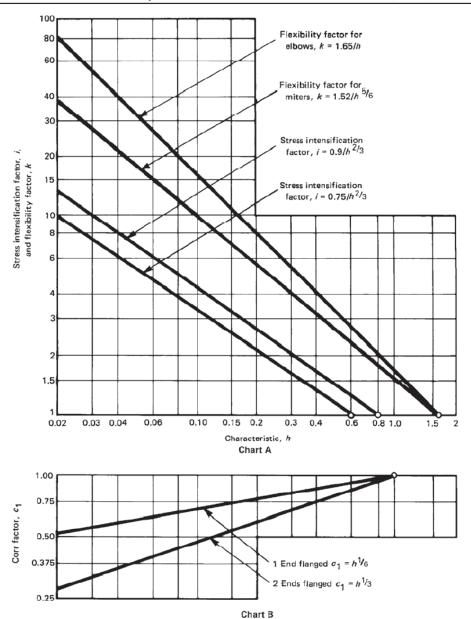


Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

NOTES: (1)

- The nomenclature is as follows:
 - d = outside diameter of branch, in. (mm)
- R_1 = bend radius of welding elbow or pipe bend, in. (mm)
- = radius of curvature of external contoured portion of outlet, measured in the plane containing the axes of the header and branch, in. (mm)
- r_2 = mean radius of matching pipe, in. (mm)
- = miter spacing at centerline, in. (mm)
- $\frac{s}{T}$ = nominal wall thickness of piping component, in. (mm)
 - = for elbows and miter bends, the nominal wall thickness of the fitting, in. (mm)
 - = for welding tees, the nominal wall thickness of the matching pipe, in. (mm)
 - = for fabricated tees, the nominal wall thickness of the run or header (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diame ter), in. (mm)
- T_c = the crotch thickness of tees, in. (mm)
- t_e = pad or saddle thickness, in. (mm)
- α = reducer cone angle, deg
- θ = one-half angle between adjacent miter axes, deg
- (2)The flexibility factor, k, applies to bending in any plane. The flexibility factors, k, and stress intensification factors, i, shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter bends and to the intersection point for tees.
- The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the formulas given. (3)Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factors, C_{μ} , which can be read
- directly from Chart B, entering with the computed h. (4)The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are
- used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the table, divide k by

$$\left[1+6\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{r}}\right)^{7/3}\left(\frac{R_1}{r_2}\right)^{1/3}\right]$$

divide i by

$$\left[1+3.25\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{T}}\right)^{5/2}\left(\frac{R_1}{r_2}\right)^{2/3}\right]$$

where

- E_e = cold modulus of elasticity, psi (MPa)
- P = gage pressure, psi (MPa)
- If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius (6)and thickness limits are not met and the number of design cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.12/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (7)When $t_e > 1^{1/2}T$, use $h = 4.05T/r_2$.
- The minimum value of the stress intensification factor shall be 1.2. (8)
- When the branch-to-run diameter ratio exceeds 0.5, but is less than 1.0, and the number of design displacement cycles exceeds (9)200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{2}$, respectively, unless the transition weld between the branch and run is blended to a smooth concave contour. If the transition weld is blended to a smooth concave contour, the stress intensification factors in the table still apply.
- (10) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design displacement cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) The stress intensification factors apply to gith butt welds between two items for which the wall thicknesses are between $0.875\overline{T}$ and $1.10\overline{T}$ for an axial distance of $\sqrt{D_o T} \cdot D_o$ and \overline{T} are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.

Gas Transmission and Distribution Piping Systems ASME B31.8 (2016) [Superseded by ASME B31.8 (2018)]

- (13) The equation applies only if the following conditions are met.
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric. (b) The larger of D_{o1}/\overline{T} and D_{o2}/\overline{T} does not exceed 100.

(c) The wall thickness is not less than \overline{T}_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than \overline{T}_2 .

(14) For some flanged joints, leakage may occur at expansion stresses otherwise permitted herein. The moment to produce leakage of a flanged joint with a gasket having no self-sealing characteristics can be estimated by the following equation:

$$M_L = (C/4) (S_b A_b - PA_p)$$

- S_b = bolt stress, psi (MPa)
- (15) C_x is the fillet weld length. For unequal lengths, use the smaller leg for C_x .
- (16) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 841.1.1.

$$P = \frac{2SEt_nFT}{D}$$

where

P = allowable pressure

- S = specified minimum yield strength from para. 817.1.3 (h) and para. 841.1.4 (a)
- E = longitudinal joint factor (input as material property), obtained from Table 841.1.7-1 and para. 817.1.3 (d)
- t_n = nominal pipe thickness
- D = nominal outside diameter
- F = construction type design factor, obtained from Table 841.1.6-1
- T = temperature derating factor, obtained from Table 841.1.8-1 and para. 841.1.8

Stress due to Sustained and Occasional Loads (Unrestrained Piping)

The sum of longitudinal pressure stress and the bending stress due to external loads, such as weight of the pipe and contents, seismic or wind, etc. is calculated according to paras. 833.6 (a) and 833.6 (b) along with paras. 805.2.3, 833.2 (b), 833.2 (d), 833.2 (e) and 833.2 (f).

Please note, the "include axial force in stress calculations" option is turned ON by default for ANSI B31.8.

Sustained Stress S_L:

For Pipes and Long Radius Bends

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{R}{A} \right|_{Sustained} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z} \right]_{Sustained}$$

For other Fittings or Components.

$$S_{L(fc)} = \left| \frac{PD}{4t_n} + \frac{R}{A} \right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z} \right]_{Sustained}$$

Sustained + Occasional Stress S_{L0}:

For Pipes and Long Radius Bends

$$S_{LO} = S_L + \left| \frac{\left(P_{peak} - P\right)D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z} \right]_{occasional} \le 0.75 ST$$

For Fittings or Components

$$S_{LO} = S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75ST$$

Ρ	= maximum operating pressure = max (P_1 through P_{10})
P_{peak}	= Peak pressure factor x P
D	= nominal outside diameter
t_n	= nominal thickness
i _i	= in-plane stress intensification factor; the product $0.75i_i$ shall not be less than 1.0
i _o	= out-of-plane stress intensification factor; the product $0.75i_0$ shall not be less than
	1.0
M_i	= in-plane bending moment
M_o	= out-of-plane bending moment
M_t	= torsional moment
Ζ	= un-corroded section modulus; for reduced outlets, effective section modulus
R	= axial force component for external loads (other than thermal expansion and

- pressure) A = corroded cross-section area (i.e., after deducting for corrosion)
- = specified minimum yield strength from para. 841.1.1(a) S

Т = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

where Р

Young's modulus of elasticity corresponding to the lowest operating temperature $[=min (T_1)$ through T₁₀, T_{ref}] is used to form the stiffness matrix for Sustained and Occasional load calculations.

Expansion Stress (Unrestrained Piping)

The stress (S_E) due to thermal expansion is calculated from para.833.8.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

 S_b = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{7}$ $\mathbf{c} = \mathbf{c} \cdot \mathbf{1} \mathbf{c}$ M_t

$$S_t = \text{torsional stress} = \frac{1}{2Z}$$

 M_t = torsional moment

Z = un-corroded section modulus; for reduced outlets, effective section modulus Please note, "Liberal allowable" option is always turned ON for ANSI B31.8.

 $S_A = f[1.25(S_C + S_h) - S_L]$

f = stress range reduction factor = 6/N0.2, where N = number of equivalent full range cycles

where $f \leq 1.0$ (from para. 833.8 (b)).

= 0.33SuT at the minimum installed or operating temperature f

 $S_h = 0.33$ SuT at the maximum installed or operating temperature

 S_u = specified minimum ultimate tensile strength = 1.5 S_y (assumed), and

- S_y = specified minimum yield strength as per para. 841.1.1(a)
 - = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=min(T_1 through T_{10}, T_{ref})]$ is used to form the stiffness matrix for Expansion load calculations.

Stress due to Sustained, Thermal and Occasional Loads (Restrained Piping)

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from paras. 833.3 (a), 833.3 (b) along with paras. 805.2.3, 833.2 (a), 833.2 (c), 833.2 (d), 833.2 (e) and 833.2 (f)

$$S_L = \max(|S_p + S_x + S_B|, |S_p + S_x - S_B|)_{sustained} + \max(|S_p + S_x + S_B|, |S_p + S_x - S_B|)_{occasional} + \max(|S_T|_{warmest}, |S_T|_{coldest}) \le 0.9ST$$

where

Internal pressure stress = $S_p = 0.3 \frac{PD}{2t_n}$

Stress due to axial loading (other than thermal expansion and pressure) $=S_x = \frac{R}{A}$, and may be positive or negative

Nominal bending stress SB from Weight and / or other External loads for

For Pipes and Long Radius Bends

$$S_B = \frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$$

For other Fittings or Components.

$$S_B = \frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z}$$

Thermal expansion stress = $S_T = E\alpha(T_i - T_o)$, and may be positive or negative

Where

- P = maximum operating pressure = max(P1 through P10)
- D = nominal outside diameter
- t_n = nominal thickness
- i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0
- i_o = out-of-plane stress intensification factor; the product 0.75 i_o shall not be less than 1.0
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment
- R = axial force component for external loads (other than thermal expansion and pressure)

Gas Transmission and Distribution Piping Systems ASME B31.8 (2012) [Superseded by ASME B31.8 (2016)]

- A = corroded cross-sectional area (i.e., after deducting for corrosion)
- Z = un-corroded section modulus; for reduced outlets, effective section modulus
- S = Specified Minimum Yield Strength (SMYS) from para. 841.1.1 (a)
- T = Temperature derating factor from para. 841.1.8 and Table 841.1.8-1
- E = Young's modulus at ambient (reference) temperature
- T_i = installation temperature = T_{ref} in CAEPIPE
- T_o = warmest or coldest operating temperature
- α = coefficient of thermal expansion at T_o defined above

Gas Transmission and Distribution Piping Systems ASME B31.8 (2012) [Superseded by ASME B31.8 (2016)]

	Flexibility		nsification s (1) and (2)]	Flexibility	
Description	Factor,	Out-plane, <i>i</i> o	In-plane, <i>i_i</i>	Characteristic, h	Sketch
Welding elbow or pipe bend [Notes (1)–(5)]	<u>1.65</u> h	$\frac{0.75}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{T} R_1}{r_2^2}$	$R_1 = bend radius$
Closely spaced miter bend [Notes (1), (2), (3), and (5)] $s < r_2 (1 + \tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\cot\theta}{2}\frac{\overline{Ts}}{r_2^2}$	$s = \frac{1}{\theta} $
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (2), and (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{\overline{T}}{r_2}$	$\vec{r}_{1} = \frac{\vec{r}_{2}(1 + \cot \theta)}{2}$
Welding tee per ASME B16.9 with $r_0 \geq \frac{4}{8}$ $T_c \geq 1.5 \overline{T}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$4.4 \frac{\overline{T}}{r_2}$	T_{c} r_{o} r_{2}
Reinforced fabricated tee with pad or saddle [Notes (1), (2), (7)–(9)]	1	$\frac{0.9}{h^{2/3}}$	³ /4 <i>i</i> _o + ¹ /4	$\frac{(\overline{T} + \frac{1}{2} t_0)^{5/2}}{\overline{T}^{3/2} r_2}$	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
Inreinforced fabricated tee [Notes (1), (2), and (9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_0 + \frac{1}{4}$	$\frac{\overline{T}}{r_2}$	
Extruded outlet $r_o \ge 0.05d$ $T_c < 1.5 \overline{T}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}_{4}i_{0} + \frac{1}{4}$	$\left(1+\frac{r_o}{r_2}\right)\frac{\overline{T}}{r_2}$	
Welded-in contour insert $r_o \geq \frac{d}{8}$ $T_c \geq 1.5 \overline{T}$ [Notes (1), (2), and (10)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_0 + \frac{1}{4}$	$4.4 \frac{\overline{T}}{r_2}$	
Branch welded-on fitting (inte- grally reinforced) [Notes (1), (2), (9), and (11)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$3.3 \frac{\overline{r}}{r_2}$	

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)				
Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch	
Buttweld [Notes (1) and (12)]				
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{max.} \le \frac{1}{16}$ in. (1.59 mm), and $\delta_{avg}/\overline{T} \le 0.13$	1	1.0		
Buttweld [Notes (1) and (12)]				
$ \begin{array}{l} \overline{\tau} \geq 0.237 \text{ in. (6.02 mm),} \\ \delta_{\max} \leq \frac{1}{\ell_{\rm g}} \text{ in. (3.18 mm),} \\ \text{ and } \delta_{\rm avg}/\overline{\tau} = \text{ any value} \end{array} $	1	1.9 max. or $[0.9 + 2.7(\delta_{avg}/\overline{n})]$, but not less than	$\frac{\overline{\tau}}{t}$	
Buttweld [Notes (1) and (12)]		1.0		
$ \overline{7} \leq 0.237 \text{ in. } (6.02 \text{ mm}), \\ \delta_{\max} \leq \frac{1}{16} \text{ in. } (1.59 \text{ mm}), \\ \text{and } \delta_{\text{avg}}/\overline{7} \leq 0.33 $				
Tapered transition per ASME B16.25 [Note (1)]	1	1.9 max. or 1.3 + 0.0036 $\frac{D_o}{\overline{7}}$ + 3.6 $\frac{\delta}{\overline{7}}$		
	1	2.0 max. or	\overline{T}_1	
Concentric reducer per ASME B16.9 [Notes (1) and (13)]		$0.5 + 0.01 \alpha \left(\frac{D_{o2}}{\overline{T}_2}\right)^{1/2}$		
Double-welded slip-on flange [Note (14)]	1	1.2		
Socket welding flange or fit- ting [Notes (14) and (15)]	1	2.1 max or 2.1 7 /C _x but not less than 1.3		
Lap joint flange (with ASME B16.9 lap joint stub) [Note (14)]	1	1.6		
Threaded pipe joint or threaded flange [Note (14)]	1	2.3		
Corrugated straight pipe, or corrugated or creased bend [Note (16)]	5	2.5		

Table E-1 Elevibility Factor k and Stress Intensification Factor i (Cont'd)

[Note (16)]

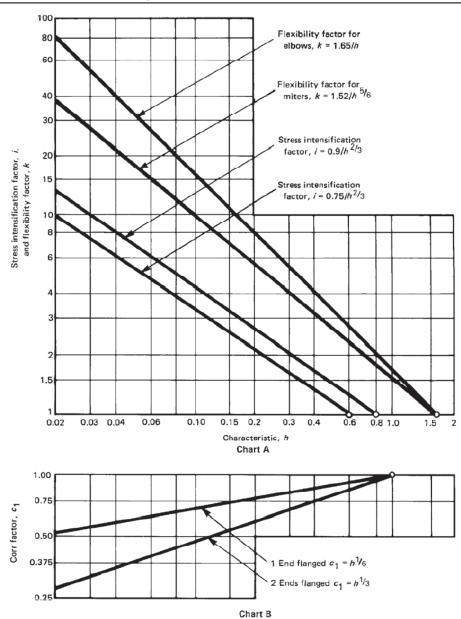


 Table E-1
 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table E-1	Flexibility	/ Factor, k	ζ,	and Stress	Intensification	Factor.	i ((Cont'd)

NOTES:

- The nomenclature is as follows: (1)
 - d = outside diameter of branch, in. (mm)
 - R_1 = bend radius of welding elbow or pipe bend, in. (mm)
 - r_o = radius of curvature of external contoured portion of outlet, measured in the plane containing the axes of the header and branch, in, (mm)
 - r_2 = mean radius of matching pipe, in. (mm)
 - $\frac{s}{T}$ = miter spacing at centerline, in. (mm) $\frac{s}{T}$ = nominal wall thickness of piping component, in. (mm)
 - = for elbows and miter bends, the nominal wall thickness of the fitting, in. (mm)
 - = for welding tees, the nominal wall thickness of the matching pipe, in. (mm)
 - = for fabricated tees, the nominal wall thickness of the run or header (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diame ter), in. (mm)
 - T_c = the crotch thickness of tees, in. (mm)
 - t_e = pad or saddle thickness, in. (mm)
 - α = reducer cone angle, deg
 - θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factor, k, applies to bending in any plane. The flexibility factors, k, and stress intensification factors, i, shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter bends and to the intersection point for tees.
- The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the formulas given. Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factors, C_{ik} which can be read (3)
- directly from Chart B, entering with the computed h.
- (4)The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the table, divide k by

$$\left[1+6\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{T}}\right)^{7/3}\left(\frac{R_1}{r_2}\right)^{1/3}\right]$$

divide i by

$$\left[1+3.25\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{T}}\right)^{5/2}\left(\frac{R_1}{r_2}\right)^{2/3}\right]$$

where

- $E_e = \text{cold modulus of elasticity, psi (MPa)}$ P = gage pressure, psi (MPa)
- If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.12/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4_0}$ respectively.
- (7)When $t_{a} > 1^{1}/_{2}T$, use $h = 4.05T/r_{2}$.
- (8)The minimum value of the stress intensification factor shall be 1.2.
- When the branch-to-run diameter ratio exceeds 0.5, but is less than 1.0, and the number of design displacement cycles exceeds (9)200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively, unless the transition weld between the branch and run is blended to a smooth concave contour. If the transition weld is blended to a smooth concave contour, the stress intensification factors in the table still apply.
- (10) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design displacement cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{16}$, respectively.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between $0.875\overline{T}$ and $1.10\overline{T}$ for an axial distance of $\sqrt{D_o T} \cdot D_o$ and \overline{T} are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.

Gas Transmission and Distribution Piping Systems ASME B31.8 (2012)

- (13) The equation applies only if the following conditions are met.
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_{o1}/\overline{T} and D_{o2}/\overline{T} does not exceed 100.
 - (c) The wall thickness is not less than \overline{T}_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than \overline{T}_2 .
- (14) For some flanged joints, leakage may occur at expansion stresses otherwise permitted herein. The moment to produce leakage of a flanged joint with a gasket having no self-sealing characteristics can be estimated by the following equation:

$M_L = (C/4) (S_b A_b - PA_p)$

- (16) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends, the calculation of allowable pressure is based on Eq. (2) of para. 904.1 and 904.2.1.

$$P = \frac{2SE(t_m - A)}{D}$$

where

P = allowable pressure

SE = allowable hoop stress, given in Appendix I of B31.9 (2020) Code, where

E = longitudinal or spiral weld joint efficiency factor as per Table I-1 of Appendix I of ASME B31.9 (2020). For casting materials, factor E is replaced with Casting Qualify Factor F from Table I-1 of Appendix I of ASME B31.9 (2020)

 t_m =minimum required pipe thickness as per para. 904.1.1(a) = $t_n \times (1 - \text{mill tolerance}/100)$ t_n =nominal pipe thickness

A =corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in "corrosion allowance" in CAEPIPE)

D=outside diameter

For closely and widely spaced miter bends, the allowable pressure shall be the lower positive value calculated from Eqs.(3A) and (3B) of para. 904.2.2(a)

$$P = \frac{SET}{r} \left(\frac{T}{T+0.64 \tan \theta \sqrt{rT}} \right) \qquad \text{Eq. (3A)}$$
$$P = \frac{SET}{r} \left(\frac{R-r}{R-r/2} \right) \qquad \text{Eq. (3B)}$$

where

 $r = \text{mean radius of pipe} = (D - t_n)/2$

 $T = t_m - A$, where t_m and A are defined above

R = effective bend radius of the miter

 θ = miter half angle, with $\theta \leq 22.5$ deg.

Note:

Equations (3A) and (3B) given above is applicable when R entered in CAEPIPE is at least as great as the value calculated by eq. (4) of ASME B31.9 (2020).

Sustained Stress (in un-corroded condition)

The longitudinal sustained stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated as mentioned in para. 902.3.2(d)

$$S_{L} = \sqrt{\left[\left| \frac{PD_{o}}{4t_{n}} + \frac{I_{a}F_{a}}{A_{p}} \right| + \frac{\sqrt{(I_{i}M_{iA})^{2} + (I_{o}M_{oA})^{2}}}{Z} \right]^{2} + \left(\frac{I_{t}M_{tA}}{Z}\right)^{2} \le S_{h}}$$

where

P = internal design pressure that shall be not less than the maximum sustained operating pressure (MSOP) within the piping system, including the effects of static head = maximum of CAEPIPE pressures P1 through P10

 $D_0 = nominal outside diameter$

 $t_n = nominal$ wall thickness

 F_a = longitudinal force due to weight and other sustained mechanical loads (excluding pressure)

 I_a = sustained longitudinal force index = 1.00

 I_i = sustained in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 I_o = sustained out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = sustained torsional moment index. I_t is taken as the greater of 0.75 i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iA} , M_{oA} , M_{tA} = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads

Z = nominal section modulus = un-corroded section modulus

 A_p = un-corroded nominal cross sectional area

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 through T10)]

 S_L = stress due to pressure, weight and other sustained mechanical loads

Occasional Stress (in un-corroded condition)

The stress (SO) due to sustained and occasional loads as mentioned in para.902.3.3 as the combined stress due to (a) sustained loads such as pressure, weight and other sustained mechanical loads and (b) occasional loads such as earthquake or wind. Wind and earthquake are not considered to act concurrently.

$$S_{O} = \sqrt{\left[\left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}}{A_{p}} \right| + \frac{\sqrt{(I_{i}M_{iB})^{2} + (I_{o}M_{oB})^{2}}}{Z} \right]^{2} + \left(\frac{I_{t}M_{tB}}{Z}\right)^{2} \le kS_{h}}$$

where

 F_b = longitudinal force due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake / wind, etc.

 I_a = occasional longitudinal force index = 1.00

 I_i = occasional in-plane moment index. I_i is taken as the greater of 0.75 i_i and 1.00. i_i is taken from ASME B31J, Table 1-1.

 I_o = occasional out-of-plane moment index. I_o is taken as the greater of 0.75 i_o and 1.00. i_o is taken from ASME B31J, Table 1-1.

 I_t = occasional torsional moment index. I_t is taken as the greater of 0.75i_t and 1.00. i_t is taken from ASME B31J, Table 1-1.

 M_{iB} , M_{oB} , M_{tB} = in-plane, out-of-plane and torsional moment respectively due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake / wind, etc.

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

 $S_{\rm O}$ = stress due to pressure, weight, other sustained mechanical loads and occasional loads such as thrusts from relief / safety valve loads, from pressure and flow transients, earthquake / wind etc.

k = 1.33 for occasional loads as per para. 902.3.3 (a)

All other terms such as P, A_p , Z, etc. are as defined under Sustained Stress.

For <u>Unsigned</u> occasional load cases such as Earthquake, etc. the forces and moments are combined as given below.

$$\begin{aligned} \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}}{A_{p}} \right| &= max \left[\left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}(sust)}{A_{p}} \right| + \left| \frac{I_{a}F_{b}(occa)}{A_{p}} \right| , \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}(sust)}{A_{p}} \right| - \left| \frac{I_{a}F_{b}(occa)}{A_{p}} \right| \right] \\ (I_{i}M_{iB})^{2} &= (I_{i})^{2} . \left[\left| M_{iB}(sust) \right| + \left| M_{iB}(occa) \right| \right]^{2} \\ (I_{o}M_{oB})^{2} &= (I_{o})^{2} . \left[\left| M_{oB}(sust) \right| + \left| M_{oB}(occa) \right| \right]^{2} \\ (I_{t}M_{tB})^{2} &= (I_{t})^{2} . \left[\left| M_{tB}(sust) \right| + \left| M_{tB}(occa) \right| \right]^{2} \end{aligned}$$

For Signed occasional load cases such as Wind, etc. the forces and moments are combined as given below.

$$\begin{aligned} \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}}{A_{p}} \right| &= \left| \frac{P_{o}D_{o}}{4t_{n}} + \frac{I_{a}F_{b}(sust)}{A_{p}} + \frac{I_{a}F_{b}(occa)}{A_{p}} \right| \\ (I_{i}M_{iB})^{2} &= (I_{i})^{2} \cdot \left[\left| M_{iB}(sust) + M_{iB}(occa) \right| \right]^{2} \\ (I_{o}M_{oB})^{2} &= (I_{o})^{2} \cdot \left[\left| M_{oB}(sust) + M_{oB}(occa) \right| \right]^{2} \\ (I_{t}M_{tB})^{2} &= (I_{t})^{2} \cdot \left[\left| M_{tB}(sust) + M_{tB}(occa) \right| \right]^{2} \end{aligned}$$

where

 $M_{iB(sust)}$, $M_{oB(sust)}$, $M_{tB(sust)}$ = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads (excluding pressure).

 $M_{iB(occa)}$, $M_{oB(occa)}$, $M_{tB(occa)}$ = in-plane, out-of-plane and torsional moment respectively due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake / wind, etc.

 $F_{b(sust)}$ = longitudinal force due to weight, other sustained mechanical loads (excluding pressure)

 $F_{b(occa)}$ = longitudinal force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake / wind, etc.

Expansion Stress Range (in un-corroded condition)

The stress range (S_E) due to thermal expansion is calculated from para. 902.3.2(c), para. 919.2.1 and para. 919.4.1(b)

$$S_{E} = \sqrt{\left[\left|\frac{\dot{i}_{a}F_{c}}{A_{p}}\right| + \frac{\sqrt{(\dot{i}_{i}M_{ic})^{2} + (\dot{i}_{o}M_{oc})^{2}}}{Z}\right]^{2} + \left(\frac{\dot{i}_{t}M_{tc}}{Z}\right)^{2}} \le S_{A}$$

where

 $F_c = axial$ force <u>range</u> due to reference displacement load range

 A_p = un-corroded nominal cross sectional area

 i_a = axial force stress intensification factor = 1.0 for elbows, pipe bends and miter bends (single, closely spaced and widely spaced), and $i_a = i_o$ (or i when listed) in ASME B31J for other components

 M_{iC} , M_{oC} , M_{tC} = in-plane, out-of-plane and torsional moment <u>range</u> respectively due to the reference displacement load range

 i_i , i_o , i_t = in-plane, out-of-plane and torsional stress intensification factors respectively as defined in ASME B31J, Table 1-1

Z = nominal section modulus = un-corroded section modulus

 $S_A = f(1.25S_c + 0.25S_h)$ (See Note 2 below) $f = \text{stress range reduction factor } 6/N^{0.2}$, where N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping. Also $0.15 \le f \le 1.0$

 S_{c} = basic allowable stress at minimum metal temperature expected during the displacement stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the displacement stress range under analysis

When S_h is greater than S_L , the allowable stress range may be calculated as per para. 902.3.2 (d).

 $S_A = f[1.25(S_C + S_h) - S_L]$. This equation can be re-written as

 $S_A = f(1.25S_C + 0.25S_h) + f(S_h - S_L)$ (see **Note 2** below)

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options>Analysis on the "Code" tab is Turned ON.

Notes:

- 1. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations" as per ASME B31.9 (2020).
- 2. Para. 902.3.2 (c) and (d) refers to para. 102.3.2 (b) of ASME B31.1 (2020) for Allowable Stress. As per Note 2 of para. 102.3.2 (b) (1) of ASME B31.1 (2020), "For materials with a minimum tensile strength of over 70 ksi (480 MPa), eqs. (1A) and (1B) shall be calculated using Sc or Sh values no greater than 20 ksi (140 MPa), unless otherwise justified."

Compliance to this criterion is checked using the value entered under Tensile Strength field of CAEPIPE Material property input. If this field is NOT entered or left BLANK, then CAEPIPE will compute the Tensile Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 3.5. This is because, the allowable stress for material below creep is generally 1/3.5 of Tensile Strength as stated in Section 1-100 of Mandatory Appendix 1 of ASME Section II, Part D.

For example, if the allowable stress is 22,000 psi for a high strength material at the minimum temperature of -20 deg. F, then the Tensile Strength would be 22,000 x 3.5 = 77,000 psi. So, in this case, CAEPIPE will internally set the values of both S_c and S_h as 20,000 psi as Tensile Strength is greater than 70,000 psi.

In addition, if the option "Use Liberal allowable stresses" is turned ON through Layout Window > Options > Analysis > Code, then if the left over Sustained stress (= $S_h - S_L$) is positive, CAEPIPE will multiply this positive left over Sustained stress by the Stress range reduction factor (f) and add that resulting value to the Expansion allowable stress computed using the above equation (1A) to arrive at "Liberal Thermal Allowable Stress".

Allowable Pressure

For straight pipes and bends, the calculation of allowable pressure is based on Eq. 2 of para. 904.1 and 904.2.1.

$$P = \frac{2SE(t_m - A)}{D}$$

where

P = allowable pressure

SE = allowable hoop stress, given in Appendix I of B31.9 (2017) Code, where

E = longitudinal or spiral weld joint efficiency factor as per Table I-1 of Appendix I of ASME B31.9 (2017). For casting materials, factor E is replaced with Casting Qualify Factor from Table I-1 of Appendix I of ASME B31.9 (2017)

 t_m =minimum required pipe thickness as per para. 904.1.1(a)

 $=t_n \times (1 - \text{mill tolerance}/100)$

 t_n =nominal pipe thickness

A =corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in "corrosion allowance" in CAEPIPE)

D=outside diameter

For closely and widely spaced miter bends, the allowable pressure shall be the lower positive value calculated from Eqs.(3A) and (3B) of para. 904.2.2(a)

$$P = \frac{SET}{r} \left(\frac{T}{T+0.64 \tan \theta \sqrt{rT}} \right)$$
 Eq. (3A)
$$P = \frac{SET}{r} \left(\frac{R-r}{R-r/2} \right)$$
 Eq. (3B)

where

 $r = \text{mean radius of pipe} = (D - t_n)/2$ $T = t_m - A, \text{ where } t_m \text{ and } A \text{ are defined above}$ R = effective bend radius of the miter $\theta = \text{miter half angle}$

Sustained Stress (in un-corroded condition)

The longitudinal stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated as mentioned in para. 902.3.2(d)

$$S_L = \frac{PD_o}{4t_n} + \frac{0.75iM_A}{Z} \le S_h$$

where

P = maximum of CAEPIPE input pressures P₁ through P₁₀ D_o = outside diameter

 t_n =nominal wall thickness

i=stress intensification factor. The product 0.75i shall not be less than 1.0. See Note 1 below.

- M_A = resultant bending moment due to weight and other sustained loads
- Z = un-corroded section modulus; for reduced outlets, effective section modulus

 S_h = hot allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀

Occasional Stress (in un-corroded condition)

The longitudinal stress (S_{LO}) due to occasional loads is calculated as mentioned in para.902.3.3 (a) as the sum of stresses due to pressure, live and dead loads and stress due to occasional loads (S_O) such as earthquake or wind. Wind and earthquake are not considered to occur concurrently.

$$S_{LO} = \frac{P_{peak}D_o}{4t_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le 1.33S_h$$

where

 M_B = resultant bending moment due to occasional loads P_{peak} = peak pressure = (peak pressure factor) x P

Expansion Stress (in un-corroded condition)

The stress (S_E) due to thermal expansion is calculated from para. 902.3.2(c), para. 919.2.1 and para. 919.4.1(b)

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

 M_C = resultant moment due to thermal expansion

- $S_A = f(1.25S_C + 0.25S_h)$
- f = stress range reduction factor $6/N^{0.2}$, where N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping. Also $0.15 \le f \le 1.0$
- S_C = allowable stress at cold temperature, i.e. at minimum of CAEPIPE input temperatures T₁ through T₁₀ and T_{ref}

When S_h is greater than S_L , the allowable stress range may be calculated as per para. 902.3.2 (d).

$$S_A = f[1.25(S_C + S_h) - S_L]$$

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options>Analysis on the "Code" tab is Turned ON.

Notes:

- 1. Stress Intensification Factors (SIFs) and Flexibility Factors (FFs) are computed using ASME B31.1 (2016) by default as given below. When the option "Use B31J for SIFs and Flexibility Factors" is Turned ON, then CAEPIPE computes SIFs and FFs as per B31J (2017).
- 2. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

MANDATORY APPENDIX D

Description	Flexibility Characteristic, <i>h</i>	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch
Welding elbow or pipe bend [Notes (1), (2), (3), (4), (5)]	$\frac{t_n R}{r^2}$	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c} \downarrow \\ r \\ \downarrow \\ \hline r \\ \downarrow \\ \hline r \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \hline \end{array} $
Closely spaced miter bend [Notes (1), (2), (3), (5)] $s < r(1 + \tan \theta)$ $B \ge 6 t_n$ $\theta \le 22^{1}/_{2}$ deg	$\frac{st_n\cot\theta}{2r^2}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	s r h $R = \frac{s \cot 2}{2}$
Widely spaced miter bend [Notes (1), (2), (5), (6)] $s \ge r(1 + \tan \theta)$ $\theta \le 22\frac{1}{2}$ deg	$\frac{t_n \left(1 + \cot \theta\right)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$S \xrightarrow{\theta} \frac{1}{r} \xrightarrow{t} \frac{1}{t_n}$ $R = \frac{r(1 + \cot \theta)}{2}$
Welding tee per ASME B16.9 [Notes (1), (2), (7)]	$\frac{3.1t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$\overbrace{r_{r_{x}}}^{r} \xrightarrow{t_{n}} t_{n}$
Reinforced fabricated tee [Notes (1), (2), (8), (9)]	$\frac{\left(t_{n} + \frac{t_{r}}{2}\right)^{5/2}}{r(t_{n})^{3/2}}$	1	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c c} & \downarrow & \downarrow \\ \hline \\$
Unreinforced fabricated tee [Notes (1), (2), (9)]	$\frac{t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	

Building Services Piping ASME B31.9 (2017) [Superseded by ASME B31.9 (2020)]

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)					
Description	Flexibility Characteristic, <i>h</i>	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch	
Branch welded-on fitting (integrally reinforced) per MSS SP-97 [Notes (1), (2)]	$\frac{3.3t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c} \downarrow t_n \\ \hline \uparrow \\ \hline \uparrow \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	
Extruded outlet meeting the requirements of para. 104.3.1(G) [Notes (1), (2)]	$\frac{t_n}{r}$	1	$\frac{0.9}{h^{\frac{2}{3}}}$	$\frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}}$	
Welded-in contour insert [Notes (1), (2), (7)]	3.1 $\frac{t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c} & & & & \\ \hline \\ & & & \\ \hline \\ \hline$	
Description	Flexibility Factor, <i>k</i>	Stress I	ntensification Factor, i	Sketch	
Branch connection [Notes (1), (10)]	1	For checking 1.5 $\left(\frac{R_m}{t_{nh}}\right)^2$	t branch end $\left(\frac{r'm}{R_m}\right)^{1/2} \left(\frac{t_{nb}}{t_{nh}}\right) \left(\frac{r'm}{r_p}\right)$	See Fig. D-1	
Butt weld [Note (1)] $t \ge 0.237$ in., $\delta_{max} \le \frac{1}{46}$ in., and $\delta_{avg}/t \le 0.13$	1	1.0 [Note (1	1)]		
Butt weld [Note (1)] $t \ge 0.237$ in., $\delta_{max} \le \frac{1}{8}$ in., and $\delta_{avg}/t = any value$	1	1.9 max. or [0.9 + 2.7(δ _{avg} /t)], but not less than 1.0		$\begin{array}{c c} \uparrow t \\ \hline \uparrow \delta \end{array}$	
Butt weld [Note (1)] t < 0.237 in., $\delta_{max} \le \frac{1}{16}$ in., and $\delta_{avg}/t \le 0.33$	1	[Note (11)			
Fillet welds	1	1.3 [Note (1	2)]	See Figs. 127.4.4(A), 127.4.4(B), and 127.4.4(C)	
Tapered transition per para. 127.4.2(B) and ASME B16.25 [Note (1)]	1	1.9 max. or 1.3 + 0.00	$036\frac{D_o}{t_n} + 3.6\frac{\delta}{t_n}$	$D_{o} \uparrow \uparrow \\ \delta$	

Table D.4 Flawibility rification Factors (Cont'd) 1 64 . .

Building Services Piping ASME B31.9 (2017) [Superseded by ASME B31.9 (2020)]

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch
Concentric reducer per ASME B16.9 [Note (13)]	1	2.0 max. or $0.5 + 0.01 \alpha \left(\frac{D_2}{t_2}\right)^{1/2}$	$ \begin{array}{c} \downarrow^{t_1} \\ \uparrow \\ D_1 \\ \downarrow^{t_2} $
Threaded pipe joint or threaded flange	1	2.3	
Corrugated straight pipe, or corrugated or creased bend [Note (14)]	5	2.5	

NOTES:

(1) The following nomenclature applies to Table D-1:

B = length of miter segment at crotch, in. (mm)

- $D_o =$ outside diameter, in. (mm)
- D_{ob} = outside diameter of branch, in. (mm) R = bend radius of elbow or pipe bend, in. (mm)
 - r = mean radius of pipe, in. (mm) (matching pipe for tees)
- r_x = external crotch radius of welded-in contour inserts and welding tees, in. (mm)
- s = miter spacing at centerline, in. (mm)
- T_c = crotch thickness of welded-in contour inserts and welding tees, in. (mm)
- t_n = nominal wall thickness of pipe, in. (mm) (matching pipe for tees)
- t_r = reinforcement pad or saddle thickness, in. (mm)
- α = reducer cone angle, deg
- δ = mismatch, in. (mm)
- θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factors k and stress intensification factors i in Table D-1 apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter elbows, and to the intersection point for tees. The values of k and i can be read directly from Chart D-1 by entering with the characteristic *h* computed from the formulas given.
- (3) Where flanges are attached to one or both ends, the values of k and i in Table D-1 shall be multiplied by the factor c given below, which can be read directly from Chart D-2, entering with the computed h: one end flanged, $c = h^{1/6}$; both ends flanged, $c = h^{1/3}$.
- (4) The designer is cautioned that cast butt welding elbows may have considerably heavier walls than those of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin-wall elbows and bends, pressure can significantly affect magnitudes of k and i. Values from the Table may be corrected by dividing k by

$$\left[1 + 6 \left(\frac{P}{E_c}\right) \left(\frac{r}{t_n}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}\right]$$

and dividing i by

$$\left[1 + 3.25 \left(\frac{P}{E_c}\right) \left(\frac{r}{t_n}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}\right]$$

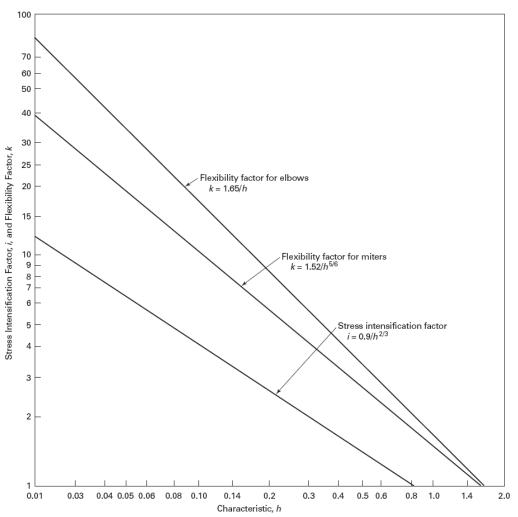
- (6) Also includes single miter joints.
- (7) If $r_x \ge D_{ob}/8$ and $T_c \ge 1.5t_n$, a flexibility characteristic, *h*, of $4.4t_n/r$ may be used.

(8) When $t_r > 1.5t_n$, $h = 4.05t_n / r$.

(9) The stress intensification factors in the Table were obtained from tests on full size outlet connections. For less than full size outlets, the full size values should be used until more applicable values are developed.

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

NOTES (Cont'd):


- (10) The equation applies only if the following conditions are met:
 - (a) The reinforcement area requirements of para. 104.3 are met.
 - (b) The axis of the branch pipe is normal to the surface of run pipe wall.

(c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the sum of their radii along the circumference of the run pipe.

- (d) The inside corner radius r_1 (see Fig. D-1) is between 10% and 50% of t_{nh} .
- (e) The outer radius r_2 (see Fig. D-1) is not less than the larger of $T_b/2$, $(T_b + y)/2$ [shown in Fig. D-1 sketch (c)], or $t_{nh}/2$.
- (f) The outer radius r_3 (see Fig. D-1) is not less than the larger of:
 - (1) $0.002 \theta d_o$;
 - (2) $2(\sin \theta)^3$ times the offset for the configurations shown in Fig. D-1 sketches (a) and (b).
- (g) $R_m / t_{nh} \le 50$ and $r'_m / R_m \le 0.5$.
- (11) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between 0.875*t* and 1.10*t* for an axial distance of $\sqrt{D_o t}$. D_o and *t* are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a full weld is made between the pipe and fitting as shown in Fig. 127.4.4(C). For welds to socket welding flanges, the stress intensification factor is based on the weld geometry shown in Fig. 127.4.4(B) and has been shown to envelop the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld, with no undercut, smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 127.4.4(A) sketches (b) and (d), has been shown to improve the fatigue performance of the weld.
- (13) The equation applies only if the following conditions are met:
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_1/t_1 and D_2/t_2 does not exceed 100.
 - (c) The wall thickness is not less than t_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t_2 .
- (14) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

Building Services Piping ASME B31.9 (2017) [Superseded by ASME B31.9 (2020)]

Building Services Piping ASME B31.9 (2017) [Superseded by ASME B31.9 (2020)]

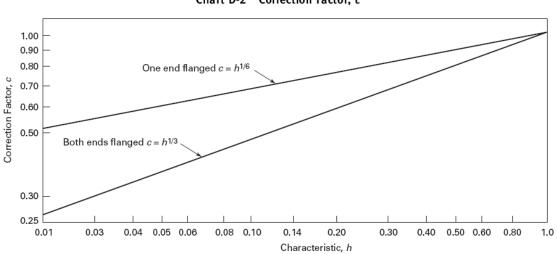


Chart D-2 Correction Factor, c

Allowable Pressure

For straight pipes and bends, the calculation of allowable pressure is based on Eq. 2 of para. 904.1 and 904.2.1.

$$P = \frac{2SE(t_m - A)}{D}$$

where

P = allowable pressure

SE = allowable hoop stress, given in Appendix I of B31.9 (2014) Code, where

E = longitudinal or spiral weld joint efficiency factor or casting quality factor

 t_m = minimum required pipe thickness as per para. 904.1.1(a)

- $= t_n \times (1 \text{mill tolerance}/100)$
- t_n = nominal pipe thickness
- A = corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in "corrosion allowance" in CAEPIPE)

D =outside diameter

For closely and widely spaced miter bends, the allowable pressure shall be the lower positive value calculated from Eqs.(3A) and (3B) of para. 904.2.2(a)

$$P = \frac{SET}{r} \left(\frac{T}{T+0.64 \tan \theta \sqrt{rT}} \right)$$
 Eq. (3A)
$$P = \frac{SET}{r} \left(\frac{R-r}{R-r/2} \right)$$
 Eq. (3B)

where

 $r = \text{mean radius of pipe} = (D - t_n)/2$

 $T = t_m - A$, where t_m and A are defined above

R = effective bend radius of the miter

 θ = miter half angle

Sustained Stress (in un-corroded condition)

The longitudinal stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated as mentioned in para. 902.3.2(d)

$$S_L = \frac{PD_o}{4t_n} + \frac{0.75iM_A}{Z} \le S_h$$

where

P = maximum of CAEPIPE pressures P_1 through P_{10}

 D_o = outside diameter

 t_n = nominal wall thickness

i = stress intensification factor. The product 0.75*i* shall not be less than 1.0.

 M_A = resultant bending moment due to weight and other sustained loads

Z = un-corroded section modulus; for reduced outlets, effective section modulus

 S_h = hot allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀

Occasional Stress (in un-corroded condition)

The longitudinal stress (S_{LO}) due to occasional loads is calculated as mentioned in para.902.3.3 (a) as the sum of stresses due to pressure, live and dead loads and stress due to occasional loads (S_O) such as earthquake or wind. Wind and earthquake are not considered to occur concurrently.

$$S_{LO} = \frac{P_{peak}D_o}{4t_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le 1.33S_h$$

where

 M_B = resultant bending moment due to occasional loads P_{peak} = peak pressure = (peak pressure factor) x P

Expansion Stress (in un-corroded condition)

The stress (S_E) due to thermal expansion is calculated from para. 902.3.2(c), para. 919.2.1 and para. 919.4.1(b)

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

 M_C = resultant moment due to thermal expansion

$$S_A = f(1.25S_C + 0.25S_h)$$

- f = stress range reduction factor $6/N^{0.2}$, where N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping. Also $0.15 \le f \le 1.0$
- S_C = allowable stress at cold temperature, i.e. at minimum of CAEPIPE input temperatures T_1 through T_{10} and T_{ref}

When S_h is greater than S_L , the allowable stress range may be calculated as per para. 902.3.2 (d).

$$S_A = f[1.25(S_C + S_h) - S_L]$$

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options>Analysis on the "Code" tab.

Note:

Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

Stress Intensification Factor (SIF) values for B31.9 (2014) are referred from Appendix D of B31.1 (2012). The same is provided below for details.

MANDATORY APPENDIX D

	Table D-1 Flexibility and Stress Intensification Factors					
Description	Flexibility Characteristic, <i>h</i>	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch		
Welding elbow or pipe bend [Notes (1), (2), (3), (4), (5)]	$\frac{t_n R}{r^2}$	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c} $		
Closely spaced miter bend [Notes (1), (2), (3), (5)] $s < r(1 + \tan \theta)$ $B \ge 6 t_n$ $\theta \le 22^{1}/_{2} \deg$	$\frac{st_n \cot \theta}{2r^2}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$B = \frac{s \cot \theta}{2}$		
Widely spaced miter bend [Notes (1), (2), (5), (6)] $s \ge r(1 + \tan \theta)$ $\theta \le 22^{1/2} \deg$	$\frac{t_n \left(1 + \cot \theta\right)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$s \xrightarrow{\theta} \frac{1}{r} \xrightarrow{\theta} \frac{1}{r} $		
Welding tee per ASME B16.9 [Notes (1), (2), (7)]	$\frac{3.1t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$\overbrace{\tau_{c}}^{T_{c}} \overbrace{r_{x}}^{+} \overbrace{t_{n}}^{+}$		
Reinforced fabricated tee [Notes (1), (2), (8), (9)]	$\frac{\left(t_n + \frac{t_r}{2}\right)^{5/2}}{r\left(t_n\right)^{3/2}}$	1	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c c} & \downarrow & \downarrow \\ \hline & & \hline \\		
Unreinforced fabricated tee [Notes (1), (2), (9)]	$\frac{t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c} & \downarrow \\ \hline \\$		

Building Services Piping ASME B31.9 (2014) [Superseded by ASME B31.9 (2017)]

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)					
Description	Flexibility Characteristic, <i>h</i>	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch	
Branch welded-on fitting (integrally reinforced) per MSS SP-97 [Notes (1), (2)]	$\frac{3.3t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$	
Extruded outlet meeting the requirements of para. 104.3.1(G) [Notes (1), (2)]	$\frac{t_n}{r}$	1	$\frac{0.9}{h^{\frac{2}{3}}}$	$\frac{\frac{\psi^{t}n}{\hbar}}{\frac{\varphi r}{4}}$	
Welded-in contour insert [Notes (1), (2), (7)]	$3.1 \frac{t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c c} & \downarrow \\ & \uparrow \\ & \downarrow \\ & \uparrow \\$	
Description	Flexibility Factor, <i>k</i>	Stress I	ntensification Factor, i	Sketch	
Branch connection [Notes (1), (10)]	1	For checking 1.5 $\left(\frac{R_m}{t_{nh}}\right)^2$	branch end $\binom{'^3}{R_m} \left(\frac{t' m}{t_{nh}}\right)^{1/2} \left(\frac{t_{nb}}{t_{nh}}\right) \left(\frac{t' m}{r_p}\right)$	See Fig. D-1	
Butt weld [Note (1)] $t \ge 0.237$ in., $\delta_{max} \le \frac{1}{16}$ in., and $\delta_{avg}/t \le 0.13$	1	1.0 [Note (1	1)]		
Butt weld [Note (1)] $t \ge 0.237$ in., $\delta_{max} \le \frac{1}{8}$ in., and $\delta_{avg}/t =$ any value	1	1.9 max. or $[0.9 + 2.7(\delta_{avg}/t)]$,		$\begin{array}{c c} t \\ \hline t \\ \hline	
Butt weld [Note (1)] t < 0.237 in., $\delta_{max} \le \frac{1}{16}$ in., and $\delta_{avg}/t \le 0.33$	1	[Note (11)	ss than 1.0		
Fillet welds	1	1.3 [Note (1	2)]	See Figs. 127.4.4(A), 127.4.4(B), and 127.4.4(C)	
Tapered transition per para. 127.4.2(B) and ASME B16.25 [Note (1)]	1	1.9 max. or 1.3 + 0.00	$036\frac{D_o}{t_n} + 3.6\frac{\delta}{t_n}$	$D_{o} \uparrow \uparrow \delta$	

Table D.4 Flawibility rification Factors (Cont'd) 1 64 . .

Building Services Piping ASME B31.9 (2014) [Superseded by ASME B31.9 (2017)]

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch
Concentric reducer per ASME B16.9 [Note (13)]	1	2.0 max. or $0.5 + 0.01 \alpha \left(\frac{D_2}{t_2}\right)^{1/2}$	$ \begin{array}{c} \downarrow^{t_1} \\ \uparrow \\ D_1 \\ \downarrow^{t_2} $
Threaded pipe joint or threaded flange	1	2.3	
Corrugated straight pipe, or corrugated or creased bend [Note (14)]	5	2.5	

NOTES:

(1) The following nomenclature applies to Table D-1:

B = length of miter segment at crotch, in. (mm)

- $D_o =$ outside diameter, in. (mm)
- D_{ob} = outside diameter of branch, in. (mm) R = bend radius of elbow or pipe bend, in. (mm)
 - r = mean radius of pipe, in. (mm) (matching pipe for tees)
- r_x = external crotch radius of welded-in contour inserts and welding tees, in. (mm)
- s = miter spacing at centerline, in. (mm)
- T_c = crotch thickness of welded-in contour inserts and welding tees, in. (mm)
- t_n = nominal wall thickness of pipe, in. (mm) (matching pipe for tees)
- t_r = reinforcement pad or saddle thickness, in. (mm)
- α = reducer cone angle, deg
- δ = mismatch, in. (mm)
- θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factors k and stress intensification factors i in Table D-1 apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter elbows, and to the intersection point for tees. The values of k and i can be read directly from Chart D-1 by entering with the characteristic *h* computed from the formulas given.
- (3) Where flanges are attached to one or both ends, the values of k and i in Table D-1 shall be multiplied by the factor c given below, which can be read directly from Chart D-2, entering with the computed h: one end flanged, $c = h^{1/6}$; both ends flanged, $c = h^{1/3}$.
- (4) The designer is cautioned that cast butt welding elbows may have considerably heavier walls than those of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin-wall elbows and bends, pressure can significantly affect magnitudes of k and i. Values from the Table may be corrected by dividing k by

$$\left[1 + 6 \left(\frac{P}{E_c}\right) \left(\frac{r}{t_n}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}\right]$$

and dividing i by

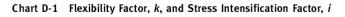
$$\left[1 + 3.25 \left(\frac{P}{E_c}\right) \left(\frac{r}{t_n}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}\right]$$

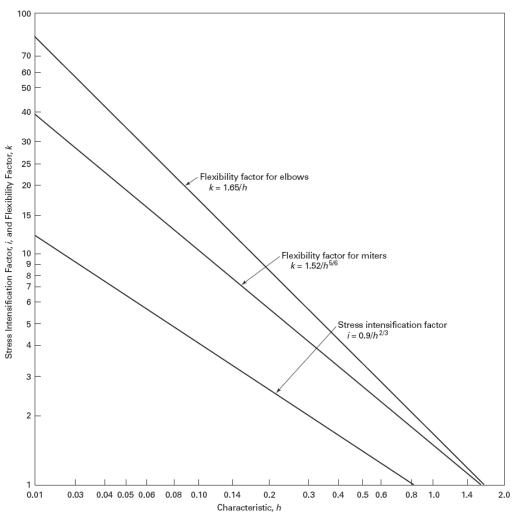
- (6) Also includes single miter joints.
- (7) If $r_x \ge D_{ob}/8$ and $T_c \ge 1.5t_n$, a flexibility characteristic, *h*, of $4.4t_n/r$ may be used.

(8) When $t_r > 1.5t_n$, $h = 4.05t_n / r$.

(9) The stress intensification factors in the Table were obtained from tests on full size outlet connections. For less than full size outlets, the full size values should be used until more applicable values are developed.

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)


NOTES (Cont'd):


- (10) The equation applies only if the following conditions are met:
 - (a) The reinforcement area requirements of para. 104.3 are met.
 - (b) The axis of the branch pipe is normal to the surface of run pipe wall.

(c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the sum of their radii along the circumference of the run pipe.

- (d) The inside corner radius r_1 (see Fig. D-1) is between 10% and 50% of t_{nh} .
- (e) The outer radius r_2 (see Fig. D-1) is not less than the larger of $T_b/2$, $(T_b + y)/2$ [shown in Fig. D-1 sketch (c)], or $t_{nh}/2$.
- (f) The outer radius r_3 (see Fig. D-1) is not less than the larger of:
 - (1) 0.002 θd_o ;
 - (2) $2(\sin \theta)^3$ times the offset for the configurations shown in Fig. D-1 sketches (a) and (b).
- (g) $R_m / t_{nh} \le 50$ and $r'_m / R_m \le 0.5$.
- (11) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between 0.875*t* and 1.10*t* for an axial distance of $\sqrt{D_o t}$. D_o and *t* are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a full weld is made between the pipe and fitting as shown in Fig. 127.4.4(C). For welds to socket welding flanges, the stress intensification factor is based on the weld geometry shown in Fig. 127.4.4(B) and has been shown to envelop the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld, with no undercut, smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 127.4.4(A) sketches (b) and (d), has been shown to improve the fatigue performance of the weld.
- (13) The equation applies only if the following conditions are met:
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_1/t_1 and D_2/t_2 does not exceed 100.
 - (c) The wall thickness is not less than t_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t_2 .
- (14) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

Building Services Piping ASME B31.9 (2014) [Superseded by ASME B31.9 (2017)]

Building Services Piping ASME B31.9 (2014) [Superseded by ASME B31.9 (2017)]

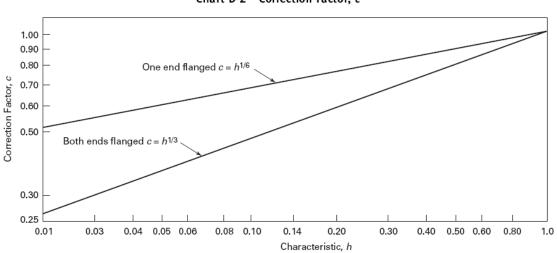


Chart D-2 Correction Factor, c

Allowable Internal Pressure

For straight pipes and bends, the allowable pressure is calculated using Eq. (3a) for straight pipes and Eq. (3c) with I = 1.0 for bends from paras. IP-3.2.1 and IP-3.3.1 respectively.

$$P_a = \frac{2SEM_f t_a}{D - 2Yt_a}$$

where

 P_a = allowable pressure

S = stress value for material from Table IX-1A in Appendix IX

E = quality factor from Table IX-2 or Table IX-3A in Appendix IX

 M_f = material performance factor that addresses loss of material properties associated with hydrogen gas service from Tables IX-5B and IX-5C in Appendix IX.

 t_a = available thickness for pressure design

 $= t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance "c"}$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

 $t_n =$ nominal pipe thickness

D = outside diameter

d = inside diameter

- Y = coefficient from Table IP-3.2.1, valid for $t_a < D/6$ for Ferritic and Austenitic steels. Refer to the Table listed at the end of this Section for details on 'Y' used in CAEPIPE for all available materials.
- $Y = \frac{d+2c}{D+d+2c}$, valid for $t_a \ge D/6$ for all material types.

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE using Eq. (4a) and Eq. (4b) from para. IP-3.3.3.

$$P_a = minimum \left[\frac{SEM_f t_a(R-r)}{r(R-r/2)}, \frac{SEM_f t_a^2}{r(t_a+0.643\tan\theta\sqrt{rt_a})} \right]$$

For widely spaced miter bends with $\theta \leq 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4a) from para. IP-3.3.3 as

$$P_a = \frac{SEM_f t_a^2}{r(t_a + 0.643 \tan \theta \sqrt{rt_a})}$$

For widely spaced miter bends with $\theta > 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4c) from para. IP-3.3.3 as

$$P_a = \frac{SEM_f t_a^2}{r(t_a + 1.25 \tan \theta \sqrt{rt_a})}$$

where

 $r = \text{mean radius of pipe} = (D - t_n)/2$

R = effective bend radius of the miter (see para. IP-3.3.3 (d) of code for definition) [an input in CAEPIPE for miters]

 θ = angle of miter cut (see para. IP-3.3.3 of code for definition)

Sustained Stress

As per para. IP-6.2, the stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated using Eqs. (23a), (23b), (23c) and (23d) from para. 320.2 of ASME B31.3 (2022) and compared against the allowable as stated in para. IP-2.2.10(c).

All paragraph numbers cited below are from the ASME B31.3 (2022) code, unless otherwise specified.

$$S_L = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_h M_f$$

where

$$S_{a} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Sustained} = I_{a} \left[\frac{P\pi d^{2}/4}{A_{p}} + \frac{R}{A_{p}}\right]_{Sustained}$$

$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Sustained}$$

$$S_{t} = \left[\frac{I_{t}M_{t}}{2Z_{m}}\right]_{Sustained}$$

- P = maximum of CAEPIPE input pressures P1 through P10
- D =outside diameter
- t_s = wall thickness used for sustained stress calculation after deducting corrosion allowance from the nominal thickness
- t_S = nominal thickness corrosion allowance in CAEPIPE, as per para. 320.1
- d = corroded inside diameter $= D 2t_S$
- $A_p = \underline{\text{corroded}}$ cross-sectional area of the pipe computed using t_s as per para. 320.2
- I_a = longitudinal force index = 1.0
- F_a = longitudinal force due to sustained loads (pressure and weight)
- R = axial force due to weight alone, where weight is computed using nominal thickness.
- I_i = sustained in-plane moment index = $0.75i_i$ or 1.0, whichever is greater
- I_o = sustained out-of-plane moment index = $0.75i_o$ or 1.0, whichever is greater
- I_t = sustained torsional moment index = 1.0
- M_i = in-plane bending moment due to sustained loads, e.g., pressure and weight
- M_o = out-of-plane bending moment due to sustained loads, e.g., pressure and weight
- M_t = torsional moment due to sustained loads, e.g., pressure and weight
- $Z_m = \text{corroded}$ section modulus as per para. 320.1
- S_h = basic allowable stress at maximum temperature, i.e., max (T_{ref} , T_1 through T_{10}) from Table IX-1A in Appendix IX

 i_i and $i_o =$ in-plane and out-of-plane index from ASME B31J (2017) respectively

 M_f = material performance factor that addresses loss of material properties associated with hydrogen gas service from Tables IX-5B and IX-5C in Appendix IX.

Sustained plus Occasional Stress

The stress (S_{Lo}) due to sustained and occasional loads is calculated as the sum of stress (S_L) due to sustained loads such as pressure and weight and stress (S_o) due to occasional loads such as earthquake or wind. Wind and earthquake are not considered as acting concurrently (see para. IP-2.2.11).

All paragraph numbers cited below are from the ASME B31.3 (2022) code, unless otherwise specified.

For temp $\leq 427^{\circ}$ C or 800° F

 $S_{LO} \leq 1.33 S_h M_f$ as per para. IP-2.2.11(a)

For temp > 427[°] C or 800[°] F (see Note 2 below)

 $S_{LO} \le 0.9W S_y M_f$ as per IP-2.2.11(a)

where

 $S_{LO} = S_L + S_O$, where S_L is computed as above, and S_O is calculated using Eqs. (23a), (23b), (23c) and (23d) with applicable loads as per para. 302.3.6 (a).

$$S_{0} = \sqrt{(|S_{ao}| + S_{bo})^{2} + (2S_{to})^{2}}$$

$$S_{ao} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Occasional} = I_{a}\left[\frac{(P_{peak} - P)\pi d^{2}/4}{A_{p}} + \frac{R}{A_{p}}\right]_{Occasional}$$

$$S_{bo} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Occasional}$$

 $S_{to} = \left[\frac{I_t M_t}{2Z_m}\right]_{occasional}$

 P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P

P = maximum of CAEPIPE input pressures P1 through P10

R = axial force due to occasional loads such as earthquake or wind

 M_i = in-plane bending moment due to occasional loads such as earthquake or wind

 M_o = out-of-plane bending moment due to occasional loads such as earthquake or wind

 M_t = torsional moment due to occasional loads such as earthquake or wind

 S_y = yield strength at maximum temperature, i.e., max (T_{ref} , T_1 through T_{10})

W = 1.0 for Austenetic stainless steel and 0.8 for other materials as per para. IP-2.2.11(a)

 $Z_m =$ <u>corroded</u> section modulus as per para. 320.1

 M_f = material performance factor from Tables IX-5B and IX-5C in Appendix IX.

 I_i and I_o = in-plane and out-of-plane index from ASME B31J (2017) respectively.

Notes:

- 1. When the field Yield strength is left BLANK or NOT input, then CAEPIPE will compute the Yield Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 1.5 (=3/2). This is because; the allowable stress for material below creep is generally 2/3 of Yield Strength.
- 2. The allowable stress equations for (S_{LO}) are taken from para. IP-2.2.11, ignoring the "wrongly-worded" last statement given in that paragraph namely "At temperatures warmer than 427 deg. C (800 deg.F), use 1.33.Sh.M_f"

Expansion Stress

The stress (S_E) due to thermal expansion is calculated according to Equation 17 of Paragraph 319.4.4 of the ASME B31.3 (2022) code, as referenced in Paragraphs IP-6.1 and IP-2.2.10(d). All paragraph numbers cited below are from the ASME B31.3 (2022) code, unless otherwise specified.

$$S_E = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_A$$

where

$$S_{a} = \left[\frac{i_{a}F_{a}}{A}\right]_{Expansion}$$
$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]_{Expansion}$$
$$[i_{t}M_{t}]$$

 $S_t = \left[\frac{\iota_t u_t}{2Z}\right]_{Expansion}$

 $A = \underline{\text{un-corroded}}$ cross-sectional area of the pipe/fitting computed using nominal thickness t_n and outer diameter D, as per para. 319.3.5.

 i_a = axial stress intensification factor = 1.0 for elbows, pipe bends and miter bends and $i_a = i_o$ for other components as per ASME B31J (2017)

 $F_a = \underline{range}$ of axial force between any two thermal conditions being evaluated

 i_i = in-plane stress intensification factor (SIF) as per ASME B31J (2017); shall not be < 1.0

 i_o = out-of-plane SIF as per ASME B31J (2017); shall not be < 1.0

 i_t = torsional SIF as per ASME B31J (2017); shall not be < 1.0

 M_i = in-plane bending moment range between any two conditions being evaluated

 M_o = out-of-plane bending moment range between any two conditions being evaluated

 M_t = torsional moment range between any two conditions being evaluated

Z =<u>un-corroded</u> section modulus as per para. 319.3.5 and para. 319.4.4 (a)

- $S_A = f(1.25S_C + 0.25S_h)$, Eq. (1a) of para. 302.3.5(d)
- f = stress range reduction factor from Eq. (1c) of para. 302.3.5 (d) = 20(N)^{-0.333} <= f_m \& f >= 0.15

 f_m = maximum value of stress range factor; 1.2 for ferrous materials with specified minimum tensile strengths <= 75 ksi) and at metal temperatures <=700° F; otherwise $f_m = 1.0$

- N = equivalent number of full displacement cycles expected during service of piping. This full displacement cycles (N) shall be increased by a factor of 10 for carbon and low alloy steels and other materials that are susceptible to Hydrogen Embrittlement (HE) as per para. IP-2.2.10(d), irrespective of their design temperatures.
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

when S_h is greater than S_L , the allowable stress range may be calculated as

$$S_A = f[1.25(S_C + S_h) - S_L]$$
, Eq. (1b) of para. 302.3.5(d). This equation can be re-written as

$$S_A = f(1.25S_C + 0.25S_h) + f(S_h - S_L)$$
 (see **Note 3** below)

This is specified as an analysis option "Use liberal allowable stresses", in the menu Layout > Options > Analysis > Code tab.

Notes:

- 1. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. 319.4.4 (a).
- 2. Refer to the end of this appendix for the details of "Thickness and Section Modulus used for weight, allowable pressure and stress calculations".
- 3. Para. 302.3.5 provides maximum value of S_c and S_h as 138 MPa (20 ksi). The reason for this criterion is explicitly stated in Note 2 of para. 102.3.5 (b) (1) of ASME B31.1 (2022) as given here 'For materials with a minimum tensile strength of over 70 ksi (480 MPa), eqs. (1a) and (1b) shall be calculated using Sc or Sh values no greater than 20 ksi (140 MPa), unless otherwise justified."

Compliance to this criterion is checked using the value entered under Tensile Strength field of CAEPIPE Material property input. If this Tensile Strength field is NOT entered or left BLANK, then CAEPIPE will compute the Tensile Strength of the material by multiplying the Allowable Stress at the minimum temperature (at which the material properties are entered in CAEPIPE stress model) with a factor of 3.5. This is because, the allowable stress for material below creep is generally 1/3.5 of Tensile Strength as stated in Section 1-100 of Mandatory Appendix 1 of ASME Section II, Part D.

For example, if the allowable stress is 22,000 psi for a high strength material at the minimum temperature of -20 deg. F, then the Tensile Strength would be 22,000 x 3.5 = 77,000 psi. So, in this case, CAEPIPE will internally set the values of both S_c and S_h as 20,000 psi as Tensile Strength is greater than 70,000 psi.

In addition, if the option "Use Liberal allowable stresses" is turned ON through Layout Window > Options > Analysis > Code, then if the left over Sustained stress (= $S_h - S_L$) is positive, CAEPIPE will multiply this positive left over Sustained stress by the Stress range reduction factor (f) and add that resulting value to the Expansion allowable stress computed using the above equation (1a).

4. Para. 319.2.1(c), implies that wind sway at a piping support (e.g., piping supported from a tall slender tower) could be considered as an imposed thermal displacement at that

support. Since CAEPIPE allows up to 10 thermal loads, the question arises "under which thermal load should this wind sway to be included". Hence, we recommend that wind sway is to be input as a part of "wind displacement under occasional stress condition".

Notes on Material Library for B3112-2023.mat supplied with CAEPIPE:

- 1. Material library for ASME B31.12 (2023) [B3112-2023.mat] supplied with CAEPIPE has been created by referring to the values provided in Appendix IX of ASME B31.12 (2023).
- 2. **Coefficient of Thermal Expansion:** Coefficient of Thermal Expansion data are entered by referring to the values provided in Table C-1 of Appendix C of ASME B31.3 (2022).
- 3. **Modulus of Elasticity:** Modulus of Elasticity data are entered by referring to the values provided in Table C-6 of Appendix C of ASME B31.3 (2022).
- 4. Longitudinal Joint Factor: Longitudinal Joint Factors are entered by referring to the values specified in Table IX-3A of ASME B31.12 (2023).

Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure

[SI. Nos. 1 & 2 below are from Table IP-3.2.1 and SI. Nos. 3, 4 & 5 are from Table 304.1.1 of ASME B31.3 (2022)]

			Val	ues of 'Y' f	or Temp	erature, l	Deg F (Deg	C)	
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
SI.		and							and
No.	Material Type	below							above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
3.	Nickel Alloys (NA)	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
4.	Gray Iron / Cast Iron	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	(CI)								
5.	Material Types other	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	than those stated								
	from Sl. Nos. 1 to 4.								

Carbon Steel Piping Materials Performance Factor (M_f) used in CAEPIPE for Material Type as "CS" (from Table IX-5B)

		Materials Performance Factor (M _f)							
SI.	Specified Min. Yield	System Design Pressure, psig							
No.	Strength (ksi)	<=1000 2000 3000 4000 5000 6000							
1.	<= 52	1.000	0.948	0.912	0.884	0.860	0.839		
2.	<= 56	0.930	0.881	0.848	0.824	0.800	0.778		
3.	<= 65	0.839	0.796	0.766	0.745	0.724	0.706		
4.	<= 80	0.715 0.678 0.645 0.633 0.618 0.600							

Low and Intermediate Alloy Steel Piping Materials Performance Factor (M_f) used in CAEPIPE for Material Type as "AS" (from Table IX-5C)

			Materials Performance Factor (M _f)							
SI.	Specified Min. Tensile		System Design Pressure, psig							
No.	Strength (ksi)	0.000	1000	2000	3000	4000	5000	6000		
1.	<= 35	1.000	0.918	0.881	0.875	0.836	0.815	0.800		
2.	<= 45	0.791	0.724	0.696	0.675	0.660	0.642	0.630		
3.	<= 60	0.655	0.601	0.577	0.561	0.547	0.533	0.524		
4.	<= 65	0.580	0.532	0.511	0.497	0.485	0.472	0.464		

Note:

For materials not covered by Tables given above, Material Performance Factor $(M_{\rm f})$ is taken as 1.00.

Allowable Internal Pressure

For straight pipes and bends, the allowable pressure is calculated using Eq. (3a) for straight pipes and Eq. (3c) with I = 1.0 for bends from paras. IP-3.2.1 and IP-3.3.1.respectively.

$$P_a = \frac{2SEM_f t_a}{D - 2Yt_a}$$

where

 P_a = allowable pressure

S = stress value for material from Table IX-1A

E = quality factor from Table IX-2 or Table IX-3A

 M_f = material performance factor that addresses loss of material properties associated with hydrogen gas service from Tables IX-5B and IX-5C from Appendix IX.

t_a= available thickness for pressure design

 $= t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance "c"}$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

D = outside diameter

d = inside diameter

- Y= coefficient from Table IP-3.2.1, valid for $t_a < D/6$ for Ferritic and Austenitic steels. Refer to the Table listed at the end of this Section for details on 'Y' used in CAEPIPE for all available materials.
- $Y = \frac{d+2c}{D+d+2c}$, valid for $t_a \ge D/6$ for all material types.

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE using Eq. (4b) from para. IP-3.3.3.

$$P_a = \frac{SEM_f t_a(R-r)}{r(R-r/2)}$$

For widely spaced miter bends with $\theta \le 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4a) from para. IP-3.3.3 as

$$P_a = \frac{SEM_f t_a^2}{r(t_a + 0.643 \tan \theta \sqrt{rt_a})}$$

For widely spaced miter bends with θ > 22.5 deg, the allowable pressure is calculated in CAEPIPE using Eq. (4c) from para. IP-3.3.3 as

$$P_a = \frac{SEM_f t_a^2}{r(t_a + 1.25 \tan \theta \sqrt{rt_a})}$$

where

 $r = \text{mean radius of pipe} = (D - t_n)/2$

R = effective bend radius of the miter (see para. IP-3.3.3 (d) of code for definition) [an input in CAEPIPE for miters]

 θ = angle of miter cut (see para. IP-3.3.3 of code for definition)

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated using Eqs. (23a), (23b1), (23b2), (23c) and (23d) from para. 320.2 of ASME B31.3 (2018) and compared against the allowable provided in para. IP-2.2.10.

$$S_L = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_h M_f$$

where

$$S_{a} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Sustained} = \left[\frac{PD}{4t_{s}} + \frac{R}{A_{p}}\right]_{Sustained}$$

$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Sustained}$$
For branch (Leg 3 in Fig. 319.4.4B) of ASME B31.3 (2018)
$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{e}}\right]_{Sustained}$$
Sustained

$$S_t = \left[\frac{I_t M_t}{2Z_m}\right]_{Sustained}$$

P = maximum of CAEPIPE input pressures P1 through P10

- D =outside diameter
- t_S = wall thickness used for sustained stress calculation obtained by deducting corrosion allowance from the nominal thickness
- t_s = nominal thickness corrosion allowance in CAEPIPE, as per para. 320.1 of ASME B31.3 (2018)
- $A_p =$ <u>corroded</u> cross-sectional area of the pipe computed using t_s as per para. 320.10f ASME B31.3 (2018)
- I_a =longitudinal force index = 1.0
- F_a = longitudinal force due to sustained loads such as pressure and weight
- R = axial force due to weight alone, where weight is computed using nominal thickness.
- I_i = sustained in-plane moment index = 0.75 i_i or 1.0, whichever is greater.
- I_o = sustained out-of-plane moment index = $0.75i_o$ or 1.0, whichever is greater.

where, i_i and i_o are taken from Appendix D of ASME B31.3 (2018) [reprinted at the end of this Section] or from B31J (2017) when the option "Use B31J for SIFs and Flexibility Factors" is Turned ON.

 $I_t =$ torsional moment index = 1.0

 M_i = in-plane bending moment due to sustained loads such as pressure and weight

- M_o = out-of-plane bending moment due to sustained loads such as pressure and weight
- M_t = torsional moment due to sustained loads such as pressure and weight
- $Z_m = \underline{\text{corroded}}$ section modulus as per para. 320.1 of ASME B31.3 (2018)
- Z_e = effective <u>corroded</u> section modulus for branch as per para.320.2 of ASME B31.3 (2018) when Appendix D of ASME B31.3 is used to compute Stress Intensification Factors (SIFs) (or) corroded section modulus when B31J is used to compute to compute SIFs.
- M_f = material performance factor that addresses loss of material properties associated withhydrogen gas service from Tables IX-5B and IX-5C from Appendix IX.
- S_h = basic allowable stress at maximum temperature, i.e., max (T_{ref} , T_1 through T_{10})

Sustained plus Occasional Stress

The stress (S_{Lo}) due to sustained and occasional loads is calculated as the sum of stress (S_L) due to sustained loads such as pressure and weight and stress (S_o) due to occasional loads such as earthquake or wind. Wind and earthquake are not considered as acting concurrently (see para. IP-2.2.11).

For temp ≤ 427[°] C or 800[°] F(see Note 1 below)

 $S_{LO} \leq 1.33 S_h M_f$

For temp > 427° C or 800° F

$$S_{LO} \leq 0.9WS_y M_f$$

where

 $S_{LO} = S_L + S_O$, where S_L is computed as above, and S_O is calculated using Eqs. (23a), (23b1), (23b2), (23c) and (23d) of ASME B31.3 (2018) with applicable loads.

$$S_{0} = \sqrt{(|S_{ao}| + S_{bo})^{2} + (2S_{to})^{2}}$$

$$S_{ao} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Occasional} = \left[\frac{(P_{peak} - P)D}{4t_{s}} + \frac{R}{A_{p}}\right]_{Occasional}$$

$$S_{bo} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Occasional}$$

For branch (Leg 3 in Fig. 319.4.4B) of ASME B31.3 (2018)

$$S_{bo} = \left[\frac{\sqrt{(I_i M_i)^2 + (I_o M_o)^2}}{Z_e}\right]_{Occasional}$$

$S_{to} = \left[\frac{I_t M_t}{2Z_m}\right]_{occasional}$
P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P
P = maximum of CAEPIPE input pressures P1 through P10
$\begin{array}{llllllllllllllllllllllllllllllllllll$

Note 1:

The allowable stress equations for (S_{LO}) are taken from para. 302.3.6 of ASME B31.3 (2018), as the sentence "At temperatures warmer than 427 deg. C (800 deg.F), use 1.33.Sh.M_f" in para. IP-2.2.11 of ASME B31.12 (2019) code seems to be incorrectly worded.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated using Eq. 17 from para. IP-6.1.5. The Axial Stress term (S_a) is included in Expansion Stress calculation as per Eq. 17 of para. 319.4.4 of ASME B31.3 (2018) code.

$$S_E = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2}$$

where

$$S_{a} = \left[\frac{i_{a}F_{a}}{A}\right]_{Expansion}$$
$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]_{Expansion}$$

For branch (Leg 3 in Fig. IP-6.1.5-2)

$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{e}}\right]_{Expansion}$$
$$S_{t} = \left[\frac{i_{t}M_{t}}{2Z}\right]_{Expansion}$$

- $A = \underline{\text{un-corroded}}$ cross-sectional area of the pipe/fitting computed using nominal thickness t_n and outer diameter D as per IP-6.1.4 (e).
- i_a =axial stress intensification factor = 1.0 for elbows, pipe bends and miter bends and $i_a = i_o \text{ or } i$ for other components as listed in Appendix D of B31.3 (2018)
- $F_a = \underline{range}$ of axial force due to displacement strains between any two thermal conditions being evaluated
- i_i = in-plane stress intensification factor from Appendix D of ASME B31.3 (2018) or from B31J (2017) when the option "Use B31J for SIFs and Flexibility Factors" is Turned ON. i_i shallnot be less than 1.0.
- i_o =out-of-plane stress intensification factor Appendix D of ASME B31.3 (2018) or from B31J (2017) when the option "Use B31J for SIFs and Flexibility Factors" is Turned ON. i_o shallnot be less than 1.0.
- i_t =torsional stress intensification factor = 1.0
- M_i =in-plane bending moment
- M_o =out-of-plane bending moment
- M_t = torsional moment
- $Z = \underline{\text{un-corroded}}$ section modulus as per IP-6.1.4 (e)
- $Z_e = \underline{\text{un-corroded}}$ effective section modulus as per IP-6.1.4 (e)
- $S_A = f(1.25S_C + 0.25S_h)$, Eq. (1a) of para. IP-2.2.10 (d)
- f=stress range reduction factor from Eq. (1c) of para. IP-2.2.10 (d) = 6N^{-0.2} where f \ge 0.15 and f \le 1.0 (see Note 1 below)
- S_c =basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h =basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than Sustained Stress S_L , the allowable stress range may be calculated as $S_A = f[1.25(S_C + S_h) - S_L]$, Eq. (1b) of para. IP-2.2.10 (d).

This is specified as an analysis option "Use liberal allowable stresses", in the menu Layout > Options > Analysis > Code tab.

Notes:

- 1. As per para. IP-2.2.10 (d), $f = maximum value of stress range factor; 1.2 for ferrous materials with specified minimum tensile strengths <math>\leq 517$ MPa (75 ksi) and at metal temperatures $\leq 371^{\circ}C$ (700°F). This criterion is not implemented in CAEPIPE as the provision for entering the minimum tensile strength in material property is not available at this time. Hence $f \leq 1.0$ for all materials including Ferrous materials.
- 2. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. IP-6.1.5 (d)(1).
- 3. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

Notes on Material Library for B3112-2019.mat supplied with CAEPIPE:

- 5. Material library for ASME B31.12 (2019) [B3112-2019.mat] supplied with CAEPIPE has been created by referring to the values provided in Appendix IX of ASME B31.12 (2019).
- 6. **Coefficient of Thermal Expansion:** Coefficient of Thermal Expansion data are entered by referring to the values provided in Table C-1 of Appendix C of ASME B31.3 (2018).
- 7. **Modulus of Elasticity:** Modulus of Elasticity data are entered by referring to the values provided in Table C-6 of Appendix C of ASME B31.3 (2018).
- 8. Longitudinal Joint Factor: Longitudinal Joint Factor are entered by referring to the values specified in Table IX-3A of ASME B31.12 (2019).

Stress Intensification Factor (SIF) values for B31.12 (2019) are referred from Appendix D of B31.3 (2018). The same is provided below for details.

APPENDIX D FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

See Table D300.

	Flexibility	Stress Inte Factor [Not		Flexibility		
Description	Factor, <i>Ic</i>	Out-of-Plane, <i>j_o</i>	In-Plane, <i>i_i</i>	Characteristic, h	Sketc h	
Welding elbow or pipe bend ENotes (1), (3)-(6)]	1.65 6	0.75 ĥ ^{2/s}	$\frac{0.9}{b^{2l_3}}$	$\frac{TR_1}{r_2^2}$	$R_1 = bend radius$	
Glosely spaced miter bend $s < r_2 (1 + \tan \theta)$ [Notes (1), (3), (4), (6)]	<u>1.52</u> h ^{sk}	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2ls}}$	$\frac{\cot \theta}{2} \left(\frac{s\overline{J}}{r_2^2} \right)$	$s = \frac{1}{\theta} R_1 = \frac{s \cot \theta}{2}$	
Single miter bend or widely spaced miter bend $s \ge r_2 \ (1 + \tan \theta)$ [Notes (1), (3), (6)]	<u>1.52</u> β ^{sk}	0.9 h ^{2/3}	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\emptyset}{2}\left(\frac{7}{r_2}\right)$	$\frac{1}{\theta} = \frac{r_2 (1 + \cot \theta)}{2}$	
Welding tee in accordance with ASME B16.9 [Notes (1), (3), (5), (7), (8)]	1	0.9 h ^{2/5}	³ /4 ^j 0 + ¹ /4	$3.1\frac{7}{k}$	$\frac{1}{r_c}$	
Reinforced fabricated tee with pad or saddle [Notes (1), (3), (8), (9), (10)]	1	$\frac{0.9}{h^{2/s}}$	³ / ₄ j ₀ + ¹ / ₄	$\frac{(\overline{T}+\frac{1}{2},\overline{T}_{r})^{2s}}{\overline{T}^{1s}r_{2}}$	$\frac{1}{\overline{T}_r}$ Pad Saddle	

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i

Table D300	Flexibility	Factor, k, and	Stress In t	ensification Fa	ctor, i (Cont'd)
	Stress Intensificatio FlexibilityFactor [Notes (1), C			Flexibility	
Description	Factor,	Out-of-Plane, <i>i</i> o	In - Plane, <i>i</i> i	Characteristic, h	Sketch
Unreinforced fabricated tee [Notes (1), (3), (8), (10)]	1	0.9 h ^{2/5}	$\frac{3}{4}i_0 + \frac{1}{4}$	$\frac{7}{r_2}$	
Extruded welding tee with $r_{c} \ge 0.05 \frac{D_{b}}{T_{c}} < 1.5 \overline{T}$ [Notes (1), (3), (8)]	1	$\frac{0.9}{h^{2/s}}$	³⁄₄j₀ + ¹⁄₄	$\left(1+\frac{r_A}{r_2}\right)\frac{\overline{f}}{r_2}$	$\frac{1}{r_c} \frac{1}{r_z} \frac{1}{r_z} \frac{1}{r_z}$
Welded-in contour insert [Notes (1), (3), (7), (8)]	1	0.9 ĥ ^{zb}	³ /4 ^j ₀ + ¹ /4	$3.1 \frac{\overline{f}}{r_2}$	
Branch welded-on fitting (integrally reinforced) [Notes (1), (3), (10), (11)]	1	$\frac{0.9}{h^{2d_2}}$	$\frac{0.9}{h^{2/5}}$	3.3 $\frac{\overline{7}}{r_2}$	

Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>
Butt welded joint, reducer, or weld neck flange	1	1.0
Double-welded slip-on flange	1	1.2
Fillet or socket weld	1	1.3 [Note (12)]
Lap joint flange (with ASME B16.9 lap joint stub)	1	1.6
Threaded pipe joint or threaded flange	1	2.3
Corrugated straight pipe, or corrugated or creased bend [Note (13)]	5	2.5

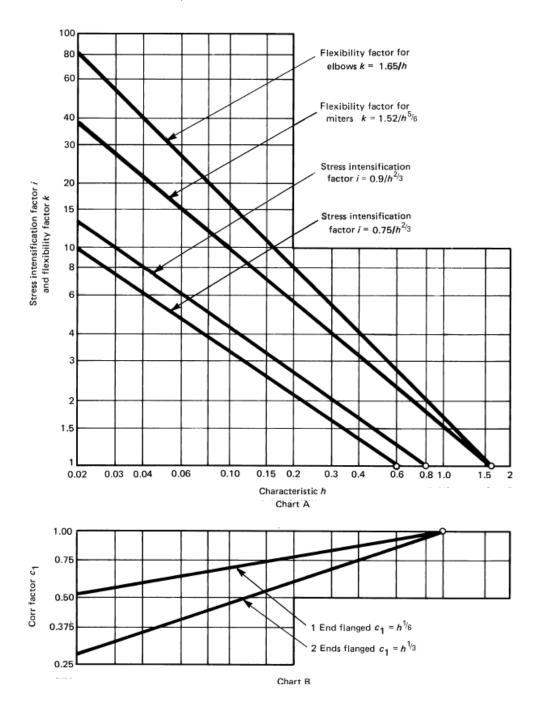


Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

GENERAL NOTE: Stress intensification and flexibility factor data in Table D300 are for use in the absence of more directly applicable data (see para. 319.3.6). Their validity has been demonstrated for $D/\overline{T} \leq 100$. NOTES:

- (1) The flexibility factor, k, in the Table applies to bending in any plane; also see para. 319.3.6. The flexibility factors, k, and stress intensification factors, i, shall apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends, and to the intersection point for tees.
- (2) A single intensification factor equal to $0.9/h^{2/3}$ may be used for both i_i and i_o if desired.
- (3) The values of *k* and *i* can be read directly from Chart A by entering with the characteristic *h* computed from the formulas given above. Nomenclature is as follows:
 - D_b = outside diameter of branch
 - R_1 = bend radius of welding elbow or pipe bend
 - r_s = see definition in para. 304.3.4(c)
 - $r_2 = mean radius of matching pipe$
 - miter spacing at centerline
 - s = miter spacing at centerune $\overline{T} =$ for elbows and miter bends, the nominal wall thickness of the fitting
 - = for tees, the nominal wall thickness of the matching pipe
 - \underline{T}_{r} = crotch thickness of branch connections measured at the center of the crotch where shown in the illustrations
 - $\overline{T}_r = pad \text{ or saddle thickness}$
 - θ = one-half angle between adjacent miter axes
- (4) Where flanges are attached to one or both ends, the values of i and i in the Table shall be corrected by the factors C_1 , which can be read directly from Chart B, entering with the computed h.
- (5) The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (6) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the Table, divide *k* by

$$1 + 6 \left(\frac{P_j}{\overline{E_j}}\right) \left(\frac{r_2}{\overline{T}}\right)^{\frac{1}{2}} \left(\frac{R_1}{\overline{r_2}}\right)^{\frac{1}{2}}$$

divide *i* by

$$1 + 3.25 \begin{pmatrix} P_j \\ \overline{F_j} \end{pmatrix} \begin{pmatrix} \underline{r_2} \\ \overline{T} \end{pmatrix}^{\frac{N_2}{2}} \begin{pmatrix} R_1 \\ \underline{r_2} \end{pmatrix}^{\frac{N_2}{2}}$$

For consistency, use kPa and mm for SI metric, and psi and in. for U.S. customary notation.

- (7) If $r_s \ge \frac{1}{4} D_b$ and $T_c \ge 1.5\overline{T}$, a flexibility characteristic of 4.4 \overline{T}/r_2 may be used.
- (8) Stress intensification factors for branch connections are based on tests with at least two diameters of straight run pipe on each side of the branch centerline. More closely loaded branches may require special consideration.
- (9) When \overline{T}_r is > $1^{1/2} \overline{T}_r$ use $h = 4 \overline{T}/r_2$.
- (10) The out-of-plane stress intensification factor (SIF) for a reducing branch connection with branch-to-run diameter ratio of 0.5 < d/D < 1.0 may be nonconservative. A smooth concave weld contour has been shown to reduce the SIF. Selection of the appropriate SIF is the designer's responsibility.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a fillet weld is made between the pipe and fitting as shown in Fig. 328.5.2C. For welds to socket welded flanges, the stress intensification factor is based on the weld geometry shown in Fig. 328.5.2B, illustration (3) and has been shown to envelope the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 328.5.2A, has been shown to improve the fatigue performance of the weld.
- (13) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure

[SI. Nos. 1 & 2 below are from Table IP-3.2.1 and SI. Nos. 3, 4 & 5 are from Table 304.1.1 of ASME B31.3 (2018)]

			V	alues of 'Y	" for Tem	perature,	Deg F (De	g C)	
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
SI.		and							and
No.	Material Type	below							above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
3.	Nickel Alloys (NA)	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
4.	Gray Iron / Cast Iron (CI)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.	Material Types other than those stated from SI. Nos. 1 to 4.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Carbon Steel Piping Materials Performance Factor (M_f) used in CAEPIPE for Material Type as "CS" (from Table IX-5B)

SI.	Specified Min. Yield	System Design Pressure, psig							
No.	Strength (ksi)	<=1000	<=1000 2000 3000 4000 5000 60						
1.	<= 52	1.000	0.948	0.912	0.884	0.860	0.839		
2.	<= 56	0.930	0.881	0.848	0.824	0.800	0.778		
3.	<= 65	0.839	0.796	0.766	0.745	0.724	0.706		
4.	<= 80	0.715	0.678	0.645	0.633	0.618	0.600		

Low and Intermediate Alloy Steel Piping Materials Performance Factor (M_f) used in CAEPIPE for Material Type as "AS" (from Table IX-5C)

SI.	Specified Min. Tensile		System Design Pressure, psig							
No.	Strength (ksi)	0.000	0.000 1000 2000 3000 4000 5000 600							
1.	<= 35	1.000	0.918	0.881	0.875	0.836	0.815	0.800		
2.	<= 45	0.791	0.724	0.696	0.675	0.660	0.642	0.630		
3.	<= 60	0.655	0.601	0.577	0.561	0.547	0.533	0.524		
4.	<= 65	0.580	0.532	0.511	0.497	0.485	0.472	0.464		

Note:

For materials not covered by Tables given above, Material Performance Factor (M_f) is taken as 1.00.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. PL-3.7.1.

$$P = \frac{2SEt_nFTH_f}{D}$$

where

P = allowable pressure

S = specified minimum yield strength from para. PL-3.7.1 (a)

E = longitudinal joint factor (input as material property), obtained from Table IX-3B of Appendix IX

 t_n = nominal pipe thickness

D = nominal outside diameter of pipe

- F = construction location design factor, obtained from Table PL-3.7.1-1 (for Option A) and Table PL-3.7.1-2 (for Option B)
- T = temperature derating factor, obtained from Table PL-3.7.1.3
- H_f = material performance factor from Mandatory Appendix IX, Table IX-5A. H_f given in Table IX-5A is applied only for Design Factors corresponding to Option A – Prescriptive Design Method. For Design Factors corresponding to Option B – Performance-based Design Method, H_f is set as 1.0 internally. Design Factor can be selected in CAEPIPE through Layout Window > Options > Analysis > Code.

Stress due to Sustained & Occasional Loads [Unrestrained (above ground) Piping]

The sum of longitudinal stress due to internal pressure and due to axial loading (other than thermal expansion and pressure) and the bending stress due to external loads, such as weight of the pipe and contents, occasional loads such as seismic or wind, etc. is calculated according to paras. PL-2.6.5 (a) and PL-2.6.5 (b) along with paras. PL-2.6.2 (b), PL-2.6.2 (d), PL-2.6.2 (e) and PL-2.6.2 (f). Wind and Seismic is not considered to act concurrently.

Note:

The "include axial force in stress calculations" option is turned ON by default for ASME B31.12 PL in CAEPIPE.

Sustained Stress S_L:

For Pipes and Long Radius Bends

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{R}{A} \right|_{Sustained} + \left[\frac{\sqrt{(M_{i})^{2} + (M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{Sustained} \le 0.75 \text{ST}$$

For other Fittings and Components.

$$S_{L(fc)} = \left|\frac{PD}{4t_n} + \frac{R}{A}\right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z}\right]_{Sustained} \le 0.75ST$$

Sustained + Occasional Stress S_{L0}:

For Pipes and Long Radius Bends

$$S_{L0} = S_L + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75 ST$$

For other Fittings and Components

$$S_{LO(fc)} = S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75ST$$

where

 $P = \text{maximum operating pressure} = \text{max} (P_1 \text{ through } P_{10})$

 P_{peak} = Peak pressure factor x P

D =outside diameter

 $t_n =$ nominal thickness

- i_i = in-plane stress intensification factor from Appendix E of ASME B31.8 (2022); the product 0.75 i_i shall not be less than 1.0
- i_o = out-of-plane stress intensification factor from Appendix E of ASME B31.8 (2022); the product $0.75i_o$ shall not be less than 1.0
- M_i = in-plane bending moment due to weight and external loads
- M_o = out-of-plane bending moment due to weight and external loads
- M_t = torsional moment due to weight and external loads
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- R = axial force component for external loads (other than due to thermal expansion and pressure)

A =<u>un-corroded</u> pipe metal cross-section area

S = specified minimum yield strength from para. PL-3.7.1 (a)

T = temperature derating factor, obtained from Table PL-3.7.1-3

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=min (T_1 through T_{10}, T_{ref})]$ is used to form the stiffness matrix for Sustained and Occasional load calculations in accordance with paras. PL-2.5.3 (g) and PL-2.5.4 (b).

Expansion Stress [Unrestrained (above ground) Piping]

The stress (S_E) due to thermal expansion is calculated from para. PL-2.6.7, which in turn, refers to para. IP-2.2.10.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_t M_t)^2 + (i_0 M_0)^2}}{Z}$
 S_t = torsional stress = $\frac{M_t}{2Z}$

- M_i = in-plane bending moment due to thermal expansion
- M_o = out-of-plane bending moment due to thermal expansion
- M_t = torsional moment due to thermal expansion
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- $S_A = f(1.25S_C + 0.25S_h)$, Eq. (1a) of para. 302.3.5(d)
- f = stress range reduction factor from Eq. (1c) of para. 302.3.5 (d) of ASME B31.3 (2022) = $20(N)^{-0.333} \le f_m \& f \ge 0.15$
- f_m = maximum value of stress range factor; 1.2 for ferrous materials with specified minimum tensile strengths <= 75 ksi) and at metal temperatures <=700° F; otherwise $f_m = 1.0$
- N = equivalent number of full displacement cycles expected during service of piping. This full displacement cycles (N) shall be increased by a factor of 10 for carbon and low alloy steels and other materials that are susceptible to Hydrogen Embrittlement (HE) as per para. IP-2.2.10(d), irrespective of their design temperatures.
- S_L = sustained stress computed as per equation given above
- $S_C = 0.33$ SuT at the minimum installed or operating temperature
- $S_h = 0.33$ SuT at the maximum installed or operating temperature

where

 S_u = specified minimum ultimate tensile strength = 1.5 S_y (assumed), and S_y = specified minimum yield strength as per para. PL-3.7.1 (a)

T = temperature derating factor from Table PL-3.7.1.3

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[= \min(T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix for Expansion load calculations in accordance with paras. PL-2.5.3 (g) and PL-2.5.4 (b).

Sustained, Thermal & Occasional Stress [Restrained (buried) Piping]

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from paras. PL-2.6.3 (a), PL-2.6.3 (b) along with paras. PL-2.6.2 (a), PL-2.6.2 (c), PL-2.6.2 (d), PL-2.6.2 (e) and PL-2.6.2 (f)

$$S_{Lp} = S_p + S_T + S_X + S_B$$
$$S_{Ln} = S_p + S_T + S_X - S_B$$

As per PL-2.6.4 (d), both the tensile and compressive values of S_B shall be considered in analysis.

where

$$S_p = 0.3S_H = 0.3\frac{PD}{2t_n}$$
 = longitudinal stress due to internal pressure in restrained pipeline
 S_H = hoop stress = $\frac{PD}{2t_n}$ as per para. PL-2.6.2 (a)

 S_T = longitudinal stress due to thermal expansion in restrained pipeline = $E\alpha_m(T_m - T_i)$ (see Note 1 below)

 S_X = stress due to axial loading (other than thermal expansion and pressure) = $\frac{R}{A}$

 S_B = nominal bending stress due to weight and other external loads (other than thermal expansion)

For Pipes and Long Radius Bends

$$S_B = \frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z}$$

For other Fittings and Components.

$$S_B = \frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z}$$

As per para PL-2.6.3 (a), note that S_B, S_L, S_T or S_X can be positive or negative

where

P = maximum operating pressure = max(P1 through P10)

D =outside diameter

 $t_n = nominal thickness$

 i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0

- i_o = out-of-plane stress intensification factor; the product 0.75i_o shall not be less than 1.0
- M_i = in-plane bending moment due to weight and other external loads (other than thermal expansion)
- M_o = out-of-plane bending moment due to weight and other external loads (other than thermal expansion)
- M_t = torsional moment due to weight and other external loads (other than thermal expansion)
- R = axial force from weight and external loads (other than due to thermal expansion and pressure)
- A =<u>un-corroded</u> pipe metal cross-sectional area (i.e., before deducting for corrosion)
- Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus
- S = Specified Minimum Yield Strength (SMYS) from para. PL-3.7.1 (a)

T = Temperature derating factor from Table PL-3.7.1-3

E = Young's modulus at ambient temperature, i.e., at T_{ref} in CAEPIPE

 T_i = installation temperature = T_{ref} in CAEPIPE (see Note 1 below)

 T_m = warmest or coldest operating temperature (see Note 1 below)

 α_m = coefficient of thermal expansion at T₀ in CAEPIPE (see Note 1 below)

Note 1:

If there are more than one thermal load, for example T1 and T2, then CAEPIPE calculates longitudinal stress S_T due to thermal expansion as follows.

For a change in temperature from T_{ref} to T_1 , $S_{T1} = -E\alpha_1(T_1 - T_{ref})$

For a change in temperature from T_{ref} to T_2 , $S_{T2} = -E\alpha_2(T_2 - T_{ref})$

For a change in temperature from T_1 to T_2 , $S_{T1-.>T2} = S_{T2} - S_{T1}$

Please note, that negative (-) sign is added in the above equations as the soil is restraining the thermal expansion / contraction of the buried pipe due to friction at the soil-to-pipe interface.

Combined Stress for Restrained Pipe

The combined biaxial stress state of the pipeline in the operating mode is evaluated using the calculation given below <u>by default</u> in CAEPIPE as per para. PL-2.6.4. To be conservative, S_{eq1} and S_{eq2} given below are in line with para. 833.4 of ASME B31.8 (2022).

$$S_{eq} = \max\{S_{eq1}, S_{eq2}\} \le 0.9ST$$

where

 S_{eq} = equivalent combined stress

$$S_{eq1} = \max\{|S_H - S_{Lp}|, |S_H|, |S_{Lp}|\}$$

$$S_{eq2} = \max\{|S_H - S_{Ln}|, |S_H|, |S_{Ln}|\}$$

Alternatively, the stresses may be combined in accordance with the maximum distortion energy theory as follows (see Note 3 below):

$$S_{eq1} = \sqrt{(S_{Lp})^2 - S_H S_{Lp} + (S_H)^2}$$
$$S_{eq2} = \sqrt{(S_{Ln})^2 - S_H S_{Ln} + (S_H)^2}$$

Notes:

- 1. Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min(T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix in accordance with paras. PL-2.5.3 (g) and PL-2.5.4 (b).
- 2. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 3. By default, CAEPIPE combines the stresses for restrained piping using the maximum shear stress theory as stated above. To combine stresses in accordance with the maximum distortion energy theory as stated above, turn ON the analysis option "Combine stresses as per Max. Distortion Energy Theory" through Layout Window > Options > Analysis > Code.

	Flexibility	Stress Inte Factor, i [No	nsification otes (1), (2)]	Flexibility	
Description	Factor, k	Out-Plane, <i>i_o</i>	In-Plane, <i>i_i</i>	Characteristic, h	Illustration
Welding elbow or pipe bend [Notes (1)-(5)]	$\frac{1.65}{h}$	$\frac{0.75}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{T} R_1}{r_2^2}$	$R_1 = bend radius$
Closely spaced miter bend $s < r_2 (1 + \tan \theta)$ [Notes (1), (2), (3), (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\cot\theta}{2}\frac{\overline{T}s}{r_2^2}$	$s = \frac{1}{\theta} R_1 = \frac{s \cot \theta}{2} r_2$
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (2), (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{\overline{T}}{r_2}$	$ \frac{1}{\theta} = \frac{r_2(1 + \cot \theta)}{2} $
Welding tee per ASME B16.9 with $r_o \ge d/8$ $T_c \ge 1.5T$ [Notes (1), (2), (6)]	1	$\frac{0.9}{h^{2/3}}$	³ / ₄ i _o + ¹ / ₄	$4.4\frac{\overline{T}}{r_2}$	$- \frac{1}{r_o} \frac{1}{r_o} \frac{1}{r_o} r_2$
Reinforced fabricated tee with pad or saddle [Notes (1), (2), (7)-(9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$\frac{\left(\overline{T} + \frac{1}{2}t_{e}\right)^{5/2}}{\overline{T}^{3/2}r_{2}}$	$\begin{array}{c} & & & \\ & & & \\ \hline & & \\$
Unreinforced fabricated tee [Notes (1), (2), (9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$\frac{\overline{T}}{r_2}$	
Extruded outlet $r_o \ge 0.05d$ $T_c < 1.5 \overline{T}$ [Notes (1), (2), (6)]	1	$\frac{0.9}{h^{2/3}}$	³ / ₄ <i>i</i> _o + ¹ / ₄	$\left(1 + \frac{r_0}{r_2}\right) \frac{\overline{T}}{r_2}$	$ \begin{array}{c} $
Welded-in contour insert $r_o \ge d/8$ $T_c \ge 1.5\overline{T}$ [Notes (1), (2), (10)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_{o} + \frac{1}{4}$	$4.4\frac{\overline{T}}{r_2}$	

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i

Flex	ibility Factor		ble E-1 s Intensifica	tion Factor, i (Cont'd)
	Flexibility	Stress Inte Factor, <i>i</i> [No		Flexibility	
Description	Factor, k	Out-Plane, i _o	In-Plane, i _i	Characteristic, h	Illustration
Branch welded-on fitting (inte- grally reinforced) in accordance with MSS SP-97 [Notes (1), (2), (9), (11)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$3.3\frac{\overline{T}}{r_2}$	
		bility			
Description		tor, k		tensification ctor, <i>i</i>	Illustration
Butt weld [Notes (1), (12)]					
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{\max} \le \frac{1}{16}$ in. (1.59 mm), and $\delta_{avg}/\overline{T} \le 0.13$	1	L		1.0	
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{\max} \le \frac{1}{8}$ in. (3.18 mm), and $\delta_{avg}/\overline{T} =$ any value	1		1.9 max. or $[0.9 + 2.7(\delta_{avg}/T)],$		$\frac{\overline{\tau}}{1} \underbrace{\sum_{t \in \delta} \tau}_{t}$
$\overline{T} \le 0.237$ in. (6.02 mm), $\delta_{\max} \le \frac{1}{16}$ in. (1.59 mm), and $\delta_{avg}/\overline{T} \le 0.33$		L	but no	t less than 1.0	
	1	L			1
Tapered transition per ASME B16.25 [Note (1)]				max. or $36\frac{D_0}{T} + 3.6\frac{\delta}{T}$	$ \begin{array}{c} \overline{T} \\ \downarrow \\ D_{o} \uparrow \uparrow \uparrow \\ \delta \\ \end{array} $
Concentric reducer per ASME B16.9 [Notes (1), (13)]	1	L		max. or $01a \left(\frac{D_{o2}}{\overline{T}_2}\right)^{1/2}$	$ \begin{array}{c} \overline{\tau}_{11} \\ \uparrow \\ \hline \\ D_{01} \\ \hline \\ D_{02} \\ \hline \end{array} $
Double-welded slip-on flange				(-2)	
[Note (14)]	1	L	1.2		
Socket welding flange or fitting [Notes (14), (15)]	1	L	2.1 max. or 2.1 \overline{T}/C_x but not less than 1.3		
Lap joint flange (with vASME B16.9 lap joint stub) [Note (14)]	1	L	1.6		
Threaded pipe joint or threaded flange [Note (14)]	1	L	2.3		
Corrugated straight pipe, or corrugated or creased bend [Note (16)]	5	5		2.5	

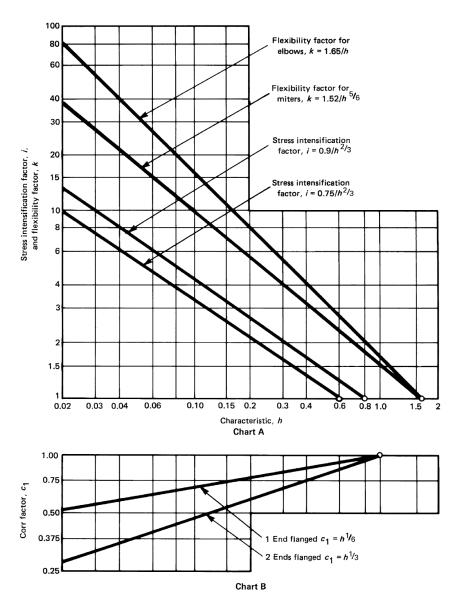


 Table E-1

 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

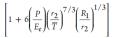

GENERAL NOTE: The stress intensification and flexibility factors from ASME B31J may be used instead of the stress intensification and flexibility factors herein. When using the stress intensification factors from ASME B31J, the maximum of in-plane (i_i) and out-plane (i_o) stress intensification factors shall be used in calculating stresses in accordance with para. 833.2 or para. A842.2.2. Alternatively, stress intensification factors and branch connection flexibility factors may be developed using ASME B31J, Nonmandatory Appendix A.

Table E-1

Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

NOTES:

- (1) The nomenclature is as follows:
 - D_0 = outside diameter, in. (mm)
 - d = outside diameter of branch, in. (mm)
 - R_1 = bend radius of welding elbow or pipe bend, in. (mm)
 - r_0 = radius of curvature of external contoured portion of outlet, measured in the plane containing the axes of the header and branch, in. (mm) r_2 = mean radius of matching pipe, in. (mm)
 - s = miter spacing at centerline, in. (mm)
 - \overline{T} = nominal wall thickness of piping component, in. (mm)
 - = for elbows and miter bends, the nominal wall thickness of the fitting, in. (mm)
 - = for welding tees, the nominal wall thickness of the matching pipe, in. (mm)
 - = for fabricated tees, the nominal wall thickness of the run or header (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diameter), in. (mm)
 - $T_c\,$ = the crotch thickness of tees, in. (mm)
 - t_e = pad or saddle thickness, in. (mm)
 - α = reducer cone angle, deg
 - δ = mismatch, in. (mm)
 - θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factor, *k*, applies to bending in any plane. The flexibility factors, *k*, and stress intensification factors, *i*, shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends and to the intersection point for tees. The values of *k* and *i* can be read directly from Chart A by entering with the characteristic, *h*, computed from the formulas given.
- (3) Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factors, C_w, which can be read directly from Chart B, entering with the computed h.
- (4) The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the table, divide k by

divide *i* by

$$\left[1 + 3.25 \left(\frac{P}{E_e}\right) \left(\frac{r_2}{\overline{T}}\right)^{5/2} \left(\frac{R_1}{r_2}\right)^{2/3}\right]$$

where

 $E_e = \text{cold modulus of elasticity, psi (MPa)}$

P = gage pressure, psi (MPa)

- (6) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.12/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (7) When $t_e > 1\frac{1}{2}T$, use $h = 4.05T/r_2$.
- (8) The minimum value of the stress intensification factor shall be 1.2.
- (9) When the branch-to-run diameter ratio exceeds 0.5, but is less than 1.0, and the number of design displacement cycles exceeds 200, the outplane and in-plane stress intensification factors shall be calculated as 1.8/h^{2/3} and (0.67/h^{2/3}) + 1/4, respectively, unless the transition weld between the branch and run is blended to a smooth concave contour. If the transition weld is blended to a smooth concave contour, the stress intensification factors in the table still apply.
- (10) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design displacement cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) The stress intensification factors apply to girth butt welds between two items for which the nominal wall thicknesses are between $0.875\overline{T}$ and $1.10\overline{T}$ for an axial distance of $\sqrt{D_0 \overline{T}}$. D_0 and \overline{T} are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.
- (13) The equation applies only if the following conditions are met:
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_{o1}/\overline{T} and D_{o2}/\overline{T} does not exceed 100.

(c) The wall thickness is not less than \overline{T}_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than \overline{T}_2 .

Table E-1

Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

NOTES: (Cont'd)

(14) For some flanged joints, leakage may occur at expansion stresses otherwise permitted herein. The moment to produce leakage of a flanged joint with a gasket having no self-sealing characteristics can be estimated by the following equation:

$$M_L = (C/4) \left(S_b A_b - P A_p \right)$$

where

 A_b = total area of flange bolts, in.² (mm³) A_p = area to outside of gasket contact, in.² (mm²) C = bolt circle, in. (mm) M_L = moment to produce flange leakage, in.-lb (mm·N) P = internal pressure, psi (MPa) S_{+} = bolt stress psi (MPa)

 S_b = bolt stress, psi (MPa)

(15) C_x is the fillet weld length. For unequal lengths, use the smaller leg for C_x . (16) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. PL-3.7.1.

$$P = \frac{2SEt_nFTH_f}{D}$$

where

P = allowable pressure

- S = specified minimum yield strength from para. PL-3.7.1 (a)
- E = longitudinal joint factor (input as material property), obtained from Table IX-3B of Appendix IX

 t_n = nominal pipe thickness

D = nominal outside diameter of pipe

- F = construction location design factor, obtained from Table PL-3.7.1-1 (for Option A) and Table PL-3.7.1-2 (for Option B)
- T = temperature derating factor, obtained from Table PL-3.7.1.3
- H_f = material performance factor from Mandatory Appendix IX, Table IX-5A. H_f given in Table IX-5A is applied only for Design Factors corresponding to Option A – Prescriptive Design Method. For Design Factors corresponding to Option B – Performance-based Design Method, H_f is set as 1.0 internally. Design Factor can be selected in CAEPIPE through Layout Window > Options > Analysis > Code.

Stress due to Sustained & Occasional Loads [Unrestrained (above ground) Piping]

The sum of longitudinal stress due to internal pressure and due to axial loading (other than thermal expansion and pressure) and the bending stress due to external loads, such as weight of the pipe and contents, occasional loads such as seismic or wind, etc. is calculated according to paras. PL-2.6.5 (a) and PL-2.6.5 (b) along with paras. PL-2.6.2 (b), PL-2.6.2 (d), PL-2.6.2 (e) and PL-2.6.2 (f). Wind and Seismic is not considered to act concurrently.

Note:

The "include axial force in stress calculations" option is turned ON by default for ASME B31.12 PL in CAEPIPE.

Sustained Stress S_L:

For Pipes and Long Radius Bends

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{R}{A} \right|_{Sustained} + \left[\frac{\sqrt{(M_{i})^{2} + (M_{o})^{2} + (M_{t})^{2}}}{Z} \right]_{Sustained} \le 0.75 \text{ST}$$

For other Fittings and Components.

$$S_{L(fc)} = \left|\frac{PD}{4t_n} + \frac{R}{A}\right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_t)^2}}{Z}\right]_{Sustained} \le 0.75ST$$

Sustained + Occasional Stress S_{L0}:

For Pipes and Long Radius Bends

$$S_{LO} = S_L + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75 ST$$

For other Fittings and Components

$$S_{LO(fc)} = S_{L(fc)} + \left| \frac{\left(P_{peak} - P \right) D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z} \right]_{occasional} \le 0.75ST$$

where

 $P = \text{maximum operating pressure} = \text{max} (P_1 \text{ through } P_{10})$

 P_{peak} = Peak pressure factor x P

D =outside diameter

 t_n = nominal thickness

 i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0

 i_o = out-of-plane stress intensification factor; the product $0.75i_o$ shall not be less than 1.0

 M_i = in-plane bending moment due to weight and external loads

 M_o = out-of-plane bending moment due to weight and external loads

 M_t = torsional moment due to weight and external loads

Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus

R = axial force component for external loads (other than due to thermal expansion and pressure)

A =<u>un-corroded</u> pipe metal cross-section area

S = specified minimum yield strength from para. PL-3.7.1 (a)

T = temperature derating factor, obtained from Table PL-3.7.1-3

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min (T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix for Sustained and Occasional load calculations in accordance with paras. PL-2.5.3 (g) and PL-2.5.4 (b).

Expansion Stress [Unrestrained (above ground) Piping]

The stress (S_E) due to thermal expansion is calculated from para.PL-2.6.7, which. In turn, refers to para. IP-2.2.10.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

 S_b = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$ S_t = torsional stress = $\frac{M_t}{2Z}$ M_i = in-plane bending moment due to thermal expansion M_o = out-of-plane bending moment due to thermal expansion

 M_t = torsional moment due to thermal expansion

Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus

 $S_A = f[1.25(S_C + S_h) - S_L]$, which is eq. (1b) in para. IP-2.2.10 (d)

f = stress range reduction factor = $6/N^{0.2}$, where N = number of equivalent full range cycles, where $f \le 1.0$ (eq. 1(c) from para. PL-2.2.10 (d)). See Note 2 below.

 S_L = sustained stress computed as per equation given above

 $S_C = 0.33$ SuT at the minimum installed or operating temperature

 $S_h = 0.33$ SuT at the maximum installed or operating temperature where

 S_u = specified minimum ultimate tensile strength = 1.5 S_y (assumed), and

 S_y = specified minimum yield strength as per para. PL-3.7.1 (a)

T = temperature derating factor from Table PL-3.7.1.3

Note:

where

- 1. Young's modulus of elasticity corresponding to the lowest operating temperature [= $min(T_1 \text{ through } T_{10}, T_{ref})$] is used to form the stiffness matrix for Expansion load calculations in accordance with paras. PL-2.5.3 (g) and PL-2.5.4 (b).
- 2. As per para. IP-2.2.10 (d), f = maximum value of stress range factor; 1.2 for ferrous materials with specified minimum tensile strengths ≤ 517 MPa (75 ksi) and at Metal temperatures $\leq 371^{\circ}C$ (700°F). This criterion is not implemented in CAEPIPE as the provision for entering the minimum tensile strength in material property is not available at this time. Hence $f \leq 1.0$ for all materials including Ferrous materials.

Sustained, Thermal & Occasional Stress [Restrained (buried) Piping]

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from paras. PL-2.6.3 (a), PL-2.6.3 (b) along with paras. PL-2.6.2 (a), PL-2.6.2 (c), PL-2.6.2 (d), PL-2.6.2 (e) and PL-2.6.2 (f)

$$S_{Lp} = S_p + S_T + S_X + S_B$$
$$S_{Ln} = S_p + S_T + S_X - S_B$$

As per PL-2.6.4 (d), both the tensile and compressive values of $S_{\scriptscriptstyle B}$ shall be considered in analysis.

 $S_p = 0.3S_H = 0.3\frac{PD}{2t_n}$ = longitudinal stress due to internal pressure in restrained pipeline S_H = hoop stress = $\frac{PD}{2t_n}$ as per para. PL-2.6.2 (a)

 S_T = longitudinal stress due to thermal expansion in restrained pipeline = $E\alpha_m(T_m - T_i)$ (see Note 1 below)

 S_X = stress due to axial loading (other than thermal expansion and pressure) = $\frac{R}{A}$

 S_B = nominal bending stress due to weight and other external loads (other than thermal expansion)

For Pipes and Long Radius Bends

$$S_B = \frac{\sqrt{(M_i)^2 + (M_o)^2 + (M_t)^2}}{Z}$$

For other Fittings and Components.

$$S_B = \frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_t)^2}}{Z}$$

As per para PL-2.6.3 (a), note that S_B, S_L, S_T or S_X can be positive or negative

where

P = maximum operating pressure = max(P1 through P10)

D =outside diameter

 $t_n = \text{nominal thickness}$

 i_i = in-plane stress intensification factor; the product 0.75 i_i shall not be less than 1.0

 i_o = out-of-plane stress intensification factor; the product 0.75i_o shall not be less than 1.0

- M_i = in-plane bending moment due to weight and other external loads (other than thermal expansion)
- M_o = out-of-plane bending moment due to weight and other external loads (other than thermal expansion)
- M_t = torsional moment due to weight and other external loads (other than thermal expansion)
- R = axial force from weight and external loads (other than due to thermal expansion and pressure)
- A =<u>un-corroded</u> pipe metal cross-sectional area (i.e., before deducting for corrosion)

Z =<u>un-corroded</u> section modulus; for reduced outlets, effective section modulus

S = Specified Minimum Yield Strength (SMYS) from para. PL-3.7.1 (a)

T = Temperature derating factor from Table PL-3.7.1-3

E = Young's modulus at ambient temperature, i.e., at T_{ref} in CAEPIPE

 T_i = installation temperature = T_{ref} in CAEPIPE (see Note 1 below)

 T_m = warmest or coldest operating temperature (see Note 1 below)

 α_m = coefficient of thermal expansion at T₀ in CAEPIPE (see Note 1 below)

Note 1:

If there are more than one thermal load, for example T1 and T2, then CAEPIPE calculates longitudinal stress S_T due to thermal expansion as follows.

For a change in temperature from T_{ref} to T_1 , $S_{T1} = -E\alpha_1(T_1 - T_{ref})$

For a change in temperature from T_{ref} to T_2 , $S_{T2} = -E\alpha_2(T_2 - T_{ref})$

For a change in temperature from T_1 to T_2 , $S_{T1-.>T2} = S_{T2} - S_{T1}$

Please note, that negative (-) sign is added in the above equations as the soil is restraining the thermal expansion / contraction of the buried pipe due to friction at the soil-to-pipe interface.

Combined Stress for Restrained Pipe

The combined biaxial stress state of the pipeline in the operating mode is evaluated using the calculation given below <u>by default</u> in CAEPIPE as per para. PL-2.6.4. To be conservative, S_{eq1} and S_{eq2} given below are in line with para. 833.4 of ASME B31.8.

$$S_{eq} = \max\{S_{eq1}, S_{eq2}\} \le 0.957$$

where

 S_{eq} = equivalent combined stress

$$S_{eq1} = \max\{|S_H - S_{Lp}|, |S_H|, |S_{Lp}|\}$$

$$S_{eq2} = \max\{|S_H - S_{Ln}|, |S_H|, |S_{Ln}|\}$$

Alternatively, the stresses may be combined in accordance with the maximum distortion energy theory as follows (see Note 3 below):

$$S_{eq1} = \sqrt{(S_{Lp})^2 - S_H S_{Lp} + (S_H)^2}$$
$$S_{eq2} = \sqrt{(S_{Ln})^2 - S_H S_{Ln} + (S_H)^2}$$

Notes:

- 1. Young's modulus of elasticity corresponding to the lowest operating temperature $[=\min(T_1 \text{ through } T_{10}, T_{ref})]$ is used to form the stiffness matrix in accordance with paras. PL-2.5.3 (g) and PL-2.5.4 (b).
- 2. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".
- 3. By default, CAEPIPE combines the stresses for restrained piping using the maximum shear stress theory as stated above. To combine stresses in accordance with the maximum distortion energy theory as stated above, turn ON the analysis option "Combine stresses as per Max. Distortion Energy Theory" through Layout Window > Options > Analysis > Code.

Stress Intensification Eactor i [Notes (1) (2)]							
	Flexibility Factor,	Factor, <i>i</i> [Notes (1), (2)] Out-Plane, In-Plane,		 Flexibility Characteristic, 			
Description	k	i _o	i _i	h	Illustration		
					Ŧ		
Velding elbow or pipe bend	1.65	0.75	0.9	$\overline{T} R_1$	Ti In		
[Notes (1)-(5)]	h	$h^{2/3}$	$h^{2/3}$	r_2^2			
					$ \underset{radius}{\coprod} R_1 = bend \\ radius $		
					1 7		
Closely spaced miter bend $s < r_2 (1 + \tan \theta)$	1.52	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\cot \theta \ \overline{T}s$			
[Notes (1) , (2) , (3) , (5)]	$h^{5/6}$	$h^{2/3}$	$h^{2/3}$	$\frac{\cot\theta}{2}\frac{\overline{Ts}}{r_2^2}$			
					θ $R_1 = \frac{s \cot \theta}{2}$		
ingle witer band or widely					,7		
ingle miter bend or widely spaced miter bend	1.52	0.9	0.9	$1 + \cot \theta \overline{T}$			
$s \ge r_2 (1 + \tan \theta)$ [Notes (1), (2), (5)]	$h^{5/6}$	$\frac{619}{h^{2/3}}$	$h^{2/3}$	$2 r_2$			
[Notes (1), (2), (3)]					$\frac{1}{\theta} = \frac{r_2 (1 + \cot \theta)}{2}$		
Velding tee per ASME B16.9 with					. .		
$r_o \ge d/8$	1	0.9	$\frac{3}{4}i_{o} + \frac{1}{4}$	$4.4\overline{T}$			
$T_c \ge 1.5\overline{T}$ [Notes (1), (2), (6)]	-	$h^{2/3}$	/4 *0 * /4	+.+ <u>r</u> 2	1° 12		
					r _o		
				5/2	<u> </u>		
Reinforced fabricated tee with pad or saddle [Notes (1), (2),	1	0.9	$\frac{3}{4}i_{o} + \frac{1}{4}$	$\frac{\left(\overline{T} + \frac{1}{2}t_{e}\right)^{5/2}}{\overline{T}^{3/2}r_{2}}$			
(7)-(9)]		$h^{2/3}$		$\overline{T^{3/2}r_2}$	t_e		
				2	Pad Saddle $t_e \overline{T}$		
					······································		
Inreinforced fabricated tee	1	0.9	$\frac{3}{4}i_{o} + \frac{1}{4}$	\overline{T}			
[Notes (1), (2), (9)]		$\frac{1}{h^{2/3}}$		<i>r</i> ₂			
					T		
Extruded outlet					T		
$\begin{array}{l} r_o \geq 0.05 d \\ T_c < 1.5 \ \overline{T} \end{array}$	1	0.9	$\frac{3}{4}i_{o} + \frac{1}{4}$	$\left(1+\frac{r_0}{T}\right)\overline{T}$			
$I_c < 1.5 I$ [Notes (1), (2), (6)]		$h^{2/3}$		$\binom{1}{r_2}r_2$			
					₩+₩ [×] r₀		
Velded-in contour insert		0.0		Ŧ			
$r_o \ge d/8$ $T_c \ge 1.5\overline{T}$	1	$\frac{0.9}{h^{2/3}}$	$^{3}/_{4} i_{o} + ^{1}/_{4}$	$4.4\frac{\overline{T}}{r_2}$			
[Notes (1), (2), (10)]		n / -		r ₂			

Table E-1 exibility Factor, k, and Stress Intensification Factor.

Description	Flexibility Factor, k	Stress Intensification Factor, <i>i</i> [Notes (1), (2)]		Flexibility	
		Out-Plane, i _o	In-Plane, <i>i_i</i>	Characteristic, <i>h</i>	Illustration
Branch welded-on fitting (inte- grally reinforced) in accordance with MSS SP-97 [Notes (1), (2), (9), (11)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$3.3\frac{\overline{T}}{r_2}$	
	Flexibility				
Description	Factor, k		Stress Intensification Factor, <i>i</i>		Illustration
Butt weld [Notes (1), (12)]				-,-	
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{\max} \le \frac{1}{16}$ in. (1.59 mm), and $\delta_{avg}/\overline{T} \le 0.13$	1		1.0		
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{\max} \le \frac{1}{8}$ in. (3.18 mm), and $\delta_{avg}/\overline{T} =$ any value	1		1.9 max. or $[0.9 + 2.7(\delta_{avg}/T)],$		$\frac{\overline{\tau}}{1} \underbrace{t_{\delta}}^{\tau}$
$\overline{T} \leq 0.237$ in. (6.02 mm), $\delta_{\text{max}} \leq \frac{1}{16}$ in. (1.59 mm), and $\delta_{\text{avg}}/\overline{T} \leq 0.33$	1		but not less than 1.0		
	1				
Tapered transition per ASME B16.25 [Note (1)]			1.9 max. or $1.3 + 0.0036 \frac{D_o}{T} + 3.6 \frac{\delta}{T}$		\overline{T}
Concentric reducer per ASME B16.9 [Notes (1), (13)]	1		2.0 max. or $0.5 + 0.01 \alpha \left(\frac{D_{o2}}{\overline{T}_2}\right)^{1/2}$		$ \begin{array}{c} \overline{\tau}_{1}\\ \overline{\tau}\\ \overline{\tau}\\ D_{o1}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}\\ \overline{\tau}_{2}\\ \overline{\tau}\\ $
Double-welded slip-on flange [Note (14)]	:	1		1.2	
ocket welding flange or fitting [Notes (14), (15)]	1		2.1 max. or 2.1 \overline{T}/C_x but not less than 1.3		
ap joint flange (with vASME B16.9 lap joint stub) [Note (14)]	1		1.6		
`hreaded pipe joint or threaded flange [Note (14)]	1		2.3		
Corrugated straight pipe, or corrugated or creased bend [Note (16)]	5		2.5		

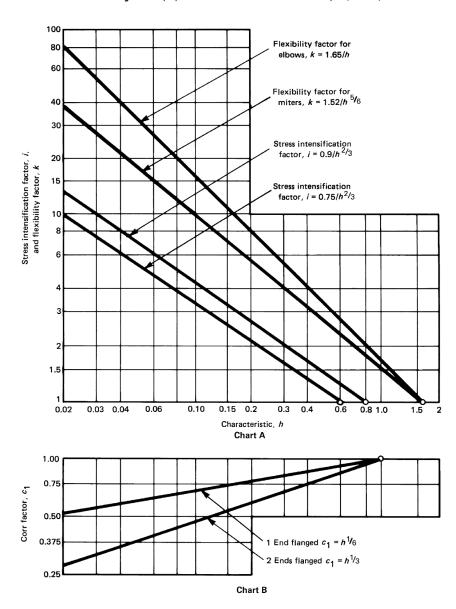


 Table E-1

 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

GENERAL NOTE: The stress intensification and flexibility factors from ASME B31J may be used instead of the stress intensification and flexibility factors herein. When using the stress intensification factors from ASME B31J, the maximum of in-plane (i_i) and out-plane (i_o) stress intensification factors shall be used in calculating stresses in accordance with para. 833.2 or para. A842.2.2. Alternatively, stress intensification factors and branch connection flexibility factors may be developed using ASME B31J, Nonmandatory Appendix A.

Table E-1

Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

NOTES:

(1) The nomenclature is as follows:

- D_0 = outside diameter, in. (mm)
- d = outside diameter of branch, in. (mm)
- R_1 = bend radius of welding elbow or pipe bend, in. (mm)
- r_0 = radius of curvature of external contoured portion of outlet, measured in the plane containing the axes of the header and branch, in. (mm) r_2 = mean radius of matching pipe, in. (mm)
- s = miter spacing at centerline, in. (mm)
- \overline{T} = nominal wall thickness of piping component, in. (mm)
 - = for elbows and miter bends, the nominal wall thickness of the fitting, in. (mm)
 - = for welding tees, the nominal wall thickness of the matching pipe, in. (mm)
 - for fabricated tees, the nominal wall thickness of the run or header (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diameter), in. (mm)
- T_c = the crotch thickness of tees, in. (mm)
- t_e = pad or saddle thickness, in. (mm)
- α = reducer cone angle, deg
- δ = mismatch, in. (mm)
- θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factor, k, applies to bending in any plane. The flexibility factors, k, and stress intensification factors, i, shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends and to the intersection point for tees. The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the formulas given.
- (3) Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factors, C_{uv} which can be read directly from Chart B, entering with the computed h.
- (4) The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the table, divide k by

$$\left[1 + 6\left(\frac{p}{E_e}\right)\left(\frac{r_2}{\overline{T}}\right)^{7/3}\left(\frac{R_1}{r_2}\right)^{1/3}\right]$$

divide *i* by

$$\left[1 + 3.25 \left(\frac{P}{E_e}\right) \left(\frac{r_2}{\overline{T}}\right)^{5/2} \left(\frac{R_1}{r_2}\right)^{2/3}\right]$$

where

 E_e = cold modulus of elasticity, psi (MPa)

P = gage pressure, psi (MPa)

- (6) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.12/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (7) When $t_e > 1^{1/2}T$, use $h = 4.05T/r_2$.
- (8) The minimum value of the stress intensification factor shall be 1.2.
- (9) When the branch-to-run diameter ratio exceeds 0.5, but is less than 1.0, and the number of design displacement cycles exceeds 200, the outplane and in-plane stress intensification factors shall be calculated as 1.8/h^{2/3} and (0.67/h^{2/3}) + 1/4, respectively, unless the transition weld between the branch and run is blended to a smooth concave contour. If the transition weld is blended to a smooth concave contour, the stress intensification factors in the table still apply.
- (10) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design displacement cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) The stress intensification factors apply to girth butt welds between two items for which the nominal wall thicknesses are between $0.875\overline{T}$ and $1.10\overline{T}$ for an axial distance of $\sqrt{D_0\overline{T}}$. D_0 and \overline{T} are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.
- (13) The equation applies only if the following conditions are met:

(a) Cone angle α does not exceed 60 deg, and the reducer is concentric.

(b) The larger of D_{o1}/\overline{T} and D_{o2}/\overline{T} does not exceed 100.

(c) The wall thickness is not less than \overline{T}_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than \overline{T}_2 .

Table E-1

Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

NOTES: (Cont'd)

(14) For some flanged joints, leakage may occur at expansion stresses otherwise permitted herein. The moment to produce leakage of a flanged joint with a gasket having no self-sealing characteristics can be estimated by the following equation:

 $M_L = (C/4) \left(S_b A_b - P A_p \right)$

where

- where $A_b = \text{total area of flange bolts, in.}^2 (\text{mm}^3)$ $A_p = \text{area to outside of gasket contact, in.}^2 (\text{mm}^2)$ C = bolt circle, in. (mm) $M_L = \text{moment to produce flange leakage, in.-lb (mm·N)}$ P = internal pressure, psi (MPa) $S_b = \text{bolt stress, psi (MPa)}$ (15) C_x is the fillet weld length. For unequal lengths, use the smaller leg for C_x . (16) Factors shown analy to bending. Elexibility factor for torsion equals 0.9 (16) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Allowable Internal Pressure

For straight pipes and bends, the allowable pressure is calculated using Eq. (3a) for straight pipes and Eq. (3c) with I = 1.0 for bends from paras. IP-3.2.1 and IP-3.3.1.respectively.

$$P_a = \frac{2SEM_f t_a}{D - 2Yt_a}$$

where

 P_a = allowable pressure

S = stress value for material from Table IX-1A

E = quality factor from Table IX-2 or Table IX-3A

 M_f = material performance factor that addresses loss of material properties associated with hydrogen gas service from Tables IX-5B and IX-5C from Appendix IX.

t_a= available thickness for pressure design

 $= t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance "c"}$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

D = outside diameter

d = inside diameter

- Y= coefficient from Table IP-3.2.1, valid for $t_a < D/6$ for Ferritic and Austenitic steels. Refer to the Table listed at the end of this Section for details on 'Y' used in CAEPIPE for all available material.
- $Y = \frac{d+2c}{D+d+2c}$, valid for $t_a \ge D/6$ for all material types.

For closely spaced miter bends, the allowable pressure is calculated in CAEPIPE using Eq. (4b) from para. IP-3.3.3.

$$P_a = \frac{SEM_f t_a(R-r)}{r(R-r/2)}$$

For widely spaced miter bends with $\theta \le 22.5$ deg, the allowable pressure is calculated in CAEPIPE using Eq. (4a) from para. IP-3.3.3 as

$$P_a = \frac{SEM_f t_a^2}{r(t_a + 0.643 \tan \theta \sqrt{rt_a})}$$

For widely spaced miter bends with θ > 22.5 deg, the allowable pressure is calculated in CAEPIPE using Eq. (4c) from para. IP-3.3.3 as

$$P_a = \frac{SEM_f t_a^2}{r(t_a + 1.25 \tan \theta \sqrt{rt_a})}$$

where

 $r = \text{mean radius of pipe} = (D - t_n)/2$

R = effective bend radius of the miter (see para. IP-3.3.3 (d) of code for definition) [an input in CAEPIPE for miters]

 θ = angle of miter cut

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated using Eqs. (23a), (23b), (23c) and (23d) from para. 320.2 of ASME B31.3 (2014) and compared against the allowable provided in para. IP-2.2.10.

$$S_L = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2} \le S_h M_f$$

where

$$S_{a} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Sustained} = \left[\frac{PD}{4t_{s}} + \frac{R}{A_{p}}\right]_{Sustained}$$

$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Sustained}$$
For branch (Leg 3 in Fig. 319.4.4B)of ASME B31.3 (2014),

$$S_{b} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{e}}\right]_{Sustained}$$
Sustained

$$S_t = \left[\frac{I_t M_t}{2Z_m}\right]_{Sustained}$$

P= maximum of CAEPIPE input pressures P1 through P10

D =outside diameter

 t_S =wall thickness used for sustained stress calculation obtained by deducting corrosion allowance from the nominal thickness

- t_s = nominal thickness corrosion allowance in CAEPIPE, as per para. 320.10fASME B31.3 (2014)
- $A_p = \underline{\text{corroded}}$ cross-sectional area of the pipe computed using t_s as per para. 320.10fASME B31.3 (2014)
- I_a = longitudinal force index = 1.0
- F_a = longitudinal force due to sustained loads such as pressure and weight
- R = axial force due to weight alone, where weight is computed using nominal thickness.
- I_i = sustained in-plane moment index = 0.75 i_i or 1.0, whichever is greater.
- I_o = sustained out-of-plane moment index = $0.75i_o$ or 1.0, whichever is greater.

where, i_i and i_o are taken from Appendix D of ASME B31.3 (2014) [reprinted at the end of this Section].

 I_t = torsional moment index = 1.0

 M_i =in-plane bending moment due to sustained loads such as pressure and weight

 M_o =out-of-plane bending moment due to sustained loads such as pressure and weight

 M_t =torsional moment due to sustained loads such as pressure and weight

 $Z_m = \underline{\text{corroded}}$ section modulus as per para. 320.10fASME B31.3 (2014)

 Z_e = effective <u>corroded</u> section modulus for branch as per para.320.2 of ASME B31.3 (2014)

 M_f =material performance factor that addresses loss of material properties associated with hydrogen gas service from Tables IX-5B and IX-5C from Appendix IX.

Sustained plus Occasional Stress

The stress (S_{Lo}) due to sustained and occasional loads is calculated as the sum of stress (S_L) due to sustained loads such as pressure and weight and stress (S_o) due to occasional loads such as earthquake or wind. Wind and earthquake are not considered as acting concurrently (see para. IP-2.2.11).

For temp $\leq 427^{\circ}$ C or 800° F

 $S_{LO} \leq 1.33 S_h M_f$

For temp > 427° C or 800° F

 $S_{LO} \leq 0.9WS_{v}M_{f}$

where

 $S_{LO} = S_L + S_O$, where S_L is computed as above, and S_O is calculated using Eqs. (23a), (23b), (23c) and (23d) of ASME B31.3 (2014) with applicable loads.

$$S_{0} = \sqrt{(|S_{ao}| + S_{bo})^{2} + (2S_{to})^{2}}$$

$$S_{ao} = \left[\frac{I_{a}F_{a}}{A_{p}}\right]_{Occasional} = \left[\frac{(P_{peak} - P)D}{4t_{s}} + \frac{R}{A_{p}}\right]_{Occasional}$$

$$S_{bo} = \left[\frac{\sqrt{(I_{i}M_{i})^{2} + (I_{o}M_{o})^{2}}}{Z_{m}}\right]_{Occasional}$$

For branch (Leg 3 in Fig. 319.4.4B) of ASME B31.3 (2014)

$$S_{bo} = \left[\frac{\sqrt{(I_i M_i)^2 + (I_o M_o)^2}}{Z_e}\right]_{Occasional}$$

$$S_{to} = \left[\frac{I_t M_t}{2Z_m}\right]_{Occasional}$$

 P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P

Hydrogen Piping and Pipelines ASME B31.12 (2014) [Superseded by ASME B31.12 (2019)]

- R = axial force due to occasional loads such as earthquake or wind
- M_i = in-plane bending moment due to occasional loads such as earthquake or wind
- M_o = out-of-plane bending moment due to occasional loads such as earthquake or wind
- M_t = torsional moment due to occasional loads such as earthquake or wind
- S_y = yield strength at maximum temperature, i.e., max (T_{ref} , T_1 through T_{10})
- W = 1.0 for Austenetic stainless steel and 0.8 for other materials as per para. IP-2.2.11(a)
- $Z_m = \text{corroded}$ section modulus as per para. 320.10fASME B31.3 (2014)
- Z_e = effective <u>corroded</u> section modulus for branch as per para. 320.20fASME B31.3 (2014)

Note 1:

The allowable stress equations for (S_{LO}) are taken from para. 302.3.6 of ASME B31.3 (2014), as the sentence "At temperatures warmer than 427 deg. C (800 deg.F), use 1.33.Sh.M_f" in para. IP-2.2.11 of ASME B31.12 (2014) code seems to be incorrectly worded.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated using Eq. 17 from para. IP-6.1.5

$$S_E = \sqrt{(|S_a| + S_b)^2 + (2S_t)^2}$$

where

$$S_{a} = \left[\frac{i_{a}F_{a}}{A}\right]_{Expansion}$$
$$S_{b} = \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]_{Expansion}$$

For branch (Leg 3 in Fig. IP-6.1.5-2)

$$S_b = \left[\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z_e}\right]_{Expansion}$$

$$S_t = \left[\frac{i_t M_t}{2Z}\right]_{Expansion}$$

- A =<u>un-corroded</u> cross-sectional area of the pipe/fitting computed using nominal thickness t_n and outer diameter D as per IP-6.1.4 (e).
- i_a = axial stress intensification factor = 1.0 for elbows, pipe bends and miter bends and $i_a = i_o \text{ or } i$ for other components as listed in Appendix D of B31.3 (2014)
- $F_a = \underline{range}$ of axial force due to displacement strains between any two thermal conditions being evaluated
- i_i = in-plane stress intensification factor from Appendix D of ASME B31.3 (2014) shallnot be less than 1.0
- i_o = out-of-plane stress intensification factor Appendix D of ASME B31.3 (2014) shall not be less than 1.0

Hydrogen Piping and Pipelines ASME B31.12 (2014) [Superseded by ASME B31.12 (2019)]

- i_t = torsional stress intensification factor = 1.0
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torsional moment
- Z =<u>un-corroded</u> section modulus as per IP-6.1.4 (e)
- $Z_e = \underline{\text{un-corroded}}$ effective section modulus as per IP-6.1.4 (e)
- $S_A = f(1.25S_C + 0.25S_h)$, Eq. (1a) of para. IP-2.2.10 (d)
- f = stress range reduction factor from Eq. (1c) of para. IP-2.2.10 (d) = $6N^{-0.2}$ where f ≥ 0.15 and f ≤ 1.0 (see Note 1 below)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than Sustained Stress S_L , the allowable stress range may be calculated as $S_A = f[1.25(S_C + S_h) - S_L]$, Eq. (1b) of para. IP-2.2.10 (d).

This is specified as an analysis option "Use liberal allowable stresses", in the menu Layout > Options > Analysis > Code tab.

Notes:

- 4. As per para. IP-2.2.10 (d), $f = maximum value of stress range factor; 1.2 for ferrous materials with specified minimum tensile strengths <math>\leq 517$ MPa (75 ksi) and at metal temperatures $\leq 371^{\circ}$ C (700°F). This criterion is not implemented in CAEPIPE as the provision for entering the minimum tensile strength in material property is not available at this time. Hence $f \leq 1.0$ for all materials including Ferrous materials.
- 5. Young's modulus of elasticity corresponding to reference temperature (T_{ref}) is used to form the stiffness matrix in accordance with para. IP-6.1.5 (d)(1).
- 6. Refer end of this appendix for the details of "Thickness and Section Modulus used for weight, pressure and stress calculations".

Notes on Material Library for B3112-2014.mat supplied with CAEPIPE:

Material library for ASME B31.12 (2014) [B3112-2014.mat] supplied with CAEPIPE has been created by referring to the values provided in Appendix IX of ASME B31.12 (2014).

APPENDIX D FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

See Table D300.

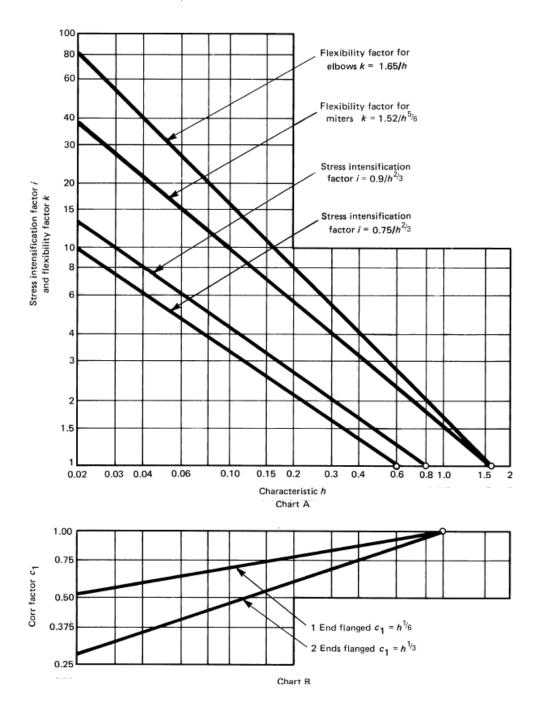

	Flexibility	Stress Inte Factor [Not		Flexibility		
Desc ription	Factor,	Out-of-Plane, <i>i_o</i>	In-Plane, J _i	Characteristic, h	Sketc h	
Welding elbow or pipe bend [Notes (1), (3)-(6)]	<u>1.65</u> ĥ	0.75 h ^{2/s}	0.9 ∱ ^{2/≥}	$\frac{TR_1}{r_2^2}$	$R_1 = bend radius$	
Closely spaced miter bend $s < r_2$ (1 + tan θ) [Notes (1), (3), (4), (6)]	<u>1.52</u> 65*	0.9 h ^{2/3}	0.9 h ^{2/3}	$\frac{\cot \vartheta}{2} \left(\frac{s\overline{J}}{r_2^2} \right)$	$B_{1} = \frac{s \cot \theta}{2}$	
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (3), (6)]	1.52 h ^{sk}	0.9 h ^{2/3}	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\emptyset}{2}\left(\frac{7}{r_2}\right)$	\vec{r}_{1}	
Welding tee in accordance with ASME B16.9 [Notes (1), (3), (5), (7), (8)]	1	0.9 h ^{2/5}	³ /4 ^j ₀ + ¹ /4	3.1 7 ½		
Reinforced fabricated tee with pad or saddle [Notes (1), (3), (8), (9), (10)]	1	0.9 h ^{2/3}	³ / ₄ j ₀ + ¹ / ₄	$\frac{(\overline{T} + \frac{1}{2} \overline{T}_r)^{2s}}{\overline{T}^{1s} r_2}$	$\frac{1}{\overline{T}_{r}}$	

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i

Hydrogen Piping and Pipelines ASME B31.12 (2014) [Superseded by ASME B31.12 (2019)]

Table D300	Flexibility	Factor, <i>k</i> , and	d Stress Int	ensification Fa	ctor, i (Cont'd)	
	Flexibility	Stress Intensification Factor [Notes (1), (2)]		Flexibility		
Description	Factor,	Out-of-Plane, <i>i</i> o	In-Plane, <i>İ</i> i	Characteristic,	Sketch	
Unreinforced fabricated tee [Notes (1), (3), (8), (10)]	1	$\frac{0.9}{b^{2/8}}$	$\frac{3}{4}j_{\phi} + \frac{1}{4}$	<u>7</u> 1/2		
Extruded welding tee with $\gamma_x \ge 0.05 \frac{D_b}{T_c} < 1.5 \overline{7}$ [Notes (1), (3), (8)]	1	$\frac{0.9}{b^{2/3}}$	[≥] ⁄ ₄ j ₀ + ¹ ⁄ ₄	$\left(1+\frac{r_{s}}{r_{2}}\right)\frac{\overline{f}}{r_{2}}$		
Welded-in contour insert [Notes (1), (3), (7), (8)]	1	0.9 6 ^{2/8}	[≥] ⁄ ₄ / ₀ + ¹ ⁄ ₄	$3.1 \frac{\overline{f}}{t_2}$		
Branch welded-on fitting (integrally reinforced) ENotes (1), (3), (10), (11)]	1	$\frac{0.9}{h^{2/s}}$	$\frac{0.9}{b^{2/3}}$	3.3 7 7 ₂		

Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>1</i>
Butt welded joint, reducer, or weld neck flange	1	1.0
Double-welded slip-on flange	1	1.2
Fillet or socket weld	1	1.3 [Note (12)]
Lap joint flange (with ASME B16.9 lap joint stub)	1	1.6
Threaded pipe joint or threaded flange	1	2.3
Corrugated straight pipe, or corrugated or creased bend [Note (13)]	5	2.5

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

(14)

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

GENERAL NOTE: Stress intensification and flexibility factor data in Table D300 are for use in the absence of more directly applicable data (see para. 319.3.6). Their validity has been demonstrated for $D/\overline{T} \leq 100$. NOTES:

- (1) The flexibility factor, k, in the Table applies to bending in any plane; also see para. 319.3.6. The flexibility factors, k, and stress intensification factors, i, shall apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends, and to the intersection point for tees.
- (2) A single intensification factor equal to $0.9/h^{2/3}$ may be used for both i_i and i_o if desired.
- (3) The values of k and i can be read directly from Chart A by entering with the characteristic h computed from the formulas given above. Nomenclature is as follows:
 - D_b = outside diameter of branch
 - R_1 = bend radius of welding elbow or pipe bend
 - r_s = see definition in para. 304.3.4(c)
 - $r_2 = mean radius of matching pipe$
 - miter spacing at centerline
 - s = miter spacing at centerune $\overline{T} =$ for elbows and miter bends, the nominal wall thickness of the fitting
 - = for tees, the nominal wall thickness of the matching pipe
 - \underline{T}_{r} = crotch thickness of branch connections measured at the center of the crotch where shown in the illustrations
 - $\overline{T}_r = pad \text{ or saddle thickness}$
 - θ = one-half angle between adjacent miter axes
- (4) Where flanges are attached to one or both ends, the values of i and i in the Table shall be corrected by the factors C_1 , which can be read directly from Chart B, entering with the computed h.
- (5) The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (6) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the Table, divide *k* by

$$1 + 6 \left(\frac{P_j}{\overline{E}_j}\right) \left(\frac{r_2}{\overline{\tau}}\right)^{1/2} \left(\frac{R_1}{r_2}\right)^{1/2}$$

divide *i* by

$$1 + 3.25 \begin{pmatrix} P_j \\ \overline{F_j} \end{pmatrix} \begin{pmatrix} \underline{r_2} \\ \overline{T} \end{pmatrix}^{\frac{N_2}{2}} \begin{pmatrix} R_1 \\ \underline{r_2} \end{pmatrix}^{\frac{N_2}{2}}$$

For consistency, use kPa and mm for SI metric, and psi and in. for U.S. customary notation.

- (7) If $r_s \ge \frac{1}{4} D_b$ and $T_c \ge 1.5\overline{T}$, a flexibility characteristic of 4.4 \overline{T}/r_2 may be used.
- (8) Stress intensification factors for branch connections are based on tests with at least two diameters of straight run pipe on each side of the branch centerline. More closely loaded branches may require special consideration.
- (9) When \overline{T}_r is > $1^{1/2} \overline{T}_r$ use $h = 4 \overline{T}/r_2$.
- (10) The out-of-plane stress intensification factor (SIF) for a reducing branch connection with branch-to-run diameter ratio of 0.5 < d/D < 1.0 may be nonconservative. A smooth concave weld contour has been shown to reduce the SIF. Selection of the appropriate SIF is the designer's responsibility.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a fillet weld is made between the pipe and fitting as shown in Fig. 328.5.2C. For welds to socket welded flanges, the stress intensification factor is based on the weld geometry shown in Fig. 328.5.2B, illustration (3) and has been shown to envelope the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 328.5.2A, has been shown to improve the fatigue performance of the weld.
- (13) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Coefficient 'Y' used in CAEPIPE to compute Allowable Design Pressure

[SI. Nos. 1 & 2 below are from Table IP-3.2.1 and SI. Nos. 3, 4 & 5 are from Table 304.1.1 of ASME B31.3 (2014)]

			V	alues of 'Y	" for Tem	perature,	Deg F (De	g C)	
		900	950	1000	1050	1100	1150	1200	1250
		(482)	(510)	(538)	(566)	(593)	(621)	(649)	(677)
SI.		and							and
No.	Material Type	below							above
1.	Ferritic Steels (FS)	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
2.	Austenitic Steel (AS)	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
3.	Nickel Alloys (NA)	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
4.	Gray Iron / Cast Iron (CI)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.	Material Types other than those stated from SI. Nos. 1 to 4.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Carbon Steel Piping Materials Performance Factor (M_f) used in CAEPIPE for Material Type as "CS" (from Table IX-5B)

SI.	Specified Min. Yield	System Design Pressure, psig					
No.	Strength (ksi)	<=1000	2000	3000	4000	5000	6000
1.	<= 52	1.000	0.948	0.912	0.884	0.860	0.839
2.	<= 56	0.930	0.881	0.848	0.824	0.800	0.778
3.	<= 65	0.839	0.796	0.766	0.745	0.724	0.706
4.	<= 80	0.715	0.678	0.645	0.633	0.618	0.600

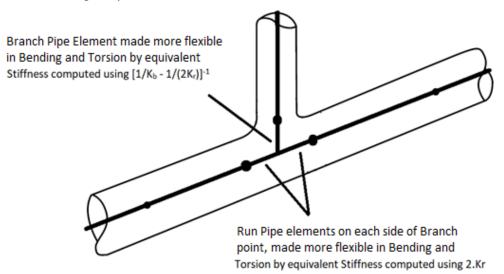
Low and Intermediate Alloy Steel Piping Materials Performance Factor (M_f) used in CAEPIPE for Material Type as "AS" (from Table IX-5C)

SI.	Specified Min. Tensile			Syster	n Design Pre	ssure, psig		
No.	Strength (ksi)	0.000	1000	2000	3000	4000	5000	6000
1.	<= 35	1.000	0.918	0.881	0.875	0.836	0.815	0.800
2.	<= 45	0.791	0.724	0.696	0.675	0.660	0.642	0.630
3.	<= 60	0.655	0.601	0.577	0.561	0.547	0.533	0.524
4.	<= 65	0.580	0.532	0.511	0.497	0.485	0.472	0.464

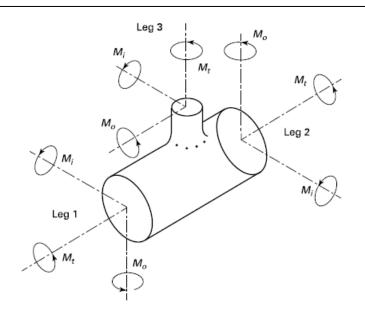
Note:

For materials not covered by Tables given above, Material Performance Factor (M_f) is taken as 1.00.

- Implemented as an optional feature for B31.5 and B31.8 codes. This feature can be turned ON or OFF through Layout Frame > Options > Analysis.
- When B31J is applied, it will allow users to select and specify among those Branch SIF types defined in B31J for the Piping Code selected for analysis.
- When B31J is applied, CAEPIPE will calculate SIFs as per B31J and report Torsional, In-plane and Out-of-plane SIFs in Element Forces and Moments results irrespective of whether they are being used or not in Code Compliance as per the Piping Code selected for Analysis. For Example, CAEPIPE will not include Torsional Moment and Torsional SIF while calculating Sustained and Occasional Stresses as per ASME B31.5 (2022).
- For Equal TEEs, the Run and Branch should be differentiated in CAEPIPE model by defining the Branch OD slightly less than the Run OD through CAEPIPE Sections input. Otherwise, CAEPIPE will use the equations corresponding to Run pipe even for Branch pipe.
- ASME B31.3 (2022) includes the term Axial SIF in Stress Calculations. On the other hand, B31J is silent about the Axial SIF for various components. Hence, CAEPIPE will use the Axial SIF values as stated in the respective text portions of ASME B31.3 (2022) code while computing stresses.
- As per para 402.6.1 of ASME B31.4 (2022), Torsion moment is not included in the equation for Sustained Stress for Restrained piping. In line with this ASME B31.4 (2022) code, CAEPIPE will not use Torsion Moment and Torsion SIF while calculating Sustained Stress for Restrained pipe.
- For ASME B31.5 (2022), paras. 502.3.2(d), 502.3.3(a), 519.4.5 and 519.3.5 do not include Torsional moment in computing Stresses. Accordingly, CAEPIPE will not include Torsional Moment and Torsional SIF while calculating Stresses as per ASME B31.5 (2022) even when the option B31J is turned ON.
- For ASME B31.8 (2022), para. 833.2 (e) states that the nominal Bending Stress for Fittings and Components as M_R/Z , where M_R is the resultant intensified moment across the fittings or components with Stress Intensification Factor (SIF) as 0.75i, where 0.75i cannot be less than 1.0.


On the other hand, for Pipe and Long Radius Bends, para.833.2 (d) of the Code states that the nominal Bending Stress as M/Z, where M is the bending moment across the pipe cross section without SIF being considered. In other words, the moments are NOT intensified for Pipe and Long Radius Bends.

• As ASME B31.8 (2022) does not include SIF for Pipe and Long Radius Bends in Sustained Stress equation, SIF calculated as per B31J will NOT be included in Sustained Stress calculation for Pipes and Long Radius bends at this time even when the option B31J is turned ON. However, the SIF calculated as per B31J will be displayed in the Element Forces and Moments results, but will not be used.


- When B31J is turned ON, In-plane and Out-of-plane Flexibility Factors for Bends, Miter bends and TEEs will be calculated as per B31J and included by CAEPIPE in the corresponding element stiffness matrices. Similarly, CAEPIPE will calculate the Torsion Flexibility Factors as per B31J and include them in the element stiffness matrices irrespective of whether the code includes or excludes Torsional Moment and Torsional SIF in Stress equations.
- As it is not possible to identify the number of Flanges or Rigids at Run Pipe ends located within 0.1D^1.4/T^0.4 from Branch intersection node using CAEPIPE (required for applying the correction factor while computing Flexibility Factors as per B31J), a provision is made in the Branch SIF definition to manually input the no. of Flanges or Rigids that fall within the distance given by B31J.
- When the bend angle is 90 degree and the thickness of the bend is equal to the thickness of the matching pipe, as per B31J (2023) the K_i and K_o should be calculated from 1.3/h. This is NOT implemented in CAEPIPE at this time.
- Flexibility Factors computed for TEEs as per B31J are always applied to both ends of the first elements belonging to Leg 1, Leg 2 and Leg 3 that are connected at the Branch node as shown in Figure 1-1 of B31J.

CAEPIPE includes a feature to automatically refine the elements connected to the Branch node as given detailed to compute and apply Flexibility Factors for Run (Leg 1 and Leg 2) and Branch Pipe (Leg 3).

- a. Two (2) nodes on Run Pipe (one on either side of the Branch SIF node) at a distance equal to Run Split Factor x Run Pipe OD, where the Run Split Factor can be input by the user.
- b. One (1) node on Branch Pipe at a distance equal to Branch Split Factor x Run Pipe OD from the Branch SIF node, where the Branch Split Factor can be input by the user.

ASME B31J – 2023 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components

Moment	Flexibility Factor, k	Stiffness, inlb/rad (N·mm/rad)	Stiffness, inIb/rad (N·mm/rad)
M _{i3} (Leg 3)	k _{ib}	M_{ib} / Θ_{ib}	$(E)(I_b)/(k_{ib} d)$
M ₀₃ (Leg 3)	kob	M _{ob} /θ _{ob}	$(E)(I_b)/(k_{ob} d) \to K_b$
M _{t3} (Leg 3)	k _{tb}	M_{tb} $/\theta_{tb}$	$(E)(I_b)/(k_{tb} d)$
M _{i1,2} (Legs 1, 2)	kir	M_{ir} / θ_{ir}	$(E)(I_r)/(k_{ir} D)$
M _{01,2} (Legs 1, 2)	kor	M_{or} / θ_{or}	$(E)(I_r)/(k_{or} D)$ K
M _{t1,2} (Legs 1, 2)	k _{tr} .	M_{tr} / θ_{tr}	$(E)(I_r)/(k_{tr} D)$

Changes between ASME B31J (2017) and ASME B31J (2023) are summarized below for easy reference.

Item #1	For Table 1-1, Sketch 1.1, Equations for SIF In-plane and Out-of-plane for Pipe Bend or Welding Elbow: The division sign, which was mistakenly omitted in B31J (2017), has now been included in B31J (2023).			
ASME B31J (2017)	SIF in plane, i_i $0.9h^{2/3}$ SIF out of plane, i_o $0.75h^{2/3}$			
ASME B31J (2023)	SIF In-plane, İi 0.9/h ^{2/3} SIF Out-of-plane, İo 0.75/h ^{2/3}			
Remarks	Although the division sign was omitted in B31J (2017), the CAEPIPE implementation was correct since Version 8.00, as it included the division. As a result, there will be no change in SIF values for Pipe Bend or Welding Elbows in a stress layout analyzed using both earlier and current versions of CAEPIPE.			

Item #2	Run in-plane SIF for Sketch 2.2 (Reinforced Fabricated TEE). The exponent value for (d/D) has been updated from 0.54 to 1.0, and the sign in front of 0.34 has been changed to negative, as shown below.
ASME B31J (2017)	Run SIF in plane, i_{tr} $[R/(T + 0.5t_p)]^{0.45} (d/D)^{0.54} (t/T)^{0.34} \ge 1.5$
ASME B31J (2023)	Run SIF in plane, i_{tr} $[R/(T + 0.5t_p)]^{0.45}$ $(d/D)^{1.0}$ $(t/T)^{-0.34} \ge 1.5$
Remarks	Modifications shown above are implemented in CAEPIPE starting with Version 13.10. As a result, the calculated Run in- plane SIF value for Reinforced Fabricated Tee may differ from those produced by earlier versions of CAEPIPE.

Item #3	Branch in-plane SIF for Sketch 2.2 (Reinforced Fabricated TEE): The extra bracket that was mistakenly included in B31J (2017) has been removed in the B31J (2023) edition.
ASME B31J (2017)	Branch SIF in plane, i_{ib} [3.33(d/D) - 5.49(d/D) ² + 2.94(d/D) ³]($TR^{2/3}$)(T + 0.5 t_p)] ^{-5/3} (t/T) ^{0.3}
ASME B31J (2023)	Branch SIF in plane, i_{ib} [3.33(d/D) - 5.49(d/D) ² + 2.94(d/D) ³]($TR^{2/3}$)(T + 0.5 t_p) ^{-5/3} (t/T) ^{0.3}
Remarks	Although an extra bracket was displayed in B31J (2017), the CAEPIPE implementation was <u>correct</u> since Version 8.00, as it was done without the additional bracket. Hence, there will be no change in Branch in-plane SIF values for Reinforced Fabricated Tee modeled in a stress layout analyzed using both earlier and current versions of CAEPIPE.

Item #4	Branch out-of-plane SIF for Sketch 2.2 (Reinforced Fabricated TEE): The extra bracket that was mistakenly included in B31J (2017) has been removed in the B31J (2023) edition.
ASME B31J (2017)	Branch SIF out of plane, i_{ob} [2.86(d/D) + 2.4(d/D) ² - 4.34(d/D) ³](TR ^{2/3})(T + 0.5t _p)] ^{-5/3} (t/T) ^{0.3} (when t/T < 0.85, use t/T = 0.85)
ASME B31J (2023)	Branch SIF out of plane, i_{ob} [2.86(d/D) + 2.4(d/D) ² - 4.34(d/D) ³]($TR^{2/3}$)(T + 0.5 t_p) ^{-5/3} (t/T) ^{0.3} (when $t/T < 0.85$, use $t/T = 0.85$)
Remarks	Although an extra bracket was displayed in B31J (2017), the CAEPIPE implementation was correct since Version 8.00, as it was done without the additional bracket. Hence, there will be no change in Branch out-of-plane SIF values for Reinforced Fabricated Tee modeled in a stress layout analyzed using both earlier and current versions of CAEPIPE.

Item #5	Run in-plane SIF for Sketch 2.3 (Fabricated TEE). The exponent value for (d/D) has been updated from 0.5 to 1.0 as shown below.		
ASME B31J (2017)	Run SIF in plane, i_{ir} $1.2(d/D)^{0.5} (R/T)^{0.4} (t/T)^{-0.35} \ge 1.5$		
ASME B31J (2023)	Run SIF in plane, i_{ir} $(1.2(d/D)^{1.0} (R/T)^{0.4} (t/T)^{-0.35} \ge 1.5)$		
Remarks	Modification shown above is implemented in CAEPIPE starting with Version 13.10. As a result, the calculated Run in-plane SIF value for Fabricated Tee may differ from those produced by earlier versions of CAEPIPE.		

Item #6	Branch out-of-plane SIF for Sketch 2.3 (Fabricated TEE). When $t/T < 0.85$, use $t/T = 0.85$ has been updated to when $t/T < 0.6$, use $t/T = 0.6$ as shown below.		
ASME B31J (2017)	Branch SIF out of plane, i_{ob} $\begin{bmatrix} 0.038 + 2(d/D) + 2(d/D)^2 - 3.1(d/D)^3 \end{bmatrix} (R/T)^{2/3} (t/T)$ (when $t/T < 0.85$, use $t/T = 0.85$)		
ASME B31J (2023)	Branch SIF out of plane, i_{ob} $\begin{bmatrix} 0.038 + 2(d/D) + 2(d/D)^2 - 3.1(d/D)^3 \end{bmatrix} (R/T)^{2/3} (t/T)$ (when $t/T < 0.6$ use $t/T = 0.6$)		
Remarks	Modification shown above is implemented in CAEPIPE starting with Version 13.10. As a result, the calculated Run in-plane SIF value for Fabricated Tee may differ from those produced by earlier versions of CAEPIPE.		

Item #7	Run in-plane SIF for Sketch 2.4 (Extruded Outlet): Sign in front of 0.52 has been changed to negative, as shown below.		
ASME B31J (2017)	Run SIF in plane, i_{ir} 1.45(1 + r_x / R) ^{-2/3} $(R/T)^{0.35} (d/D)^{0.72} (t/T)^{0.52}$		
ASME B31J (2023)	Run SIF in plane, i_{ir} 1.45(1 + $r_x / R)^{-2/3} (R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$		
Remarks	Modification shown above is implemented in CAEPIPE starting with Version 13.10. As a result, the calculated Run in-plane SIF value for Extruded Outlet may differ from those produced by earlier versions of CAEPIPE.		

ASME B31J – 2023 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components

	n	
Term	Equation	Sketch
1.1 Pipe Bend or Welding Elbow Meet		
Flexibility characteristic, h	TR_1/R^2	
Flexibility factor in plane, k_i	1.65/h	
Flexibility factor out of plane, k_o	1.65/h	
SIF in plane, i _i	$0.9/h^{2/3}$	
SIF out of plane, i _o	0.75/h ^{2/3}	
SIF torsional, <i>i</i> _t	1	
1.2 Closely Spaced Miter Bend, $s < R$ (
Flexibility characteristic, h	$sT \cot \theta/(2R^2)$	T
Flexibility factor in plane, k_i	1.52/h ^{5/6}	· ·
Flexibility factor out of plane, k_o	1.52/h ^{5/6}	
SIF in plane, i _i	0.9/h ^{2/3}	
SIF out of plane, <i>i</i> _o	$0.9/h^{2/3}$	
SIF torsional, i _t	1	θ $R_{1} = \frac{s \cot \theta}{2}$
1.3 Widely Spaced Miter Bend, $s \ge R$ ($(1 + \tan \theta)$ [Notes (1), (4), (5)]	1
Flexibility characteristic, h	$T (1 + \cot \theta)/(2R)$	
Flexibility factor in plane, k_i	$1.52/h^{5/6}$	θ
Flexibility factor out of plane, k_o	$1.52/h^{5/6}$	
	0.0	
SIF in plane, <i>i</i> _i	$0.9/h^{2/3}$	
SIF out of plane, i _o	$0.9/h^{2/3}$	
SIF torsional, <i>i</i> _t	1	$R_1 = \frac{R(1 + \cot \theta)}{2}$

ASME B31J-2023

Table 1-1 Flexibility and Stress Intensification Factors

Term	Equation	Sketch
2.1 Welding Tee Meeting ASME B16.9 [Not	tes (1), (6), (7)]	
Run in-plane flexibility factor, k _{ir}	$0.18(R/T)^{0.8} (d/D)^5$	
Run out-of-plane flexibility factor, k _{or}	1	
Run torsional flexibility factor, k_{tr}	$0.08(R/T)^{0.91}(d/D)^{5.7}$	
		$T_c + R$
Branch in-plane flexibility factor, k_{ib}	$[1.91(d/D) - 4.32(d/D)^{2} + 2.7(d/D)^{3}](R/T)^{0.77} (d/D)^{0.47} (t/T)$	\sum_{r_x}
Branch out-of-plane flexibility factor, k_{ob}	$[0.34(d/D) - 0.49(d/D)^{2} + 0.18(d/D)^{3}](R/T)^{1.46} (t/T)$	\rightarrow $d = 2r$
Branch torsional flexibility factor, k_{tb}	$[1.08(d/D) - 2.44(d/D)^{2} + 1.52(d/D)^{3}](R/T)^{0.77} (d/D)^{1.61} (t/T)$	\rightarrow r \leftarrow D = 2R
Run SIF in plane, i _{ir}	$0.98(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$	$ \rightarrow $
Run SIF out of plane, i _{or}	$0.61(R/T)^{0.29} (d/D)^{1.95} (t/T)^{-0.53}$	
Run SIF torsional, <i>i</i> tr	$0.34(R/T)^{2/3} (d/D)(t/T)^{-0.5}$	$+$ \mathbf{e}_{τ} $+$ \mathbf{e}_{τ}
Branch SIF in plane, <i>i</i> _{ib}	$0.33(R/T)^{2/3} (d/D)^{0.18} (t/T)^{0.7}$	r_x
Branch SIF out of plane, <i>i</i> ob	$0.42(R/T)^{2/3} (d/D)^{0.37} (t/T)^{0.37}$	$ \rightarrow < d = 2r$
Branch SIF torsional, i_{tb}	$0.42(R/T)^{2/3} (d/D)^{1.1} (t/T)^{1.1}$	\rightarrow r \leftarrow D = 2R

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

Term	Sketch	
2.2 Reinforced Fabricated Tee (When $t_p > 1$	1.5 <i>T</i> , Use $t_p = 1.5T$ [Notes (1), (7)]	
Run in-plane flexibility factor, k_{ir}	$0.21[R/(T+0.5t_p)]^{0.97} (t/T)^{-0.65} (d/D)^{6.2}$	
Run out-of-plane flexibility factor, k _{or}	1	\downarrow
Run torsional flexibility factor, k _{tr}	$0.12[R/(T+0.5t_p)]^{1.39} (t/T)^{-0.74} (d/D)^{8.5}$	
		$T \rightarrow R$
Branch in-plane flexibility factor, k_{ib}	$[1.29(d/D) - 2.73(d/D)^{2} + 1.62(d/D)^{3}][R/(T + 0.5t_{p})]^{1.2} (t/T)^{0.56} (d/D)^{0.33}$	
Branch out-of-plane flexibility factor, k _{ob}	$[0.84(d/D) - 1.27(d/D)^{2} + 0.5(d/D)^{3}][R/(T + 0.5t_{p})]^{1.69} (t/T)^{0.68} (d/D)^{0.21}$	
Branch torsional flexibility factor, k _{tb}	$1.1[R/(T+0.5t_p)]^{0.5} (d/D)^{5.42}$	Pad Saddle
		t_p and Saddle t_p
Run SIF in plane, i _{ir}	$\left[R/(T+0.5t_p)\right]^{0.45} (d/D)^{1.0} (t/T)^{-0.34} \ge 1.5$	→ ←
Run SIF out of plane, i _{or}	$[1.29(d/D) - 2.87(d/D)^{2} + 2.39(d/D)^{3}](t/T)^{-0.25}[R/(T+0.5t_{p})]^{0.35}$	r t $d = 2r$
Run SIF torsional, i _{tr}	$0.36[R/(T+0.5t_p)]^{2/3} (t/T)^{-0.6} (d/D)^{1.4}$	\checkmark $D = 2R$
Branch SIF in plane, i _{ib}	$[3.33(d/D) - 5.49(d/D)^{2} + 2.94(d/D)^{3}](TR^{2/3})(T + 0.5t_{p})^{-5/3} (t/T)^{0.3}$	
Branch SIF out of plane, iob	$[2.86(d/D) + 2.4(d/D)^{2} - 4.34(d/D)^{3}](TR^{2/3})(T + 0.5t_{p})^{-5/3} (t/T)^{0.3}$	
	(when $t/T < 0.85$, use $t/T = 0.85$)	
Branch SIF torsional, i _{tb}	$0.642(d/D)^2 (TR^{2/3})(T+0.5t_p)^{-5/3} (t/T)^{0.3}$	

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

ASME B31J – 2023 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components

Term	Equation	Sketch
2.3 Fabricated Tee [Notes (1), (7), (8)]		
Run in-plane flexibility factor, k _{ir}	$1.23(R/T)^{0.47} (t/T)^{-0.47} (d/D)^{5.3}$	
Run out-of-plane flexibility factor, k _{or}	1	
Run torsional flexibility factor, k _{tr}	$(R/T)^{0.78} (t/T)^{-0.8} (d/D)^{7.8}$	+ $ -$
		Set on Insert ↓ [↑]
Branch in-plane flexibility factor, k_{ib}	$[3.15(d/D) - 6.4(d/D)^{2} + 4(d/D)^{3}](R/T)^{0.83} (t/T)^{0.49} (d/D)^{-0.2}$	
Branch out-of-plane flexibility factor, k_{ob}	$[2.05(d/D) - 2.94(d/D)^{2} + 1.1(d/D)^{3}](R/T)^{1.4} (t/T)^{0.6} (d/D)^{0.12}$	$r_2 \Box_T$
Branch torsional flexibility factor, k_{tb}	$0.95(R/T)^{0.83} (d/D)^{5.42}$	$t \rightarrow r$ (See Note (8)) $\star r = d = 2r$
		\rightarrow r_p \checkmark $D = 2R$
Run SIF in plane, <i>i_{ir}</i>	$1.2(d/D)^{1.0} (R/T)^{0.4} (t/T)^{-0.35} \ge 1.5$	L.
Run SIF out of plane, <i>i</i> _{or}	$[(d/D) - 2.7(d/D)^2 + 2.62(d/D)^3](R/T)^{0.43} (t/T)^{-0.7}$ (when $d/D < 0.5$, use $d/D = 0.5$; when $t/T < 0.5$, use $t/T = 0.5$)	
Run SIF torsional, i _{tr}	1.2 $(R/T)^{0.46} (t/T)^{-0.45} (d/D)^{1.37}$ (when $t/T < 0.15$, use $t/T = 0.15$)	Set on Insert
Branch SIF in plane, i_{ib}	$ [0.038 + 1.45(d/D) - 2.39(d/D)^2 + 1.34(d/D)^3](R/T)^{0.76} (t/T)^{0.74} $ (when $t/T < 1$, use $t/T = 1$)	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$
Branch SIF out of plane, i_{ob}	$[0.038 + 2(d/D) + 2(d/D)^2 - 3.1(d/D)^3](R/T)^{2/3} (t/T)$ (when $t/T < 0.6$ use $t/T = 0.6$)	$\begin{array}{c c} t \rightarrow & \leftarrow & r \\ \hline & r & \\ \hline & r & r_p \\ \hline & & D = 2R \end{array}$
Branch SIF torsional, i_{tb}	$0.45(R/T)^{0.8} (t/T)^{0.29} (d/D)^2$	Ļ
		Set on Insert ↓
		As welded
		$t \rightarrow \leftarrow r \leftarrow d = 2r$
		\rightarrow r_p \leftarrow $D = 2R$

 Table 1-1

 Flexibility and Stress Intensification Factors (Cont'd)

ASME B31J – 2023 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components

TermEquationSketch2.4 Extraded Outlet With $r_x \ge 0.05d_x$ and $T < T_c < 1.5T$ [Notes (1), (7), (9]]Run in-plane flexibility factor, k_{tor} 0.18(R/T) ^{0.51} (d/D) ^{5.7} Run out-of-plane flexibility factor, k_{tor} 1Run torsional flexibility factor, k_{tor} 0.08(R/T) ^{0.51} (d/D) ^{5.7} Branch in-plane flexibility factor, k_{tor} 1Branch in-plane flexibility factor, k_{tor} 10.34(d/D) - 4.32(d/D) ² + 2.7(d/D) ³ [(R/T) ^{5.7} (d/D) ^{0.47} (t/T)Branch out-of-plane flexibility factor, k_{tor} 10.34(d/D) - 0.49(d/D) ² + 0.18(d/D) ³ [(R/T) ^{5.7} (d/D) ^{0.47} (t/T)Branch torsional flexibility factor, k_{tor} 1.05(d/L) - 2.34(d/D) - 2.34(d/D) ^{2.57} (d/D) ^{5.57} (d/D) ^{5.72} (t/T)Run SIF in plane, l_{tor} 0.55(1 + $r_x/R)^{-2/5}$ (R/T) ^{5.53} (d/D) ^{5.72} (d/T) ^{-5.52} Run SIF out of plane, l_{tor} 0.55(1 + $r_x/R)^{-2/5}$ (R/T) ^{2.73} (d/D) ^{6.55} Branch SIF out on plane, l_{too} 0.85(1 + $r_x/R)^{-2/5}$ (R/T) ^{2.74} (d/D) ^{5.55} Branch SIF out on plane, l_{too} 0.85(1 + $r_x/R)^{-2/5}$ (R/T) ^{2.74} (d/D) ^{5.55} Branch SIF out on plane, l_{too} 0.85(1 + $r_x/R)^{-2/5}$ (R/T) ^{2.74} (d/D) ^{5.57} Branch SIF out on plane, l_{too} 0.85(1 + $r_x/R)^{-2/5}$ (R/T) ^{2.74} (d/D) ^{5.57} Branch SIF out on plane, l_{too} 0.18(R/T) ^{0.54} (d/D) ^{5.7} Branch SIF out on plane, l_{too} 0.18(R/T) ^{0.54} (d/D) ^{5.7} Branch SIF out on plane, l_{too} 0.18(R/T) ^{0.54} (d/D) ^{5.7} Branch SIF out on plane, flexibility factor, k_{too} 0.18(R/T) ^{0.54} (d/D) ^{5.7} Branch torsional flexibility factor, k_{too} 1.18(Q/D) ^{0.57} (d/D) ^{0.57} (Flexibility and Stress Intensification Factors (Cont'd)	
Run in-plane flexibility factor, k_{tr} 0.18(R/T) ^{0.6} (d/D) ^{5.7} Run out-of-plane flexibility factor, k_{tr} 0.08(R/T) ^{0.91} (d/D) ^{5.7} Branch in-plane flexibility factor, k_{tr} 0.08(R/T) ^{0.91} (d/D) ^{5.7} Branch in-plane flexibility factor, k_{tr} (1.91(d/D) - 4.32(d/D) ² + 2.7(d/D) ³](R/T) ^{0.57} (d/D) ^{0.47} (t/T) Branch torsional flexibility factor, k_{tr} (1.98(d/D) - 0.43(d/D) ² + 2.7(d/D) ³](R/T) ^{0.57} (d/D) ^{1.57} (t/T) Branch torsional flexibility factor, k_{tr} (1.08(d/D) - 2.44(d/D) ² + 1.52(d/D) ³ [(R/T) ^{0.57} (d/D) ^{1.57} (t/T) Run SIF in plane, l_{tr} (1.45(1 + $r_x/R)^{-2/3}$ (R/T) ^{2.53} (d/D) ^{0.52} (t/T) ^{-0.52} Run SIF out of plane, l_{trr} 0.55(1 + $r_x/R)^{-2/3}$ (R/T) ^{2.54} (d/D) ^{2.60} Branch SIF out op plane, l_{trr} 0.55(1 + $r_x/R)^{-2/3}$ (R/T) ^{2.54} (d/D) ^{2.60} Branch SIF out op plane, l_{tor} 0.55(1 + $r_x/R)^{-2/3}$ (R/T) ^{2.54} (d/D) ^{0.56} Branch SIF out op plane, l_{tor} 0.55(1 + $r_x/R)^{-2/3}$ (R/T) ^{2.74} (d/D) ^{0.56} Branch SIF out op plane, l_{tob} 0.85(1 + $r_x/R)^{-2/3}$ (R/T) ^{2.74} (d/D) ^{0.56} Branch SIF out op plane, l_{tob} 0.85(1 + $r_x/R)^{-2/3}$ (R/T) ^{2.74} (d/D) ^{0.56} Branch SIF out op plane, l_{tob} 0.18(R/T) ^{0.59} (d/D) ^{5.7} Branch SIF out op plane flexibility factor, k_{tr} 0.18(R/T) ^{0.59} (d/D) ^{5.7}	Term	Equation	Sketch
Run out-of-plane flexibility factor, k_{gr} 1Run torsional flexibility factor, k_{gr} 0.08(R/T)^{0.51} (d/D)^{5.7}Branch in-plane flexibility factor, k_{gb} [1.91(d/D) - 4.32(d/D)^2 + 2.7(d/D)^3](R/T)^{0.77} (d/D)^{0.47} (t/T)Branch out-of-plane flexibility factor, k_{gb} [1.08(d/D) - 0.49(d/D)^2 + 0.18(d/D)^3](R/T)^{0.77} (d/D)^{1.46} (t/T)Branch torsional flexibility factor, k_{gb} [1.08(d/D) - 2.44(d/D)^2 + 1.52(d/D)^3](R/T)^{0.77} (d/D)^{1.79} (t/T)Run SIF in plane, i_{tr} 1.45(1 + $r_{sf}/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.27}$ Run SIF out of plane, i_{er} 0.56(1 + $r_{sf}/R)^{-2/3} (R/T)^{2/3} (d/D)^{2.69}$ Branch SIF out of plane, i_{ab} 0.56(1 + $r_{sf}/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF out of plane, i_{ab} 0.56(1 + $r_{sf}/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF torsional, i_{ab} 0.71(1 + $r_{sf}/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF out of plane, i_{ab} 0.85(1 + $r_{sf}/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF torsional, i_{ab} 0.71(1 + $r_{sf}/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF torsional, i_{ab} 0.71(1 + $r_{sf}/R)^{-2/3} (R/T)^{2/3} (d/D)^{5.7}$ Run out-of-plane flexibility factor, k_{ar} 1Run torsional flexibility factor, k_{ab} [1.05(d/D) - 5.33(d/D)^3 + 3.33(d/D)^3](R/T)^{0.77} (d/D)^{0.47} (t/T)Branch in-plane flexibility factor, k_{ab} [1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)Branch torsional flexibility factor, k_{ab} [1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)Branch in-plane flexibility factor, k_{ab} [1.05	2.4 Extruded Outlet With $r_x \ge 0.05d_o$ and T	< T _c < 1.5T [Notes (1), (7), (9)]	
Run torsional flexibility factor, k_{tr} 0.08(R/T) ^{0.01} (d/D) ^{5.7} To the flexibility factor, k_{tr} (1.91(d/D) - 4.32(d/D) ² + 2.7(d/D) ³ (R/T) ^{0.577} (d/D) ^{0.47} (t/T) Branch torsional flexibility factor, k_{trb} (1.91(d/D) - 4.32(d/D) ² + 2.7(d/D) ³ (R/T) ^{0.577} (d/D) ^{0.47} (t/T) Branch torsional flexibility factor, k_{trb} (1.08(d/D) - 2.44(d/D) ² + 1.52(d/D) ³ (R/T) ^{0.577} (d/D) ^{0.47} (t/T) Run SIF in plane, i_{trr} 0.55(1 + $r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{2.59}$ Run SIF out of plane, i_{arr} 0.55(1 + $r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.55}$ Branch SIF in plane, i_{bb} 0.55(1 + $r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF torsional, i_{2b} 0.55(1 + $r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF torsional, i_{2b} 0.55(1 + $r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{2}$ 0.55(1 + $r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{5.5}$ Branch SIF torsional, i_{2b} 0.55(1 + $r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{2}$ Celded-in Contour Insert (When r_x Is Not Provided, Use $r_x = 0$ [Notes (1), (6), (7)] Run out-of-plane flexibility factor, k_{cp} 0.18(R/T) ^{0.54} (d/D) ⁵ Branch to	Run in-plane flexibility factor, k_{ir}	$0.18(R/T)^{0.8} (d/D)^5$	
Image: Second	Run out-of-plane flexibility factor, k_{or}	1	
Branch out-of-plane flexibility factor, k_{ob} $[0.34(d/D) - 0.49(d/D)^2 + 0.18(d/D)^3](R/T)^{0.57}(d/D)^{1.79}(t/T)$ Branch torsional flexibility factor, k_{ob} $[1.08(d/D) - 2.44(d/D)^2 + 1.52(d/D)^3](R/T)^{0.77}(d/D)^{1.79}(t/T)$ Run SIF in plane, i_{or} $0.58(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{2/69}$ Run SIF out of plane, i_{or} $0.55(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{2/69}$ Branch SIF in plane, i_{ib} $0.56(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.56}$ Branch SIF out of plane, i_{ob} $0.38(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.56}$ Branch SIF out of plane, i_{ob} $0.38(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.56}$ Branch SIF torsional, i_{tb} $0.71(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.5}$ Branch SIF torsional, i_{tb} $0.18(R/T)^{0.34}(d/D)^5$ Run in-plane flexibility factor, k_{tr} $0.18(R/T)^{0.34}(d/D)^5$ Run out-of-plane flexibility factor, k_{tr} $0.1(R/T)^{0.51}(d/D)^{5.7}$ Branch in-plane flexibility factor, k_{tb} $(2.36(d/D) - 5.33(d/D)^2 + 3.33(d/D)^3[(R/T)^{0.77}(d/D)^{0.47}(t/T)$ Branch torsional flexibility factor, k_{cb} $(1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3[(R/T)^{0.57}(d/D)^{0.41}(t/T)$ Branch in-plane flexibility factor, k_{cb} $(1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3[(R/T)^{0.57}(d/D)^{0.41}(t/T)$ Branch torsional flexibility factor, k_{cb} <	Run torsional flexibility factor, k_{tr}	$0.08(R/T)^{0.91}(d/D)^{5.7}$	
Branch out-of-plane flexibility factor, k_{ob} $[0.34(d/D) - 0.49(d/D)^2 + 0.18(d/D)^{3/1}(k/T)^{1.46}(t/T)$ Branch torsional flexibility factor, k_{ob} $[1.08(d/D) - 2.44(d/D)^2 + 1.52(d/D)^{3/7}(d/D)^{1.79}(t/T)$ Run SIF in plane, i_{tr} $1.45(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{2.69}$ Run SIF out of plane, i_{or} $0.58(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{2.69}$ Branch SIF in plane, i_{bb} $0.56(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.56}$ Branch SIF out of plane, i_{ab} $0.56(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.56}$ Branch SIF out of plane, i_{ab} $0.56(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.56}$ Branch SIF torsional, i_{tr} $0.35(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.5}$ Branch SIF torsional, i_{tb} $0.71(1 + r_x/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.5}$ Branch SIF torsional, i_{tb} $0.18(R/T)^{0.24}(d/D)^5$ Run in-plane flexibility factor, k_{tr} $0.18(R/T)^{0.24}(d/D)^5$ Run out-of-plane flexibility factor, k_{tr} $0.1(R/T)^{0.51}(d/D)^{5.7}$ Branch out-of-plane flexibility factor, k_{tb} $(1.4 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3!(R/T)^{1.46}(t/T)$ Branch nin-plane flexibility factor, k_{tb} $(1.4 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3!(R/T)^{1.46}(t/T)$ Branch torsional flexibility factor, k_{tb} $(1.4 + r_x/R)[0.67(d/D)^{-2.3}(d/D)^{-3.5}(t/T)^{-0.57}($			
Branch torsional flexibility factor, k_{cb} $[1.08(d/D) - 2.44(d/D)^2 + 1.52(d/D)^3](R/T)^{0.77} (d/D)^{1.79} (t/T)$ Run SIF in plane, i_{tr} $1.45(1 + r_x/R)^{-2/3} (R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$ Run SIF out of plane, i_{or} $0.58(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.72}$ Branch SIF in plane, i_{b} $0.56(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF out of plane, i_{bb} $0.56(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF out of plane, i_{bb} $0.56(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.56}$ Branch SIF torsional, i_{ab} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF torsional, i_{ab} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF torsional, i_{ab} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{2}$ 2.5 Welded-in Contour Insert (When r_x Is Not Provided, Use $r_x = 0$ [Notes (1), (6), (7)] Run out-of-plane flexibility factor, k_{0r} $0.18(R/T)^{0.84} (d/D)^5$ Run out-of-plane flexibility factor, k_{0r} $0.1(R/T)^{0.91} (d/D)^{5.7}$ Branch torsional flexibility factor, k_{ab} $(1.5d(d/D) - 2.3d(d/D)^2 + 0.3d(d/D)^3](R/T)^{0.77} (d/D)^{0.47} (t/T)$ Branch torsional flexibility factor, k_{ab} $(1.05(d/D) - 2.3d(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.46} (t/T)$ Branch out-of-plane flexibility factor, k_{ab} $(1.05(d/D) - 2.3d(d/$	Branch in-plane flexibility factor, k_{ib}	$[1.91(d/D) - 4.32(d/D)^{2} + 2.7(d/D)^{3}](R/T)^{0.77} (d/D)^{0.47} (t/T)$	
Branch torsional flexibility factor, k_{tb} $[1.08(d/D) - 2.44(d/D]^2 + 1.52(d/D)^{3/7} (d/D)^{1.79} (t/T)$ Run SIF in plane, i_{tr} $1.45(1 + r_s/R)^{-2/3} (R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$ Run SIF out of plane, i_{cr} $0.58(1 + r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.460}$ Branch SIF in plane, i_{tr} $0.55(1 + r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.460}$ Branch SIF out of plane, i_{ab} $0.56(1 + r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.480}$ Branch SIF out of plane, i_{ab} $0.56(1 + r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.480}$ Branch SIF torsional, i_{ab} $0.56(1 + r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF out of plane, i_{ab} $0.51(1 + r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF torsional, i_{ab} $0.71(1 + r_s/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Run out-of-plane flexibility factor, k_{ar} $0.18(R/T)^{0.64} (d/D)^5$ Run out-of-plane flexibility factor, k_{ar} $0.18(R/T)^{0.64} (d/D)^5$ Branch out-of-plane flexibility factor, k_{ab} $(1 + r_s/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch torsional flexibility factor, k_{ab} $(1 + r_s/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch out-of-plane flexibility factor, k_{ab} $(1 + r_s/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch torsional flexibility factor, k_{ab} </td <td>Branch out-of-plane flexibility factor, k_{ob}</td> <td>$[0.34(d/D) - 0.49(d/D)^{2} + 0.18(d/D)^{3}](R/T)^{1.46} (t/T)$</td> <td>d = 2r</td>	Branch out-of-plane flexibility factor, k_{ob}	$[0.34(d/D) - 0.49(d/D)^{2} + 0.18(d/D)^{3}](R/T)^{1.46} (t/T)$	d = 2r
Run SIF out of plane, i_{or} $0.58(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{2/9}$ Run SIF torsional, i_{tr} $0.55(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.68}$ Branch SIF in plane, i_{ib} $0.56(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.68}$ Branch SIF out of plane, i_{ab} $0.85(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF torsional, i_{ib} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF torsional, i_{ib} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{2}$ 2.5 Welded-in Contour Insert (When r_x Is Not Provided, Use $r_x = 0$) [Notes (1), (6), (7)] Run out-of-plane flexibility factor, k_{tr} $0.1(R/T)^{0.91} (d/D)^{5.7}$ Branch in-plane flexibility factor, k_{tb} $(2.36(d/D) - 5.33(d/D)^{2} + 3.33(d/D)^{3}](R/T)^{0.77} (d/D)^{0.47} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.1 + r_x/R)[0.67(d/D) - 0.97(d/D)^{2} + 0.36(d/D)^{3}](R/T)^{0.41} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.2.36(d/D) - 2.36(d/D)^{2} + 1.49(d/D)^{3}](R/T)^{0.77} (d/D)^{0.41} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.1 - r_x/R)[0.67(d/D) - 2.36(d/D)^{3}](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.05(d/D) - 2.36(d/D)^{2} + 1.49(d/D)^{3}](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.07)^{0.53} (d/D)^{0.72} (t/T)^{0.52}$	Branch torsional flexibility factor, k_{tb}	$[1.08(d/D) - 2.44(d/D)^{2} + 1.52(d/D)^{3}](R/T)^{0.77} (d/D)^{1.79} (t/T)$	
Run SIF out of plane, i_{or} $0.58(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{2/9}$ Run SIF torsional, i_{tr} $0.55(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.68}$ Branch SIF in plane, i_{ib} $0.56(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.68}$ Branch SIF out of plane, i_{ab} $0.85(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF torsional, i_{ib} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF torsional, i_{ib} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{2}$ 2.5 Welded-in Contour Insert (When r_x Is Not Provided, Use $r_x = 0$) [Notes (1), (6), (7)] Run out-of-plane flexibility factor, k_{tr} $0.1(R/T)^{0.91} (d/D)^{5.7}$ Branch in-plane flexibility factor, k_{tb} $(2.36(d/D) - 5.33(d/D)^{2} + 3.33(d/D)^{3}](R/T)^{0.77} (d/D)^{0.47} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.1 + r_x/R)[0.67(d/D) - 0.97(d/D)^{2} + 0.36(d/D)^{3}](R/T)^{0.41} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.2.36(d/D) - 2.36(d/D)^{2} + 1.49(d/D)^{3}](R/T)^{0.77} (d/D)^{0.41} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.1 - r_x/R)[0.67(d/D) - 2.36(d/D)^{3}](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.05(d/D) - 2.36(d/D)^{2} + 1.49(d/D)^{3}](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.07)^{0.53} (d/D)^{0.72} (t/T)^{0.52}$	Run SIF in plane, <i>i_{ir}</i>	$1.45(1 + r_x/R)^{-2/3} (R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$	_
Branch SIF in plane, i_{ib} 0.56(1 + r_x/R) ^{-2/3} (R/T) ^{2/3} (d/D) ^{0.68} Branch SIF out of plane, i_{ob} 0.85(1 + r_x/R) ^{-2/3} (R/T) ^{2/3} (d/D) ^{0.5} Branch SIF torsional, i_{ib} 0.71(1 + r_x/R) ^{-2/3} (R/T) ^{2/3} (d/D) ² 2.5 Welded-in Contour Insert (When r_x Is Not Provided, Use $r_x = 0$) [Notes (1), (6), (7)] Run ni-plane flexibility factor, k_{ir} 0.18(R/T) ^{0.84} (d/D) ⁵ Run out-of-plane flexibility factor, k_{cr} 1 Run torsional flexibility factor, k_{cr} 0.1(R/T) ^{0.91} (d/D) ^{5.7} Branch in-plane flexibility factor, k_{cb} [2.36(d/D) - 5.33(d/D) ² + 3.33(d/D) ³](R/T) ^{0.47} (t/T) Branch out-of-plane flexibility factor, k_{cb} [1 + r_x/R][0.67(d/D) - 0.97(d/D) ² + 0.36(d/D] ³ [R/T) ^{0.47} (t/T) Branch torsional flexibility factor, k_{cb} [1 + r_x/R][0.67(d/D) - 2.36(d/D) ³](R/T) ^{0.47} (d/D) ^{1.61} (t/T) Branch torsional flexibility factor, k_{cb} [1 + r_x/R][0.67(d/D) - 2.36(d/D] ³](R/T) ^{0.47} (d/D) ^{1.61} (t/T) Branch torsional flexibility factor, k_{cb} [1 + r_x/R][0.67(d/D) - 2.36(d/D] ³](R/T) ^{0.77} (d/D] ^{1.61} (t/T) Branch torsional flexibility factor, k_{cb} [1 - 0.5(d/D]) ^{-2.23} (d/D] ^{0.72} (t/T] ^{-0.52} Run SIF in plane, i_{tr} (R/T) ^{0.35} (d/D]) ^{0.72} (t/T] ^{0.53}	Run SIF out of plane, ior	$0.58(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{2.69}$	
Branch SIF out of plane, i_{ob} $0.85(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF torsional, i_{tb} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^2$ 2.5 Welded-in Contour Insert (When r_x Is Not Provided, Use $r_x = 0$) [Notes (1), (6), (7)] Run in-plane flexibility factor, k_{tr} $0.18(R/T)^{0.64} (d/D)^5$ Run out-of-plane flexibility factor, k_{tr} $0.1(R/T)^{0.91} (d/D)^{5.7}$ Branch in-plane flexibility factor, k_{tb} $[2.36(d/D) - 5.33(d/D)^2 + 3.33(d/D)^3](R/T)^{0.47} (t/T)$ Branch out-of-plane flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D)^{0.72} (t/T)^{-0.52}$ Run SIF in plane, i_{tr} $(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.53}$ Run SIF out of plane, i_{or} $0.72(R/T)^{0.29} (d/D)^{1.95} (t/T)^{-0.53}$ T	Run SIF torsional, itr	$0.55(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)(t/T)^{-0.5}$	
Branch SIF out of plane, i_{ob} $0.85(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.5}$ Branch SIF torsional, i_{tb} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^2$ 2.5 Welded-in Contour Insert (When r_x Is Not Provided, Use $r_x = 0$) [Notes (1), (6), (7)] Run in-plane flexibility factor, k_{ir} $0.18(R/T)^{0.84} (d/D)^5$ Run out-of-plane flexibility factor, k_{tr} $0.1(R/T)^{0.91} (d/D)^{5.7}$ Branch in-plane flexibility factor, k_{ib} $[2.36(d/D) - 5.33(d/D)^2 + 3.33(d/D)^3](R/T)^{0.47} (t/T)$ Branch out-of-plane flexibility factor, k_{ob} $(1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch out-of-plane flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D)^{0.72} (t/T)^{-0.52}$ $d = 2r$ Run SIF in plane, i_{ir} $(R/T)^{0.35} (d/D)^{0.95} (t/T)^{-0.53}$ T	Branch SIF in plane, <i>i</i> _{ib}	$0.56(1 + r_{\rm x}/R)^{-2/3} (R/T)^{2/3} (d/D)^{0.68}$	_
Branch SIF torsional, i_{tb} $0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^2$ 2.5 Welded-in Contour Insert (When r_x Is Not Provided, Use $r_x = 0$) [Notes (1), (6), (7)] Run in-plane flexibility factor, k_{tr} $0.18(R/T)^{0.94} (d/D)^5$ Run out-of-plane flexibility factor, k_{tr} $0.1(R/T)^{0.91} (d/D)^{5.7}$ Branch in-plane flexibility factor, k_{tb} $(2.36(d/D) - 5.33(d/D)^2 + 3.33(d/D)^3](R/T)^{0.77} (d/D)^{0.47} (t/T)$ Branch out-of-plane flexibility factor, k_{tb} $(1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Branch torsional flexibility factor, k_{tb} $(1.05(d/D)^{0.72} (t/T)^{-0.52}$ $D = 2R$ Run SIF in plane, i_{0r} $0.72(R/T)^{0.29} (d/D)^{1.95} (t/T)^{0.53}$ T	Branch SIF out of plane, <i>i</i> _{ob}		_
Run in-plane flexibility factor, k_{tr} $0.18(R/T)^{0.84} (d/D)^5$ Run out-of-plane flexibility factor, k_{or} 1Run torsional flexibility factor, k_{tr} $0.1(R/T)^{0.91} (d/D)^{5.7}$ Branch in-plane flexibility factor, k_{tb} $[2.36(d/D) - 5.33(d/D)^2 + 3.33(d/D)^3](R/T)^{0.77} (d/D)^{0.47} (t/T)$ Branch out-of-plane flexibility factor, k_{tb} $[1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Run SIF in plane, i_{tr} $(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$ Run SIF out of plane, i_{or} $0.72(R/T)^{0.29} (d/D)^{1.95} (t/T)^{-0.53}$	Branch SIF torsional, itb	$0.71(1 + r_x/R)^{-2/3} (R/T)^{2/3} (d/D)^2$	
Run out-of-plane flexibility factor, k_{or} 1Run torsional flexibility factor, k_{tr} $0.1(R/T)^{0.91} (d/D)^{5.7}$ Branch in-plane flexibility factor, k_{ib} $[2.36(d/D) - 5.33(d/D)^2 + 3.33(d/D)^3](R/T)^{0.77} (d/D)^{0.47} (t/T)$ Branch out-of-plane flexibility factor, k_{ob} $(1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch torsional flexibility factor, k_{ib} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Run SIF in plane, i_{ir} $(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$ Run SIF out of plane, i_{or} $0.72(R/T)^{0.29} (d/D)^{1.95} (t/T)^{-0.53}$	2.5 Welded-in Contour Insert (When r_x Is N	ot Provided, Use $r_x = 0$ [Notes (1), (6), (7)]	
Run torsional flexibility factor, k_{tr} $0.1(R/T)^{0.91} (d/D)^{5.7}$ Branch in-plane flexibility factor, k_{ib} $[2.36(d/D) - 5.33(d/D)^2 + 3.33(d/D)^3](R/T)^{0.77} (d/D)^{0.47} (t/T)$ Branch out-of-plane flexibility factor, k_{ob} $(1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Run SIF in plane, i_{tr} $(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$ $d = 2r$ Run SIF out of plane, i_{or} $0.72(R/T)^{0.29} (d/D)^{1.95} (t/T)^{-0.53}$ T	Run in-plane flexibility factor, k _{ir}	$0.18(R/T)^{0.84} (d/D)^5$	
Branch in-plane flexibility factor, k_{ib} $[2.36(d/D) - 5.33(d/D)^2 + 3.33(d/D)^3](R/T)^{0.77} (d/D)^{0.47} (t/T)$ Branch in-plane flexibility factor, k_{ob} $[1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46} (t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Run SIF in plane, i_{tr} $(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$ $D = 2R$ Run SIF out of plane, i_{or} $0.72(R/T)^{0.29} (d/D)^{1.95} (t/T)^{-0.53}$ T	Run out-of-plane flexibility factor, k_{or}	1	
Branch out-of-plane flexibility factor, k_{ob} $(1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46}(t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77}(d/D)^{1.61}(t/T)$ Run SIF in plane, i_{tr} $(R/T)^{0.35}(d/D)^{0.72}(t/T)^{-0.52}$ $d = 2r$ Run SIF out of plane, i_{or} $0.72(R/T)^{0.29}(d/D)^{1.95}(t/T)^{-0.53}$ \sqrt{T}	Run torsional flexibility factor, k_{tr}	$0.1(R/T)^{0.91} (d/D)^{5.7}$	R
Branch out-of-plane flexibility factor, k_{ob} $(1 + r_x/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46}(t/T)$ Branch torsional flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77}(d/D)^{1.61}(t/T)$ Run SIF in plane, i_{tr} $(R/T)^{0.35}(d/D)^{0.72}(t/T)^{-0.52}$ $d = 2r$ Run SIF out of plane, i_{or} $0.72(R/T)^{0.29}(d/D)^{1.95}(t/T)^{-0.53}$ \sqrt{T}			T_c
Branch torsional flexibility factor, k_{tb} $[1.05(d/D) - 2.36(d/D)^2 + 1.49(d/D)^3](R/T)^{0.77} (d/D)^{1.61} (t/T)$ Run SIF in plane, i_{tr} $(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$ Run SIF out of plane, i_{or} $0.72(R/T)^{0.29} (d/D)^{1.95} (t/T)^{-0.53}$	Branch in-plane flexibility factor, k_{ib}		
Run SIF in plane, i_{tr} $(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$ Run SIF out of plane, i_{or} $0.72 (R/T)^{0.29} (d/D)^{1.95} (t/T)^{-0.53}$	Branch out-of-plane flexibility factor, k_{ob}		[]]] [] [] [] [] [] [] [] [
Run SIF in plane, i_{tr} $(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$ $T < D = 2R$ Run SIF out of plane, i_{or} $0.72 (R/T)^{0.29} (d/D)^{1.95} (t/T)^{-0.53}$ $\checkmark T$	Branch torsional flexibility factor, k_{tb}	$[1.05(d/D) - 2.36(d/D)^{2} + 1.49(d/D)^{3}](R/T)^{0.77} (d/D)^{1.61} (t/T)$	
Run SIF out of plane, i_{or} 0.72(R/T) ^{0.29} (d/D) ^{1.95} (t/T) ^{-0.53}	Run SIF in plane, in	$(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$	
Run SIF torsional, i_{tr} 0.36(R/T) ^{2/3} (d/D)(t/T) ^{-0.5}	Run SIF torsional, <i>i</i> tr	$0.36(R/T)^{2/3} (d/D)(t/T)^{-0.5}$	
Branch SIF in plane, i_{ib} $0.35(R/T)^{2/3} (d/D)^{0.18} (t/T)^{0.7}$	Branch SIF in plane, <i>i_{ib}</i>	$0.35(R/T)^{2/3} (d/D)^{0.18} (t/T)^{0.7}$	
Branch SIF out of plane, i_{ob} $0.48(R/T)^{2/3} (d/D)^{0.37} (t/T)^{0.37}$	Branch SIF out of plane, <i>i</i> ob	$0.48(R/T)^{2/3} (d/D)^{0.37} (t/T)^{0.37}$	
Branch SIF torsional, i_{tb} $0.44(R/T)^{2/3} (d/D)^{1.1} (t/T)^{1.1}$ $\rightarrow r$ t $d = 2r$ D = 2R	Branch SIF torsional, i_{tb}	$0.44(R/T)^{2/3} \ (d/D)^{1.1} \ (t/T)^{1.1}$	

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

ASME B31J – 2023 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components

	Flexibility and Stress Intensification Factors (Cont'd)	
Term	Equation	Sketch
2.6 Integrally Reinforced Branch Welded-o	on Fittings [Notes (1), (7), (10)]	
Run in-plane flexibility factor, k_{ir}	$0.5(R/T)^{0.5}(d/D)^5$	
Run out-of-plane flexibility factor, k_{or}	1	
Run torsional flexibility factor, k_{tr}	$0.1(R/T)(d/D)^{5.7}$	((+))
Branch in-plane flexibility factor, k _{ib}	$[0.55(d/D) - 1.13(d/D)^{2} + 0.69(d/D)^{3}](R/T)(t/T)$	
Branch out-of-plane flexibility factor, k _{ob}	$[1.03(d/D) - 1.55(d/D)^{2} + 0.59(d/D)^{3}](R/T)^{1.4} (t/T)(d/D)^{0.33}$	
Branch torsional flexibility factor, k_{tb}	$[0.37(d/D) - 0.75(d/D)^{2} + 0.46(d/D)^{3}](R/T)(t/T)(d/D)^{1.2}$	
Run SIF in plane, i _{ir}	$(R/T)^{0.43} (d/D)^{0.5} \ge 1.5$	
Run SIF out of plane, i _{or}	$[0.02 + 0.88(d/D) - 2.56(d/D)^{2} + 2.58(d/D)^{3}](R/T)^{0.43}$	
Run SIF torsional, i _{tr}	$1.3(R/T)^{0.45} (d/D)^{1.37}$	
Branch SIF in plane, <i>i_{ib}</i>	$[0.08 + 1.28(d/D) - 2.35(d/D)^{2} + 1.45(d/D)^{3}](R/T)^{0.81} (t/T)(r/r_{p})$	
Branch SIF out of plane, i _{ob}	$[1.83(d/D) - 1.07(d/D)^3] (R/T)^{0.82} (t/T)(r/r_p)^{1.18}$	
Branch SIF torsional, <i>i</i> _{tb}	$0.77(R/T)^{2/3} (t/T) (d/D)^2 (r/r_p)$	$ \begin{array}{c} r_{p} \neq & d = 2r \\ f_{p} \neq & D = 2R \\ \hline \hline $
3.1 Concentric or Eccentric Reducer Meetin	$0.6 + 0.003(\alpha T_2/T_1)^{0.8} (D_2/T_2)^{0.25} (D_2/r_2)$	
$\frac{\text{SIF in plane, } i_i}{\text{SIF out of plane, } i_o}$	$0.6 + 0.003(aT_2/T_1) (D_2/T_2) (D_2/T_2)$ $0.6 + 0.003(aT_2/T_1)^{0.8} (D_2/T_2)^{0.25} (D_2/T_2)$, <i>T</i> 1
SIF torsional, <i>i</i> _t	$\frac{0.8 + 0.005(aT_2/T_1) (D_2/T_2) (D_2/T_2)}{0.3 + 0.0015(aT_2/T_1)^{0.8} (D_2/T_2)^{0.25} (D_2/T_2)}$	$ \begin{array}{c} \downarrow \\ \uparrow \\ D_1 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$

ASME B31J-2023

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

	Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)	
Term	Equation	Sketch	
4.1 Butt Weld, $T \ge 6$ mm (0.237 in.), $\delta_{\max} \le 1.5$	$\delta mm (\frac{1}{16} \text{ in.}), \text{ and } \delta_{avg}/T \le 0.13 \text{ [Note (12)]}$		
SIF in plane, <i>i</i> _i	1.0		
SIF out of plane, i _o	1.0	\uparrow_{τ}	
SIF torsional, <i>i</i> _t	1.0	$\underbrace{\downarrow^{T}}_{\uparrow\delta} \underbrace{\swarrow \downarrow^{\prime}}_{\uparrow\delta}$	
4.2 Butt Weld, $T \ge 6$ mm (0.237 in.), $\delta_{\max} \le 3$ i	nm ($^{1}_{/_{8}}$ in.), and δ_{avg}/T = Any Value OR T < 6 mm (0.237 in.), $\delta_{\mathrm{max}} \leq 1.5$	5 mm ($^{1}/_{16}$ in.), and $\delta_{avg}/T \le 0.33$ [Note (12)]	
SIF in plane, <i>i_i</i>	1.9 max. or $0.9 + 2.7(\delta_{avg}/T)$ but not less than 1.0		
SIF out of plane, i _o	1.9 max. or 0.9 + 2.7(δ_{avg}/T) but not less than 1.0		
SIF torsional, <i>i</i> _t	$0.45 + 1.35(\delta_{avg}/T)$ but not less than 1.0	$\underbrace{\begin{array}{c} \downarrow^{T} \\ \uparrow^{\delta} \end{array}}_{T} \underbrace{\begin{array}{c} \downarrow^{I} \\ \downarrow^{I} \\ \uparrow^{\delta} \end{array}}$	
4.3 Fillet-Welded Joint or Socket-Welded Flang	e Meeting ASME B16.5 or Socket-Welded Fitting Meeting ASME B16.11	[Note (13)]	
SIF in plane, <i>i_i</i>	1.3		
SIF out of plane, i _o	1.3	$ T \qquad T \qquad T$	AS
SIF torsional, <i>i</i> t	1.3	$\begin{array}{c c} & & & & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	ASME B31J-2023
4.4 Tapered Transition in Accordance With Ap	plicable Code Sections and ASME B16.25		
SIF in plane, <i>i_i</i>	1.9 max. or $1.3 + 0.0036(D_o/T) + 3.6(\delta/T)$		
SIF out of plane, i _o	1.9 max. or $1.3 + 0.0036(D_o/T) + 3.6(\delta/T)$	т	
SIF torsional, <i>i</i> _t	1.3		
4.5 Weld Neck Flange	·	· · · · · · · · · · · · · · · · · · ·	
SIF in plane, <i>i</i> _i	1.0		
SIF out of plane, i _o	1.0		
SIF torsional, <i>i</i> _t	1.0		

	Flexibility and Stress Intensincation Factors (Cont u)	
Term	Equation	Sketch
4.6 Single Welded Slip-on Flange		
SIF in plane, i _i	1.3	
SIF out of plane, i _o	1.3	
SIF torsional, <i>i</i> _t	1.3	
4.7 Double Welded Slip-on Flange		·
SIF in plane, <i>i</i> _i	1.2	
SIF out of plane, i _o	1.2	_
SIF torsional, <i>i</i> _t	1.2	
4.8 Lap Joint Flange (With ASME B16.9 Lap Join	nt Stub)	
SIF in plane, i _i	1.6	
SIF out of plane, i _o	1.6	
SIF torsional, <i>i</i> _t	1.6	
5.1 Threaded Pipe Joint or Threaded Flange in	Accordance With Acceptable Code Detail	
SIF in plane, <i>i_i</i>	2.3	
SIF out of plane, i _o	2.3	
SIF torsional, <i>i</i> _t	2.3	

Table 1-1	
Flexibility and Stress Intensification Factors (Cont'd)	

GENERAL NOTES:

(a) The following symbols are used in this table:

 A_p = metal area of pipe cross section, in.² (mm²)

 \dot{B} = length of miter segment at crotch, in. (mm)

b = branch subscript corresponding to Leg 3 in Figure 1-1

c = factor for rigid ends adjacent to bends, miters, and branch connections in sketches 1.1, 1.2, and 2.1 through 2.6

 C_x = minimum socket weld leg length, in. (mm)

D = mean diameter of matching pipe found from ($D_o - T$), in. (mm); for sketches 2.1 through 2.6, the mean diameter of the matching run pipe

d = mean diameter of matching branch pipe found from $(d_o - t)$, in. (mm)

d' = effective branch diameter used with Figure 1-3, illustrations (a), (b), and (c), in. (mm)

 D_1 , D_2 = outside diameter of matching pipe at large and small ends of reducer, respectively, in. (mm)

 D_i = inside diameter of matching run pipe found from ($D_o - 2T$), in. (mm)

 d_i = inside diameter of matching branch pipe found from $(d_o - 2t)$, in. (mm)

 D_o = outside diameter of matching pipe, in. (mm)

 d_o = outside diameter of the matching branch pipe, in. (mm); for sketches 2.1 through 2.6, the outside diameter of the matching run pipe

 \tilde{E} = modulus of elasticity, psi (kPa)

h = flexibility characteristic for elbows and bends

i = stress intensification factor (SIF)

 I_{br} I_r = matching branch and run pipe moment of inertia used in Table 1-2, in.⁴ (mm⁴)

k = flexibility factor with respect to the plane and component indicated [see Rodabaugh (1994) for a more detailed definition of flexibility factor as it applies to straight and curved pipe and branch connections]

 L_1 = length of taper or thicker branch section in Figure 1-2, in. (mm)

 L_2 = length of the cylindrical portion at the small end of the reducer in sketch 3.1, in. (mm)

M = moment on branch or run legs shown in Figure 1-1, in.-lb (N·mm)

ASME B31J-2023

ASME B31J – 2023

Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components

			Table 1-1		
Flexibility	and	Stress	Intensification	Factors	(Cont'd)

GENERAL NOTES: (Cont'd)

- N_c = number of flanges or other rigid components adjacent to the run pipe end of a branch connection (1 or 2)
- P = gage pressure, psi (MPa)
- R = mean radius of matching pipe found from $(D_o T)/2$, in. (mm)
- r = mean radius of matching branch pipe found from $(d_o t)/2$ for sketches 2.1 through 2.6, in. (mm)
- R_1 = bend radius of welding elbow or pipe bend, in. (mm)
- r_2 = radii used with Figure 1-3 and in sketch 3.1, in. (mm)
- r_i = inside radius used with Figure 1-3, in. (mm)
- r_p = radius to outside edge of fitting for sketches 2.3 and 2.6 measured in longitudinal plane, in. (mm)
- r_x = external crotch radius of welding tee in accordance with ASME B16.9, extruded outlet and welded-in contour insert (see sketches 2.1, 2.4, and 2.5), measured in the plane containing the centerline axes of the run and branch, in. (mm)
- s = miter spacing at centerline, in. (mm)
- SIF = stress intensification factor
- T = nominal wall thickness of matching pipe or the average wall thickness of the fitting, if available, for welding elbows in sketch 1.1; nominal wall thickness of pipe or the average wall thickness of the fitting, if available, for pipe bends in sketch 1.1; nominal wall thickness of pipe for miter bends in sketches 1.2 and 1.3; nominal wall thickness of matching run pipe for tees in sketches 2.1 and 2.4; nominal wall thickness of run pipe for tees in sketches 2.2, 2.3, 2.5, and 2.6; nominal wall thickness of pipe for weld joints in sketches 4.1 through 4.4
- t = nominal wall thickness of matching branch pipe, in. (mm)
- t' = effective branch thickness used with Figure 1-3, illustrations (a), (b), and (c), in. (mm)
- T_{12} T_2 = nominal wall thickness of matching pipe at the large and small ends of the reducer, respectively, in. (mm)
- T_c = crotch thickness in sketches 2.1, 2.4, and 2.5 measured at the center of the crotch and in the plane shown, in. (mm)
- t_n = local branch pipe thickness used with Figure 1-3, illustrations (a) and (b), in. (mm)
- t_p = reinforcement pad or saddle thickness, in. (mm)
- y = large end of taper used with Figure 1-3, illustration (c), and found from $(L_1 \tan \theta_n)$, in. (mm)
- Z = section modulus of pipe, in.³ (mm³) [see Note (7)]
- Z_b = section modulus of matching branch pipe, in.³ (mm³) [see Note (7)]
- α = reducer cone angle, deg
- δ = mismatch, in. (mm)
- θ = one-half angle between adjacent miter axes, deg
- θ_n = angle used with Figure 1-3, illustration (c), deg
- $\theta_{ib}, \theta_{ob}, \theta_{tb},$
- θ_{ip} , θ_{op} , θ_{tr} = rotations at branch or run legs shown in Figure 1-1, rad

(b) Stress intensification and flexibility factor data in this table shall be used in the absence of more directly applicable data. Their validity has been demonstrated for D/T ≤ 100. Other limits are provided as needed below.

- (1) Flexibility and stress intensification factors shall not be less than 1.0.
- (2) Stress intensification factors may be used without flexibility factors.

(3) Stress intensification and flexibility factors in this table have been developed from fatigue tests of representative commercially available matching product forms with assemblies manufactured from ductile ferrous materials and from numerical analysis using finite elements. Caution should be exercised when applying these rules for certain nonferrous materials (e.g., copper and aluminum alloys) for other than low-cycle applications.

(4) Corrugated straight pipe or corrugated or creased bends should be designed using the principles found in ASME B31.3, Nonmandatory Appendix X; standards from the Expansion Joint Manufacturers Association; or similar standards.

- (c) The highest in-plane or out-of-plane stress intensification factor shall be used when only a single stress intensification factor is needed. Flexibility factors should always be used with the orientation specified. For sketches 3.1 through 5.1, the in-plane and out-of-plane orientations must be orthogonal to each other and to the pipe axis.
- (d) Where sustained stress or moment factors are required by the applicable Code (e.g., ASME B31.1, ASME B31.3), and in lieu of more applicable data, for components of sketches 1.1 through 1.3 and sketches 3.1 through 5.1, the directional sustained stress or moment multiplier can be taken as the component stress intensification factor. For components of sketches 2.1 through 2.6, the directional sustained stress or moment multiplier can be taken as the smaller of (1) and either (2) or (3) below.

(1) 0.75 times the applicable stress intensification factor

ASME B31J – 2023

Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components

Table 1-1
Flexibility and Stress Intensification Factors (Cont'd)

GENERAL NOTES: (Cont'd)

(2) (t/T) times the square root of the applicable stress intensification factor when t/T > 1

(3) the square root of the applicable stress intensification factor when $t/T \le 1$

The sustained stress or moment factors should always be used with the section modulus of the matching pipe and should not be less than 1.0.

When the D_o/T ratio for any component is greater than 50, the sustained stress or moment factor should be divided by $(1.3 - 0.006D_o/T)$.

(e) For piping components such as valves, strainers, eccentric reducers, reducing elbows, unions, nonstandard fittings or attachments not covered in Table 1-1, suitable stress intensification factors can be found by comparison of their significant geometry with similar components in Table 1-1. Relationships can be developed using engineering judgment, supplemented by detailed stress analysis, e.g., finite element method or correlation with documented test results.

NOTES:

- (1) Stress intensification and flexibility factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter bends and may be read from Figure 1-4. Stress intensification factors for sketches 2.1 through 2.6 apply to the intersection point for Legs 1 and 2 as shown in Figures 1-1 and 1-6. Stress intensification factors apply to the intersection point for branch Leg 3 in Figures 1-1 and 1-6 when $d_o/D_o > 0.5$, and to the branch centerline at the surface of the run pipe when $d_o/D_o \le 0.5$. Flexibility factors for sketches 2.1 through 2.6 shall be applied as shown in Figures 1.1 and 1.6 for all d_o/D_o .
- (2) Where flanges or other rigid components are attached to one or both ends, the in-plane and out-of-plane values of k and i shall be multiplied by the factor c from Figure 1-5, entering with the computed h.
- (3) When the bend angle is 90 deg and the thickness of the bend is equal to the thickness of the matching pipe, the flexibility factors k_i and k_o may be found from 1.3/h and adjusted by the factor c from Figure 1-5 where applicable.
- (4) In large-diameter thin-wall elbows and bends, pressure can affect the magnitudes of k and i. To correct values from this table, divide k by

1 + 6	$\left(\frac{P}{E}\right)$	$\left(\frac{R}{T}\right)$	7/3	$\left(\frac{R_1}{R}\right)$	1/3	

and divide i by

$$1 + 3.25 \left(\frac{P}{E}\right) \left(\frac{R}{T}\right)^{5/2} \left(\frac{R_1}{R}\right)^{2/3}$$

For consistency, use kPa and mm for SI and psi and in. for U.S. customary notation. Stress intensification factors shall be used with the section modulus of the matching pipe or the section modulus of the bend, whichever is smaller.

- (5) Sketch 1.3 includes single miter joints.
- (6) Sidewall thinning, undulations, creases, tool marks, and boring discontinuities can reduce fatigue life. Sketch 2.1 stress intensification factors are based on components free of these defects. Sketch 2.3 stress intensification factors may be used as an alternative. When sketch 2.1 stress intensification factors are used (a) if $r_x \ge (\frac{1}{k})(d_0)$ and $T_c \ge 1.5T$, the factors k and i may be divided by 1.26, and
 - (b) if t/T < 0.6, use t/T = 0.6 for all branch k and i factors
- (7) The flexibility and stress intensification factors apply only if the following conditions are satisfied:
 - (a) the branch pipe axis is normal to within 5 deg of the surface of the run pipe unless otherwise noted
 - (b) $R/T \leq 50$
 - (c) $d/D \leq 1$
 - (d) $r/t \leq 50$

(e) the matching run pipe thickness, T, and diameter, D, are maintained for at least two run pipe diameters on each side of the branch centerline

(f) for sketches 2.1, 2.4, and 2.5, $t/T \le 1.2$ and $T_c/T \ge 1.1$

When a Table 1-2 flexibility factor is less than or equal to 1.0, the stiffness associated with that flexibility factor shall be rigid. Flexibility factors k_{ib} , k_{ob} , and k_{tb} in sketches 2.1 through 2.6 shall be multiplied by the factor c from Table 1-3 when flanges or other rigid components are adjacent to one or more of the run pipe ends. A flange or other rigid component is adjacent to the run pipe end when the length of any straight run pipe between the branch and the flange or rigid component is less than $0.1D^{1.4}/T^{0.4}$. Stress intensification factors i_{ib} , i_{ob} , i_{tb} , i_{tr} , i_{or} , and i_{tr} and

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

NOTES: (Cont'd)

flexibility factors k_{ib} , k_{ob} , k_{tb} , k_{ir} , k_{or} , and k_{tr} in sketches 2.1, 2.2, 2.4, 2.5, and 2.6 shall not be greater than the corresponding stress intensification and flexibility factors for sketch 2.3 and Figure 1-3, illustration (d), calculated using matching branch and run pipe dimensions and $r_2 = 0$. Stress intensification factors i_{ib} , i_{ob} , i_{tb} , i_{ir} , i_{or} , and k_{tr} in sketches 2.2, 2.3, 2.4, 2.5, and 2.6 shall not be less than the corresponding stress intensification and flexibility factors k_{ib} , k_{ob} , k_{tb} , k_{or} , k_{or} , and k_{tr} in sketches 2.2, 2.3, 2.4, 2.5, and 2.6 shall not be less than the corresponding stress intensification and flexibility factors for sketch 2.1 calculated using $T_c = 1.1T$.

If $i_{ob} < i_{ib}$ for any of sketches 2.1 through 2.6, then use $i_{ob} = i_{ib}$. If $i_{ir} < i_{or}$ for any of sketches 2.1 through 2.6, then use $i_{ir} = i_{or}$. Stress intensification factors i_{ib} , i_{ob} , i_{irr} , i_{or} , and i_{tr} from this table can be used for sketches 2.2, 2.3, 2.5, and 2.6 when the branch pipe axis is in the same plane as the run pipe axis and is normal to within 45 deg of the surface of the run pipe, provided D/T < 50 and $d/D \le 0.6$; in the absence of more applicable data, i_{tb} can be taken equal to i_{ob} . The stress intensification factor i_{ob} in sketch 2.3 shall be multiplied by the larger of $[0.75(t/T) - 0.89(t/T)^2 + 0.18]$ $(D/T)^{0.34}$ or 1.0 when $t/T \le 0.85$, d/D < 1, and $D/T \ge 25$.

The stress intensification factor i_{ob} in sketch 2.2 shall be multiplied by the larger of $[1.07(t/T) - 1.08(t/T)^2 + 0.026](D/T)^{0.34}$ or 1.0 when $t/T \le 0.85$, d/D < 1, and $D/T \ge 25$.

The designer must be satisfied that the branch connection pressure rating is greater than or equal to that of the matching run pipe. Branch connection stress intensification factors shall be used with the section modulus of the matching pipe. The section modulus shall be calculated using the following equation for the run:

$$Z = \left(\frac{\pi}{32}\right) \left(\frac{D_0^4 - D_l^4}{D_0}\right)$$

and by the following equation for the branch:

$$Z_b = \left(\frac{\pi}{32}\right) \left(\frac{d_o^4 - d_i^4}{d_o}\right)$$

(8) The in-plane, out-of-plane, and torsional stress intensification factors for both the branch and the run may be multiplied by the factor 0.7 for the geometries shown in Figure 1-3 when the outer radius, r₂, is provided and is not less than the smallest of T/2, t/2, (r_n - r_i)/2, or (t + y)/2. For Figure 1-3, illustrations (a), (b), and (c), the following hold:

(a) Flexibility and stress intensification factors shall be calculated by replacing the parameters t/T with t'/T and d/D with d'/D.

(b) Stress intensification factors i_{ib} , i_{ob} , and i_{tb} and flexibility factors k_{ib} , k_{ob} , and k_{tb} shall also be multiplied by $(t/t)(d/d')^2$.

(c) Calculate t' as follows:

(-1) For Figure 1-3, illustrations (a) and (b)

$$t' = t_n \text{ if } L_1 \ge 0.5(2rt_n)^{1/2}$$

= t if $L_1 < 0.5(2rt_n)^{1/2}$

(-2) For Figure 1-3, illustration (c)

$$t' = t + (2/3)y$$
 if $\theta_n \le 30$ deg
= $t + 0.385L_1$ if $\theta_n > 30$ deg

(d) Calculate d' as follows:

$$d' = d - t + t'$$

(e) Stress intensification factors i_{ib} , i_{ob} , i_{ir} , and i_{tr} shall not be less than 1.5.

(9) When r_x is not provided, use r_x = 0.05d_o. If r_x ≥ r, use r_x = r. When t/T < 0.6, use t/T = 0.6 for all branch k and i factors. Sidewall thinning, undulations, creases, tool marks, and boring discontinuities can reduce fatigue life. Sketch 2.4 stress intensification factors are based on components free of these defects. Sketch 2.3 stress intensification factors may be used as an alternative.</p>

(10) When r/r_p is not available, a value of 0.85 may be used. If $r/r_p < 0.6$, then use $r/r_p = 0.6$. For size-on-size branch connections when D/T < 40, i_{ob} may be multiplied by 0.75. When the weld sizes and actual dimensions of the fitting are available, r_p can be taken as the distance along the surface of the run pipe from the branch centerline to the toe of the attachment fillet weld in the longitudinal plane. When d/D > 0.8, the geometry of commercially available fittings varies considerably from manufacturer to manufacturer. More applicable data from the manufacturer should be used when available. Results from tests where D/T < 40 should not be extrapolated to branch connections where D/T > 40.

ASME B31J-2023

ASME B31J – 2023

Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components

	Table 1-1		
Flexibility and Stress	Intensification	Factors	(Cont'd)

NOTES: (Cont'd)

(11) The flexibility and stress intensification factors apply only if the following conditions are satisfied:

(a) 5 deg < α < 60 deg

(b) $5 < D_2/T_2 < 80$

(c) the wall thickness is not less than T₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than T₂

(d) $0.08 < r_2 / D_2 < 0.7$

(e) $1 < T_1/T_2 < 2.12$

(f) if $L_2 < (D_2T_2)^{0.5}$, the stress intensification factors should be multiplied by $[2 - L_2/(D_2T_2)^{0.5}]$

The maximum stress intensification factor need not be greater than 2.0 but shall in no case be less than 1.0. Reducers with $D_2/T_2 \le 55$ can be modeled as a step change in diameter and thickness from D_2 , T_2 to D_1 , T_1 at the middle of the reducer, or with any more applicable geometry. When $D_2/T_2 > 55$, consideration should be given to adding flexibility to the beam model to more accurately represent the stiffness of the reducer. For eccentric reducers, the dimensions shown in sketch 3.1 are to be taken at the location on the circumference where α is the maximum. When r_2 is not given, use $r_2 = 0.1D_1$. When L_2 is not given, use $L_2 = 0.1D_2$. When α is not given, use α equal to the smaller of $60(D_1/D_2 - 1)$ or 60.

(12) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between 0.875T and 1.10T for an axial distance of $(D_o T)^{1/2}$. D_o and T are the nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.

(13) For welds to socket-welded flanges and fittings, the stress intensification factor is based on the following:

(a) the assumption that the pipe and fitting are matched in accordance with ASME B16.11 or that socket-welded pipe, flanges, and other fittings greater than NPS 2 meet the fabrication requirements of the applicable Code.

(b) the weld is made as shown in sketch 4.3.

(c) the pipe wall thickness is greater than the lesser of schedule 40 or standard weight.

(*d*) the weld size *C_x* is in accordance with the applicable Code. For pipe whose wall thickness is thinner than the lesser of schedule 40 or standard weight, the stress intensification factor for all directions shall be equal to 2.1 unless otherwise justified. Blending the toe of the fillet weld with no undercut smoothly into the pipe wall, as shown in Figure 1-7, illustrations (b) and (d), has been shown to improve the fatigue performance of the weld. Large-diameter socket-welded and slip-on flanges with welds smaller than those required by the applicable Code may induce stresses not considered by the stress intensification factors.

Table 1-2 Moment-Rotation Relationships for Sketches 2.1 Through 2.6 of Table 1-1			
Moment (Figure 1-1)	Flexibility Factor, k	Stiffness, inlb/rad (N·mm/rad)	Stiffness, inlb/rad (N·mm/rad)
M _{i3} (Leg 3)	k _{ib}	$M_{ib}/ heta_{ib}$	$(E)(I_b)/(k_{ib}d)$
M ₀₃ (Leg 3)	kob	$M_{ob}/ heta_{ob}$	$(E)(I_b)/(k_{ob}d)$
M _{t3} (Leg 3)	k_{tb}	M_{tb}/θ_{tb}	$(E)(I_b)/(k_{tb}d)$
M _{i1,2} (Legs 1, 2)	k_{ir}	$M_{ir}/ heta_{ir}$	$(E)(I_r)/(k_{ir}D)$
M _{01,2} (Legs 1, 2)	kor	M_{or}/θ_{or}	$(E)(I_r)/(k_{or}D)$
M _{t1.2} (Legs 1, 2)	k _{tr}	M_{tr}/θ_{tr}	$(E)(I_r)/(k_{tr}D)$

GENERAL NOTE: The moment-rotation relationships in this table are developed by independently applying moments to the respective run or branch leg. Simultaneous run and branch moment-rotation interaction must be accommodated by the model.

 Table 1-3

 Flanged End Correction Coefficients for Sketches 2.1 Through 2.6 of Table 1-1

Flexibility Factor	Flexibility Factor Multiplier, c
k_{ib}	$1 - 0.032 N_c^{1.345} (D/T)^{0.431} (d/D)^{0.903}$
kob	$1 - 0.07 N_c^{0.61} (D/T)^{0.44} (d/D)^{0.339}$
k _{tb}	$1 - 0.003 N_c^{3.962} (D/T)^{0.548} (d/D)^{0.693}$

Figure 1-1 Orientations for Sketches 2.1 Through 2.6 of Table 1-1

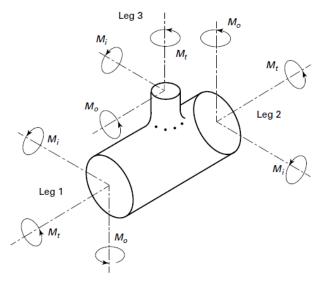
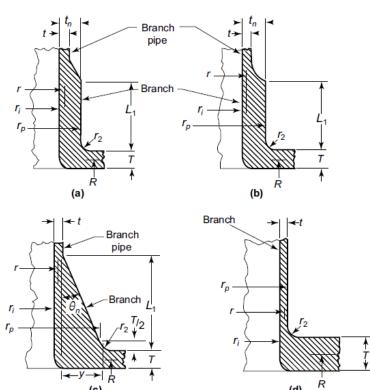



Figure 1-2 Orientations for Bends Mt M Ч M_o M; М。

Figure 1-3 Branch Dimensions

310

(d)

(c)

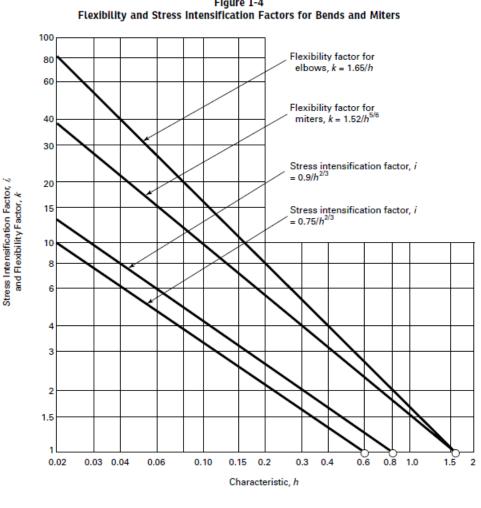
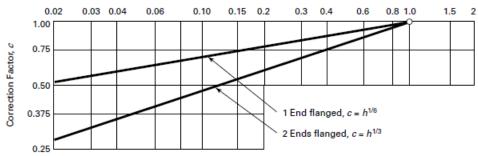



Figure 1-4

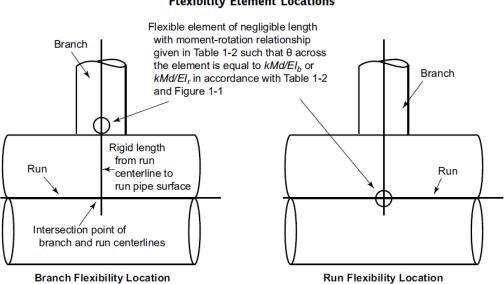


Figure 1-6 Flexibility Element Locations

GENERAL NOTE: See Figure 1-1 for flexibility orientations.

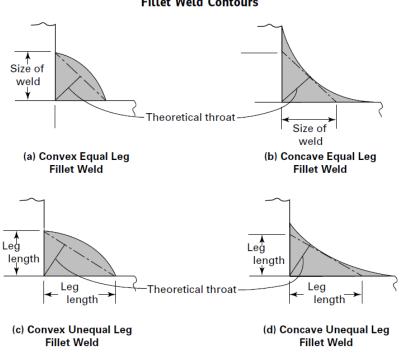


Figure 1-7 Fillet Weld Contours

ASME B31J – 2017 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components [Superseded by ASME B31J (2023)]

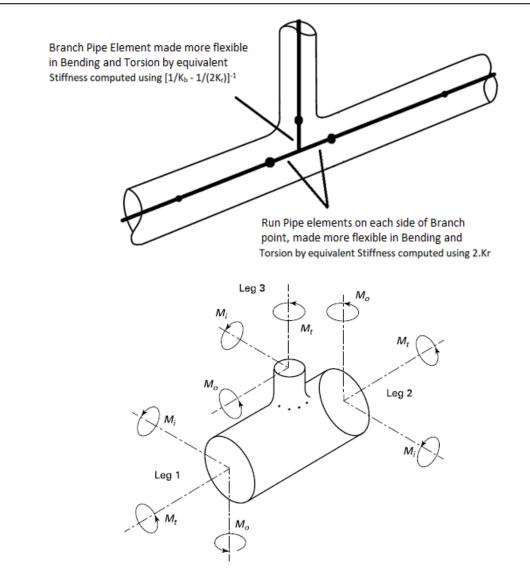
- Implemented as an optional feature for B31.4, B31.5, B31.8 and B31.12 codes. This feature can be turned ON or OFF through Layout Frame > Options > Analysis.
- Turning on the Option B31J will allow users to select and specify among those Branch SIF types defined in B31J for all the above codes.
- When B31J is turned ON, CAEPIPE will calculate SIFs as per B31J and report Torsional, In-plane and Out-of-plane SIFs in Element Forces and Moments results irrespective of whether they are being used or not in Code Compliance as per the Piping Code selected for Analysis. For Example, CAEPIPE will not include Torsional Moment and Torsional SIF while calculating Sustained Stress as per ASME B31.5 (2016).
- For Equal TEEs, the Run and Branch should be differentiated in CAEPIPE model by defining the Branch OD slightly less than the Run OD through CAEPIPE Sections input. Otherwise, CAEPIPE will use the equations corresponding to Run pipe even for Branch pipe.
- ASME B31.3 (2020) includes the term Axial SIF in Stress Calculations. On the other hand, B31J is silent about the Axial SIF for various components. Hence, CAEPIPE will use the Axial SIF values as stated in the respective text portions of B31.3 (2016) while computing stresses irrespective of whether the option B31J is turned ON or OFF.
- As per para 402.6.1 of ASME B31.4 (2019), Torsion moment is not included in the equation for Sustained Stress for Restrained piping. In line with the code, CAEPIPE will not use Torsion Moment and Torsion SIF while calculating Sustained Stress for Restrained pipe even with the option B31J turned ON.
- For ASME B31.5 (2019), paras. 502.3.2(d), 502.3.3 (a), 519.4.5 and 519.3.5 do not include Torsional moment in computing Stresses. Accordingly, CAEPIPE will not include Torsional Moment and Torsional SIF while calculating Stresses as per ASME B31.5 (2016) even when the option B31J is turned ON.
- For ASME B31.8 (2020), para. 833.2 (e) states that the nominal Bending Stress for Fittings and Components as M_R/Z , where M_R is the resultant intensified moment across the fittings or components with Stress Intensification Factor (SIF) as 0.75i.

On the other hand, for Pipe and Long Radius Bends, para.833.2 (d) of the Code states that the nominal Bending Stress as M/Z, where M is the bending moment across the pipe cross section without SIF being considered. In other words, the moments are NOT intensified for Pipe and Long Radius Bends.

• As ASME B31.8 (2020) does not include SIF for Pipe and Long Radius Bends in Sustained Stress equation, SIF calculated as per B31J will NOT be included in Sustained Stress calculation for Pipes and Long Radius bends at this time when the

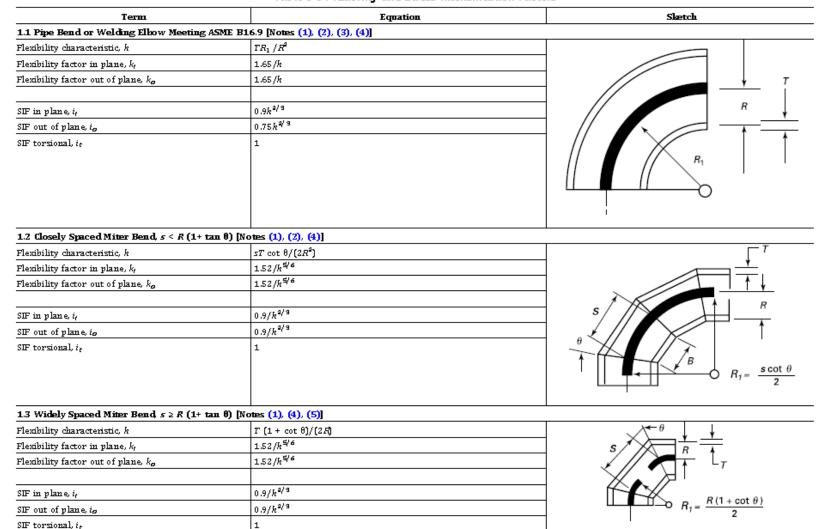
ASME B31J – 2017 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components [Superseded by ASME B31J (2023)]

option B31J is selected. On the other hand, the SIF calculated as per B31J will be displayed in the Element Forces and Moments results.


- When B31J is turned ON, In-plane and Out-of-plane Flexibility Factors for Bends, Miter bends and TEEs will be calculated as per B31J and included by CAEPIPE in the corresponding element stiffness matrices. Similarly, CAEPIPE will calculate the Torsion Flexibility Factors as per B31J and include them in the element stiffness matrices irrespective of whether the code includes or excludes Torsional Moment and Torsional SIF in Stress equations.
- As it is not possible to identify the number of Flanges or Rigids at Run Pipe ends located within 0.1D^1.4/T^0.4 from Branch intersection node using CAEPIPE (required for applying the correction factor while computing Flexibility Factors as per B31J), a provision is made in the Branch SIF definition to input the no. of Flanges or Rigids that fall within the distance given by B31J.
- When the bend angle is 90 degree and the thickness of the bend is equal to the thickness of the matching pipe, the Ki and Ko should be calculated from 1.3/h. This is not implemented in CAEPIPE software at this time.
- Flexibility Factors computed for TEEs as per B31J are always applied to both ends of the first elements belonging to Leg 1, Leg 2 and Leg 3 that are connected at the Branch nodeas shown in Figure 1-1 of B31J.

CAEPIPE includes a feature "Layout Frame > Edit > Refine Branches for B31J" to refine the elements connected to the Branch node to compute and apply Flexibility Factors for Run (Leg 1 and Leg 2) and BranchPipe (Leg 3) as stated above.

When the above command is used, CAEPIPE will add the following.


- c. Two (2) nodes on Run Pipe (one on either side of the Branch SIF node) at a distance equal to Run Split Factor x Run Pipe OD, where the Run Split Factor can be input by the user.
- d. One (1) node on Branch Pipe at a distance equal to Branch Split Factor x Run Pipe OD from the Branch SIF node, where the Branch Split Factor can be input by the user.

ASME B31J – 2017 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components [Superseded by ASME B31J (2023)]

Moment	Flexibility Factor, k	Stiffness, inlb/rad (N·mm/rad)	Stiffness, inlb/rad (N·mm/rad)
M _{i3} (Leg 3)	k _{ib}	M_{ib} $/\theta_{ib}$	$(E)(I_b)/(k_{ib} d)$
M ₀₃ (Leg 3)	kob	M _{ob} /θ _{ob}	$(E)(I_b)/(k_{ob} d) \downarrow K_b$
M _{t3} (Leg 3)	k _{tb}	M_{tb} $/\theta_{tb}$	$(E)(I_b)/(k_{tb} d)$
M _{i1,2} (Legs 1, 2)	kir	M_{ir} / Θ_{ir}	$(E)(l_r)/(k_{ir} D)$
Mo1,2 (Legs 1, 2)	kor	M_{or} / θ_{or}	$(E)(I_r)/(k_{or} D)$ Kr
M _{t1,2} (Legs 1, 2)	k _{tr} .	M_{tr} / θ_{tr}	$(E)(I_r)/(k_{tr} D)$

ASME B31J – 2017 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components [Superseded by ASME B31J (2023)]

N

Table 1-1 Flexibility and Stress Intensification Factors

ASME B31J – 2017 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components [Superseded by ASME B31J (2023)]

Table 1-1 relationly and Sciess Intensification Factors (Contu)				
Term	Equation	Sketch		
2.1 Welding Tee Meeting ASME B16.9 [Notes	(1), (6), (7)]			
Run in-plane flexibility factor, k_{tr}	$0.18(R/T)^{08}(d/D)^{5}$	<u>+</u> τ		
Run out-of-plane flexibility factor, k_{cr}	1	*		
Run torsional flexibility factor, k_{tr}	$0.08(R/T)^{001} (d/D)^{5.7}$	$T_{e} \rightarrow R$		
Branch in-plane flexibility factor, k_{tb}	$[1.91(d/D) - 4.32(d/D)^{2} + 2.7(d/D)^{3}](R/T)^{0.77}(d/D)^{0.67}(t/T)$	d = 2r		
Branch out-of-plane flexibility factor, k_{ob}	$[0.34(d/D) - 0.49(d/D)^{2} + 0.18(d/D)^{3}](R/T)^{1.46}(t/T)$	$\rightarrow r \leftarrow D = 2R$		
Branch torsional flexibility factor, k_{tb}	$[1.08(d/D) - 2.44(d/D)^{2} + 1.52(d/D)^{3}](R/T)^{0.77} (d/D)^{1.61} (t/T)$			
	a a a f a contra con 0.95 d 1 d an 0.72 d a d an -0.52			
Run SIF in plane, itr	$0.98(R/T)^{0.95} (d/D)^{0.72} (t/T)^{-0.52}$			
Run SIF out of plane, ier	$0.61(R/T)^{0.29} (d/D)^{1.65} (t/T)^{-0.53}$	T_{α}		
Run SIF torsional, i _{tr}	$0.34 (R/T)^{2/3} (d/D)(t/T)^{-0.5}$			
Branch SIF in plane, in	$0.33 (R/T)^{2/3} (d/D)^{0.18} (t/T)^{0.7}$			
Branch SIF out of plane, int	$0.42(R/T)^{2/3}(d/D)^{0.37}(t/T)^{0.37}$	t = 2r		
Branch SIF torsional, its	$0.42 (R/T)^{2/3} (d/D)^{11} (t/T)^{1.1}$	\rightarrow r \leftarrow D = 2R		
2.2 Reinforced Fabricated Tee (When $t_p > 1.3$	57, Use t _p = 1.57) [Notes (1), (7)]			
Run in-plane flexibility factor, k_{tr}	$0.21[R/(T + 0.5t_p)]^{007}(t/T)^{-0.65}(d/D)^{6.4}$			
Run out-of-plane flexibility factor, k_{ar}	1	<u>+</u>		
Run torsional flexibility factor, k_{tr}	$0.12 [R/(T + 0.5t_p)]^{1.9} (t/T)^{-0.94} (d/D)^{2.5}$	$\tau \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$		
		′ [−] , Ť Ť		
Branch in-plane flexibility factor, k_{tb}	$[1.29(d/D) - 2.73(d/D)^{2} + 1.62(d/D)^{9}][R/(T+0.5t_{\rm pl})]^{1.2}(t/T)^{0.56}(d/D)$			
Branch out-of-plane flexibility factor, k_{ab}	$[0.84(d/D) - 1.27(d/D)^{4} + 0.5(d/D)^{3}][R/(T + 0.5t_{p})]^{1.69}(t/T)^{0.69}(d/D)$	Pad Saddle		
Branch torsional flexibility factor, k_{tb}	$1.1[R/(T + 0.5c_p)]^{0.5} (d/D)^{5.44}$	\rightarrow $d=2r$		
		r t $U = 2r$		
Run SIF in plane, i _{tr}	$[R/(T + 0.5t_p)]^{0.45} (d/D)^{0.54} (t/T)^{0.94} \ge 1.5$,		
Run SIF out of plane, i _c	$[1.29(d/D) - 2.87(d/D)^{2} + 2.39(d/D)^{3}](t/T)^{-0.45}[R/(T + 0.5t_{p})]^{0.95}$			
Run SIF torsional, i _{tr}	$0.36 \left[R/(T + 0.5t_{p}) \right]^{4/9} (t/T)^{-0.6} (d/D)^{1/4}$			
Branch SIF in plane, in	$[3.33(d/D) - 5.49(d/D)^{4} + 2.94(d/D)^{3}](TR^{4/3})(T + 0.5t_{g})]^{\frac{1}{2}/3}(t/T)^{0.3}$			
Branch SIF out of plane, into	$[3.33(d/D) - 5.44(d/D) + 2.34(d/D)](TR^{2/3})(T + 0.5t_{o})] \stackrel{(\xi/T)}{=} [2.36(d/D) + 2.4(d/D)^{2} - 4.34(d/D)^{3}(TR^{2/3})(T + 0.5t_{o})] \stackrel{(\xi/T)}{=} (t/T)^{0.3}$			
Branch SIF OUt of plane, (ab	$[2.86(a/D) + 2.4(a/D) - 4.34(a/D)][IR +][I + 0.5t_{pl}]] + [t/I]$ (when t/T < 0.85, use t/T = 0.85)			
Branch SIF torsional, it	$0.642(d/D)^2 (TR^{2/9})(T+0.5t_{s})^{-5/9} (t/T)^{0.9}$			

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

ASME B31J-2017

ASME B31J – 2017 Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components [Superseded by ASME B31J (2023)]

Term	Equation	Sketch
2.3 Fabricated Tee [Notes (1), (7), (8)]		
Run in-plane flexibility factor, k _{tr}	$1.23 (R/T)^{0.047} (t/T)^{-0.047} (d/D)^{5.9}$	<u>+</u>
Run out-of-plane flexibility factor, k _{er}	1	+
Run torsional flexibility factor, k_{tr}	$(R/T)^{0.72} (t/T)^{-0.2} (d/D)^{7.8}$	Set on Insert ↓↑
Branch in-plane flexibility factor, k_{tb}	$[3.15(d/D) - 6.4(d/D)^{2} + 4(d/D)^{9}](R/T)^{029}(t/T)^{0.49}(d/D)^{-0.4}$	
Branch out-of-plane flexibility factor, $k_{\sigma \sigma}$	$[2.05(d/D) - 2.94(d/D)^{2} + 1.1(d/D)^{9}](R/T)^{1.4}(t/T)^{0.6}(d/D)^{012}$	$t \rightarrow [\leftarrow] (See Note (8)] \rightarrow r \leftarrow d = 2r$
Branch torsional flexibility factor, k_{tb}	$0.95 (R/T)^{0.89} (d/D)^{5.42}$	\rightarrow $r_p \neq D = 2R$
Run SIF in plane, i _{tr}	$1.2(d/D)^{0.5} (R/T)^{0.4} (t/T)^{-0.95} \ge 1.5$	
Run SIF out of plane, i _{cr}	$[(d/D) - 2.7 (d/D)^4 + 2.62 (d/D)^9] (R/T)^{0.49} (t/T)^{-0.7}$ (when $d/D < 0.5$, use $d/D = 0.5$; when $t/T < 0.5$, use $t/T = 0.5$)	Set on Insert
Run SIF torsional, i _c ,	1.2 $(R/T)^{0.46} (t/T)^{-0.45} (d/D)^{1.87}$ (when $t/T < 0.15$, use $t/T = 0.15$)	
Branch SIF in plane, i _{fb}	$[0.038 + 1.45(d/D) - 2.39(d/D)^{2} + 1.34(d/D)^{3}](R/T)^{0.76}(t/T)^{0.74}$ (when $t/T < 1$, use $t/T = 1$)	$t \rightarrow \leftarrow r \leftarrow d = 2r$ $r \rightarrow r \leftarrow D = 2R$
Branch SIF out of plane, i _{do}	$[0.038 + 2(d/D) + 2(d/D)^{2} - 3.1(d/D)^{3}](R/T)^{2/3}(t/T)$ (when $t/T < 0.85$, use $t/T = 0.85$)	$r_p \sim b - 2h$
Branch SIF torsional, i _{th}	$0.45 (R/T)^{02} (t/T)^{029} (d/D)^2$	
		Set on Insert
		$t \rightarrow \leftarrow \\ \downarrow \\$

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

Table 1-1 Flexibility and Scless Intensincation Factors (Concu)					
Term	Equation	Sketch			
2.4 Extruded Outlet With $r_s \ge 0.05d_o$ and $T \le 0.05d_o$	$T_o < 1.5T$ [Notes (1), (7), (9)]				
Run in-plane flexibility factor, k_{tr}	$0.18(R/T)^{08} (d/D)^{5}$	<u> </u>			
Run out-of-plane flexibility factor, k_{ar}	1				
Run torsional flexibility factor, k_{tr}	$0.08(R/T)^{001} (d/D)^{5.7}$	$T_{e} + P$			
Branch in-plane flexibility factor, ktb	$[1.91(d/D) - 4.32(d/D)^{2} + 2.7(d/D)^{3}](R/T)^{0.77}(d/D)^{0.67}(t/T)$	r_x			
Branch out-of-plane flexibility factor, k _{ob}	$[0.34(d/D) - 0.49(d/D)^{2} + 0.18(d/D)^{3}](R/T)^{1.46}(t/T)$	\rightarrow r \leftarrow D = 2R			
Branch torsional flexibility factor, $k_{\ell \sigma}$	$[1.08(d/D) - 2.44(d/D)^{2} + 1.52(d/D)^{3}](R/T)^{0.77} (d/D)^{1.79} (t/T)$				
Run SIF in plane, i _{tr}	$1.45(1 + r_{\kappa}/R)^{-q/3}(R/T)^{0.95}(d/D)^{0.72}(t/T)^{0.92}$				
Run SIF out of plane, i _{or}	$0.58(1 + r_x/R)^{-2/9}(R/T)^{2/9}(d/D)^{2.69}$				
Run SIF torsional, i _{tr}	$0.55(1 + r_{\kappa}/R)^{-2/3}(R/T)^{2/3}(d/D)(t/T)^{-0.5}$				
Branch SIF in plane, its	$0.56(1 + r_{\kappa}/R)^{-q/3} (R/T)^{q/3} (d/D)^{0.62}$				
Branch SIF out of plane, ich	$0.85(1 + r_{\kappa}/R)^{-2/3}(R/T)^{2/3}(d/D)^{0.5}$				
Branch SIF torsional, in	$0.71(1 + r_{\kappa}/R)^{-2/9} (R/T)^{2/9} (d/D)^{2}$				
2.5 Welded in Contour Insert (When r_x Is Not	t Provided, Use r, = 0) [Notes (1), (6), (7)]				
Run in-plane flexibility factor, k _{tr}	$0.18(R/T)^{0.84} (d/D)^{5}$	¥			
Run out-of-plane flexibility factor, k _{er}	1	R			
Run torsional flexibility factor, k_{tr}	$0.1(R/T)^{0.01}(d/D)^{5/7}$	T_e			
Branch in-plane flexibility factor, k _{tb}	$[2.36(d/D) - 5.33(d/D)^{4} + 3.33(d/D)^{3}](R/T)^{0.77} (d/D)^{0.47} (t/T)$				
Branch out-of-plane flexibility factor, kop	$(1 + r_{\kappa}/R)[0.67(d/D) - 0.97(d/D)^2 + 0.36(d/D)^3](R/T)^{1.46}(t/T)$				
Branch torsional flexibility factor, k_{tb}	$[1.05(d/D) - 2.36(d/D)^{2} + 1.49(d/D)^{3}](R/T)^{0.77}(d/D)^{1.61}(t/T)$	$t \rightarrow \neq r \neq d = 2r$ T = 2R			
Dun CIP in alana i	$(R/T)^{0.35} (d/D)^{0.72} (t/T)^{-0.52}$				
Run SIF in plane, in	$\frac{(R/T)}{0.72(R/T)^{0.29}} \frac{(d/D)}{(d/D)^{1.85}} \frac{(t/T)}{(t/T)^{-0.59}}$				
Run SIF out of plane, i _{cr} Run SIF torsional, i _{cr}	$0.36(R/T)^{4/3} (d/D)(t/T)^{-0.5}$	T_e			
Null Sir Wilstondi, rg.					
Branch SIF in plane, i _{th}	$0.35 (R/T)^{4/3} (d/D)^{018} (t/T)^{0.7}$				
Branch SIF out of plane, igh	$0.48(R/T)^{4/9}(d/D)^{0.37}(t/T)^{0.37}$	t d = 2r			
Branch SIF torsional, in	$0.44 (R/T)^{2/3} (d/D)^{1.1} (t/T)^{1.1}$	\rightarrow r \leftarrow D = 2R			
	I				

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

Table 1-1 Flexibility and Stress Intensification Factors (Contro)					
Term	Equation	Sketch			
2.6 Integrally Reinforced Branch Welded on					
Run in-plane flexibility factor, k_{tr}	$0.5(R/T)^{0.5}(d/D)^{5}$				
Run out-of-plane flexibility factor, k_{σ}	1	((+))			
Run torsional flexibility factor, k_{tr}	$0.1(F/T)(d/D)^{5.7}$				
Branch in-plane flexibility factor, k _{tb}	$[0.55(d/D) - 1.13(d/D)^{2} + 0.69(d/D)^{2}](R/T)(t/T)$	<u> </u>			
Branch out-of-plane flexibility factor, $k_{\sigma\sigma}$	$[1.03(d/D) - 1.55(d/D)^{2} + 0.59(d/D)^{3}](R/T)^{1.4}(t/T)(d/D)^{0.33}$				
Branch torsional flexibility factor, k_{to}	$[0.37(d/D) - 0.75(d/D)^{4} + 0.46(d/D)^{3}](R/T)(t/T)(d/D)^{1.4}$				
Run SIF in plane, i _{tr}	$(R/T)^{0.4.9} (d/D)^{0.4.2} 1.5$				
Run SIF out of plane, ier	$[0.02 + 0.88(d/D) - 2.56(d/D)^{2} + 2.58(d/D)^{3}](R/T)^{0.49}$				
Run SIF torsional, i _{tr}	$1.3(R/T)^{0.45}(d/D)^{1.37}$				
Branch SIF in plane, i _{th}	$[0.08 + 1.28(d/D) - 2.35(d/D)^{2} + 1.45(d/D)^{3}](R/T)^{0.61}(t/T)(r/r_{c})$				
Branch SIF out of plane, i _{ob}	$[1.83(d/D) - 1.07(d/D)^{9}] (R/T)^{0.62} (t/T)(r/r_{p})^{1.18}$	$r \leftarrow t = 2r$			
Branch SIF torsional, its	$0.77 (R/T)^{2/3} (t/T) (d/D)^2 (r/r_p)$	$r_p \neq D = 2R$			
		$r_{p} \leftarrow D = 2R$			
3.1 Concentric or Eccentric Reducer Meeting	ASME B16.9 [Note (11)]				
SIF in plane, i _t	$0.6 + 0.003 (aT_2/T_1)^{0.5} (D_2/T_2)^{0.25} (D_2/T_2)$	\downarrow^{T_1}			
SIF out of plane, io	$0.6 + 0.003 (aT_2 / T_1)^{02} (D_2 / T_2)^{025} (D_2 / T_2)$				
SIF torsional, it	$0.3 + 0.0015(\alpha T_2 / T_1)^{08} (D_2 / T_2)^{0.25} (D_2 / T_2)$				

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)				
Term	Equation	Sketch		
4.1 Butt Weld, T≥ 6 mm (0.237 m.), $\delta_{max} \le 1.5 \text{ nm} (1/16 \text{ in})$, and $\delta_{avg} / T \le 0.13$ [Note (12)]	·		
SIF in plane, i _f	1.0			
SIF out of plane, i _o	1.0	$\tau \searrow \tau$		
SIF torsional, i _t	1.0			
4.2 Butt Weld, T≥ 6 mm (0.237 in.), $\delta_{\max} \leq 3 \text{ nm} (1/8 \text{ in})$, and $\delta_{\max} / T = \text{Any Value OR } T \leq 6 \text{ nm} (0.237 \text{ in.})$, $\delta_{\max} \leq 3 \text{ nm} (0.237 \text{ in.})$	$\delta_{\text{max}} \le 1.5 \text{ nm} (1/16 \text{ in.}), \text{ and } \delta_{\text{avg}} / T \le 0.33 \text{ [Note (12)]}$		
SIF in plane, i _f	1.9 max. or 0.9 + 2.7(δ_{avg}/T) but not less than 1.0			
SIF out of plane, io	1.9 max. or 0.9 + 2.7(δ_{avg} /T) but not less than 1.0	$1 \qquad 1 \qquad T$		
SIF torsional, it	$0.45 + 1.35 (\delta_{avg} / T)$ but not less than 1.0	$\underbrace{\downarrow^{\prime}}_{\uparrow\delta}$		
4.3 Fillet-Welded Joint or Socket-W	elded Flange Meeting ASME B16.5 or Socket-Welded Fitting Meeting ASME B	1611 [Note (13)]		
SIF in plane, i _t	1.3			
SIF out of plane, io	1.3			
SIF torsional, it	1.3	$\begin{array}{c c} \hline C_x \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $		
4.4 Tapered Transition in Accorda	nce With Applicable Code Sections and ASME B16.25	· ·		
SIF in plane, i _t	1.9 max. or $1.3 + 0.0036(D_o/T) + 3.6(8/T)$	T		
SIF out of plane, io	1.9 max. or $1.3 + 0.0036(D_o/T) + 3.6(\delta/T)$			
SIF torsional, i _t	1.3			
4.5 Weld Neck Flange				
SIF in plane, i _l	1.0			
SIF out of plane, io	1.0			
SIF torsional, it	1.0			

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

Table 1.1. Floribility, and Oteren Internalization. Fourteen JOantich

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)					
Term	Equation	Sketch			
4.6 Single Welded Slip-on Flange					
SIF in plane, it	1.3				
SIF out of plane, io	1.3				
SIF torsional, it	1.3				
4.7 Double Welded Slip-on Flange					
SIF in plane, i _t	1.2				
SIF out of plane, i _o	1.2				
SIF torsional, it	1.2				
4.8 Lap Joint Flange (With ASME B16.9 Lap Joint S	ահ)				
SIF in plane, i _t	1.6				
SIF out of plane, io	1.6				
SIF torsional, i _t	1.6				
5.1 Threaded Pipe Joint or Threaded Flange in Acc	ordance With Acceptable Code Detail	-			
SIF in plane, i _f	2.3				
SIF out of plane, i _o	2.3				
SIF torsional, it	2.3				

. . .

GENERAL NOTES:

- (a) The following symbols are used in this table:
 - $A_p = \text{metal}$ area of pipe cross section, in.² (mm²)
 - B = length of miter segment at crotch, in. (mm)
 - b = branch subscript corresponding to Leg 3 in Figure 1-1
 - c = factor for rigid ends adjacent to bends, miters, and branch connections in Sketches 1.1, 1.2, and 2.1 through 2.6
 - C_{α} = minimum socket weld leg length, in. (mm)
 - D = mean diameter of matching pipe found from (D₀-T), in. (mm); for Sketches 2.1 through 2.6, the mean diameter of the matching run pipe
 - d = mean diameter of matching branch pipe found from $(d_o t)$, in. (mm)
 - d' = effective branch diameter used with Figure 1-3, illustrations (a), (b), and (c), in. (mm)
 - D₂ D₂ = outside diameter of matching pipe at large and small ends of reducer, respectively, in. (mm)
 - D_t = inside diameter of matching run pipe found from $(D_0 2T)$, in. (mm)
 - d_t = inside diameter of matching branch pipe found from $(d_o 2t)$, in. (mm)
 - D_{σ} = outside diameter of matching pipe, in. (mm)
 - do = outside diameter of the matching branch pipe, in. (mm); for Sketches 2.1 through 2.6, the outside diameter of the matching run pipe
 - E = modulus of elasticity, psi (kPa)
 - I = stress intensification factor (SIF)
 - I_{0} I_{r} = matching branch and run pipe moment of inertia used in Table 1-2, in.⁴ (mm⁴)
 - k = flexibility factor with respect to the plane and component indicated (see Nonmandatory Appendix B, Ref. [1]for a more detailed definition of flexibility factor as it applies to straight and curved pipe and branch connections)
 - L_{I} = length of taper or thicker branch section in Figure 1-2, in. (mm)
 - L_2 = length of the cylindrical portion at the small end of the reducer in Sketch 3.1, in. (mm)
 - M = moment on branch or run legs shown in Figure 1-1, in lb (N·mm)

ASME B31J - 2017

Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components [Superseded by ASME B31J (2023)]

GENERAL NOTES (Cont'd)	
$N_c =$	number of flanges or other rigid components adjacent to the run pipe end of a branch connection (1 or 2)
P =	gage pressure, psi (MPa)
R =	mean radius of matching pipe found from $(D_o - T)/2$, in. (mm)
r =	mean radius of matching branch pipe found from $(d_o - t)/2$ for Sketches 2.1 through 2.6, in. (mm)
$R_{I} =$	bend radius of welding elbow or pipe bend, in. (mm)
$r_Z =$	radii used with Figure 1-3 and in Sketch 3.1, in. (mm)
$r_t =$	inside radius u sed with Figure 1-3, in. (mm)
r ₉ =	radius to outside edge of fitting for Sketches 2.3 and 2.6 measured in longitudinal plane, in. (mm)
$r_{\kappa} =$	external crotch radius of welding tee in accordance with ASME B16.9, extruded outlet and welded-in contour insert (Sketches 2.1,
	2.4, and 2.5), measured in the plane containing the centerline axes of the run and branch, in. (mm)
2 =	miter spacing at centerline, in. (mm)
SIF =	stress intensification factor
T =	nominal wall thickness of matching pipe or the average wall thickness of the fitting, if available, for welding elbows in Sketch 1.1;
	nominal wall thickness of pipe or the average wall thickness of the fitting, if available, for pipe bends in Sketch 1.1; nominal wall
	${ m thickness}$ of pipe for miter bends in Sketches 1.2 and 1.3; nominal wall thickness of matching run pipe for tees in Sketches 2.1 and 2.4;
	nominal wall thickness of run pipe fortees in Sketches 2.2, 2.3, 2.5, and 2.6, nominal wall thickness of pipe forweld joints in Sketches
	4.1 through 4.4
	nominal wall thickness of matching branch pipe, in. (mm)
	effective branch thickness used with Figure 1-3, illustrations (a), (b), and (c), in. (mm)
	nominal wall thickness of matching pipe at the large and small ends of the reducer, respectively, in. (mm)
•	crotch thickness in Sketches 2.1, 2.4, and 2.5 measured at the center of the crotch and in the plane shown, in. (mm)
	local branch pipe thickness used with Figure 1-3, illustrations (a) and (b), in. (mm)
	reinforcement pad or saddle thickness, in. (mm)
	large end of taper used with Figure 1-3, illustration (c), and found from (L_1 tan θ_n), in. (mm)
	section modulus of pipe, in. ³ (mm ³) [see Note (7)]
	section modulus of matching branch pipe, in. ⁹ (mm ⁹) [see Note (7)]
α =	reducer cone angle, deg
	mismatch, in. (mm)
	one-half angle between adjacent miter axes, deg
	angle used with Figure 1-3, illustration (c), deg
$\theta_{to} \theta_{ab} \theta_{to} \theta_{tr} \theta_{ar} \theta_{tr} =$	rotations at branch or run legs shown in Figure 1-1, rad

re provided as needed below.

(1) Flexibility and stress intensification factors shall not be less than 1.0.

(2) Stress intensification factors may be used without flexibility factors

(3) Stressintensification and flexibility factors in this table have been developed from fatigue tests of representative commercially available matching product forms with a ssemblie smanufactured from ductile ferrous materials and from numerical analysis using finite elements. Caution should be exercised when applying these rules for certain nonferrous materials (e.g., copper and aluminum alloys) for other than low-cycle applications.

(4) Corrugated straight pipe or corrugated or creased bends should be designed using the principles found in ASME B31.3 Nonmandatory App endix X, standards from the Expansion Joint Manufacturers Association, or similar standards.

(c) The highest in-plane or out-of-plane stress intensification factor shall be used when only a single stress intensification factor is needed. Flexibility factors should always be used with the orientation specified. For Sketches 3.1 through 5.1, the in-plane and out-of-plane orientations must be orthogonal to each other and to the pipe axis.

ASME B31J – 2017

Stress Intensification Factors (i-Factors), Flexibility Factors (k-Factors), and Their Determination for Metallic Piping Components [Superseded by ASME B31J (2023)]

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

GENERAL NOTES (Cont'd):

(d) Where sustained stress ormoment factors are required by the applicable Code (e.g., ASMEB31.1, ASMEB31.3), and in lieu of more applicable data, for components of Sketches 1.1, 1.3, 2.1, and 2.2, the directional sustained stress or moment multiplier can be taken as the component stress intensification factor. For all components of Sketch 1.2, the directional sustained stress or moment multiplier can be taken as the smaller of (1) and either (2) or (3) below

(1) 0.75 times the applicable stress intensification factor

(2) (t/T) times the square root of the applicable stress intensification factor when t/T > 1

(3) the square root of the applicable stress intensification factor when $t/T \leq 1$

The sustained stress or moment factors should always be used with the section modulus of the matching pipe and should not be less than 1.0.

NOTES:

- (1) Stressintensification and flexibility factors apply over the effective arclength (shown by heavy centerlines in the sketches) for curved and miter bend sand may be read from Figure 1-4. Stress intensification factors for Sketches 2.1 through 2.6 apply to the intersection point for Legs 1 and 2 as shown in Figures 1-1 and 1-6. Stress intensification factors for Sketches 2.1 through 2.6 apply to the intersection point for branch Leg 3 in Figures 1-1 and 1-6 when d_o/D_o > 0.5, and to the branch centerline at the surface of the run pipe when d_o/D_o < 0.5. Flexibility factors for Sketches 2.1 through 2.6 shall be applied as shown in Figures 1.1 and 1.6 for all d_o/D_o
- (2) Where flanges or other rigid components are attached to one or both ends, the in-plane and out-of-plane values of k and i shall be multiplied by the factor c from Figure 1-5, entering with the computed k.
- (3) When the bend angle is 90 deg and the thickness of the bend is equal to the thickness of the matching pipe, the flexibility factors k_i and k_o may be found from 1.3/k and a djusted by the factor r from Figure 1-5 where applicable.
- (4) In large-diameter thin-wall elbows and bends, pressure can affect the magnitudes of k and i. To correct values from this table, divide k by

$$\left[1 + 6\left(\frac{p}{E}\right)\left(\frac{R}{T}\right)^{7/3}\left(\frac{R_{1}}{R}\right)^{1/3}\right]$$

and divide *i* by

$$1 + 325\left(\frac{p}{E}\right)\left(\frac{R}{T}\right)^{5/2}\left(\frac{R_1}{R}\right)^{2/3}$$

For consistency, use kPa and mm for SI and p siand in. for U.S. customary notation. Stress intensification factors shall be used with the section modulus of the matching pipe or the section modulus of the bend, whichever is smaller.

(5) Sketch 1.3 includes single miter joints.

(6) If $r_x \ge (1/8)(d_{\sigma})$ and $T_{\sigma} \ge 1.5 T$, the factors k and i may be divided by 1.26.

- (7) The flexibility and stress intensification factors apply only if the following conditions are satisfied:
- (a) The branch pipe axis is normal to within 5 deg of the surface of the run pipe unless otherwise noted.
- (b) $R/T \le 50$
- (c) d/D ≤ 1
- (d) r/t≤ 50

(e) The matching run pipe thickness, T, and diameter, D, are maintained for at least two run pipe diameters on each side of the branch centerline.

(f) For Sketches 2.1, 2.4, and 2.5, $t/T \le 1.2$ and $T_c/T \ge 1.1$.

When a Table 1-2 flexibility factor is less than or equal to 1.0, the stiffness associated with that flexibility factor shall be rigid. Flexibility factors k_{tb} , k_{cb} , and k_{cb} in Sketches 2.1 through 2.6 shall be multiplied by the factor c from Table 1-3 when flanges or other rigid components are adjacent to one or more of the run pipe ends. A flange or other rigid component is a djacent to the run pipe end when the length of any straight run pipe between the branch and the flange or origid component is less than 0.10^{1/4}/T⁰⁴. Stress intensification factors i_{tb} , i_{cb} , i_{cb} , i_{cr} , and i_{cr} and flexibility factors k_{tb} , k_{cb}
Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

NOTES (Cont'd):

 $If_{igb} < i_{cb} for any of Sketches 2.1 through 2.6, then use i_{cb} = i_{cb} . If_{igr} < i_{cb} for any of Sketches 2.1 through 2.6, then use i_{cr} = i_{cb} . Stress intensification factors i_{cb} i$

The stress intensification factor i_{cb} in Sketch 2.2 shall be multiplied by the larger of $[1.07(t/T) - 1.08(t/T)^2 + 0.026](D/T)^{0.99}$ or 1.0 when $t/T \le 0.85$, d/D < 1, and $D/T \ge 25$.

The designer must be satisfied that the branch connection pressure rating is greater than or equal to that of the matching run pipe. Branch connection stress intensification factors shall be used with the section modulus of the matching pipe. The section modulus shall be calculated using the following equation for the run:

$$Z = \left(\frac{\pi}{32}\right) \left(\frac{D_0^4 - D_j^4}{D_0}\right)$$

and by the following equation for the branch:

$$Z_{b} = \left(\frac{\pi}{32}\right) \left(\frac{d_{0}^{4} - d_{\tilde{r}}^{4}}{d_{0}}\right)$$

- (8) The in-plane, out-of-plane, and torsional stressinten sification factors for both the branch and the run may be multiplied by the factor 0.7 for the geometries shown in Figure 1-3 when the outer radius r₄ is provided and is not less than the smallest of T/2, t/2, (r₄-r₁)/2, or (t+y)/2. For Figure 1-3, illustrations (a), (b), and (c), the following hold:
- (a) Flexibility and stress intensification factors shall be calculated by replacing the parameters t/T with t/T and d/D with d'/D.

(b) Stress intensification factors i_{ib} , i_{ab} , and i_{ab} and flexibility factors k_{ib} , k_{ab} , and k_{ab} shall also be multiplied by $(t/t')(d/d')^2$.

(c) Calculate t' as follows

(-1) For Figure 1-3, illustrations (a) and (b)

$$\begin{aligned} \mathbf{t}' &= t_n \text{ if } L_1 \geq 0.5 (2r t_n)^{1/2} \\ &= t \text{ if } L_1 < 0.5 (2r t_n)^{1/2} \end{aligned}$$

(-2) For Figure 1-3, illustration (c)

$$\begin{aligned} t' &= t + (2/3)y \text{ if } \theta_n \leq 30 \text{ deg} \\ &= t + 0.385L_1 \text{ if } \theta_n > 30 \text{ deg} \end{aligned}$$

(d) Calculate d' as follows

$$d' = d - t + t'$$

(e) Stress intensification factors i_{ib} , i_{ab} , i_{b} , and i_{b} , shall not be less than 1.5.

(9) When r_{κ} is not provided, use $r_{\kappa} = 0.05 d_{\sigma}$ If $r_{\kappa}/r \ge 1$ use $r_{\kappa}/r = 1$.

(10) When r/r_p is not available, a value of 0.85 may be used. If r/r_p < 0.6, then user/r_p = 0.6. For size-on-size branch connections when D/T < 40, i_{ob} may be multiplied by 0.75. When the weld sizes and actual dimensions of the fitting are available, r_p can be taken as the distance along the surface of the run pipe from the branch centerline to the toe of the attachment fillet weld in the longitudinal plane. When d/D > 0.8, the geometry of commercially available fittings varies considerably from manufacturer to manufacturer. More applicable data from the manufacturer should be used when available. Results from tests where D/T < 40 should not be extrapolated to branch connections where D/T > 40.

(11) The flexibility and stress intensification factors apply only if the following conditions are satisfied:

(a) $5 \deg < \alpha < 60 \deg$

(b) $5 \le D_2 / T_2 \le 80$

- (c) The wall thickness is not less than Tt throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than Tt:
- (d) $0.08 \le r_2 / D_2 \le 0.7$

(e) $1 \le T_1 / T_2 \le 2.12$

(f) If $L_2 < (D_2T_2)^{0.5}$, the stress intensification factors should be multiplied by $[2 - L_2 / (D_2T_2)^{0.5}]$.

Table 1-1 Flexibility and Stress Intensification Factors (Cont'd)

NOTES (Cont'd):

The maximum stress intensification factorneed not be greater than 2.0 but shall in no case beless than 1.0. Reducers with $D_2/T_2 \le 55$ can be modeled as a step change in diameter and thickness from D_2 , T_2 to D_1 , T_1 at the middle of the reducer, or with any more applicable geometry. When $D_2/T_2 > 55$, consideration should be given to adding flexibility to the beam model to more accurately represent the stiffness of the reducer. For eccentric reducers, the dimensions shown in Sketch 3.1 are to be taken at the location on the circumference where α is the maximum. When r_2 is not given, use $r_2 = 0.1D_1$. When L_2 is not given, use $L_4 = 0.1D_2$. When α is not given, use α equal to the smaller of $60(D_1/D_2 - 1)$ or 60.

(12) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between 0.875 T and 1.10T for an axial distance of (D_oT)^{1/2}. D_o and T are the nominal outside diameter and nominal wall thickness, respectively. δ_{ave} is the average mismatch or offset.

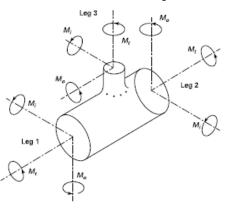
(13) For welds to socket-welded flanges and fittings, the stress intensification factor is based on the following:

(a) the assumption that the pipe and fitting are matched in accordance with ASME B16.11 or that socket-welded pipe, flanges, and other fittings greater than NPS 2 meet the fabrication requirements of the applicable Code

(b) the weld is made as shown in Sketch 4.3

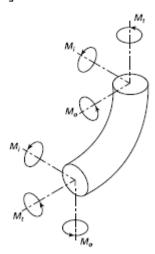
(c) the pipe wall thickness is greater than the lesser of schedule 40 or standard weight

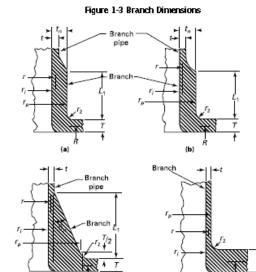
(d) the weld size C_i is in accordance with the applicable Code. For pipe whose wall thickness is thinner than the lesser of schedule 40 or stan dard weight, the stress intensification factor for all directions shall be equal to 2.1 unless otherwise justified. Blending the toe of the fillet weld with no undercut smoothly into the pipe wall, as shown in Figure 1-7, illustrations (b) and (d), has been shown to improve the fatigue performance of the weld. Large-diameter socket-welded and slip-on flanges with welds smaller than those required by the applicable Code may induce stresses not considered by the stress intensification factors.

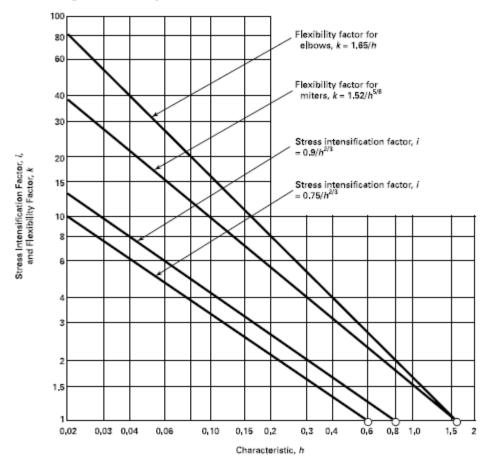

Moment (Figure 1-1)	Flexibility Factor, &	Stiffness, inTo/rad (N·mm/rad)	Stiffness, in1b/rad (N·mm/rad)
И ₁₃ (Leg 3)	×	И _м / Ө _л	(E)(I ₂)/ (k _m d)
Has (Leg 3)	*æ	<i>И</i> аа / Өаа	(E) (b) / (ka a)
И _с (Leg 3)	ka	11 ₀₀ / 8 ₀₀	$(E)(L_{1})' (k_{m} d)$
M _{0,2} (Legs 1, 2)	×	H_{hr} / θ_{hr}	(E)(I_)/(k_+ D)
$H_{a1,2}$ (legs 1, 2)	×.ar	$\mathcal{H}_{ar} / \theta_{ar}$	$(E)(I_r)/(k_{ar}D)$
И _{с.,2} (Legs 1, 2)	ker.	H_{tr} / θ_{tr}	$(E)(I_{*})/(k_{*}, D)$

GENERAL NOTE: The moment-rotation relationships in this table are developed by independently applying moments to the respective run or branch leg. Simultaneous run and branch moment-rotation interaction must be accommodated by the model.

Table 1-3 Ranged End Correction Coefficients for Sketches 2.1 through 2.6 of	Table 1-	4
--	----------	---


Flexibility Factor	Flexibility Factor Multiplier, c
×	$1 = 0.032 N_c^{-1.345} (D/T)^{0.431} (d/D)^{0.903}$
×ae	$1 = 0.07 N_c^{0.41} (D/T)^{0.44} (d/D)^{0.374}$
*	$1 - 0.003 N_c^{-3.942} (D/T)^{0.342} (d/D)^{0.243}$

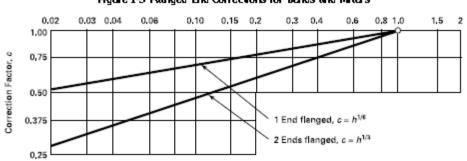
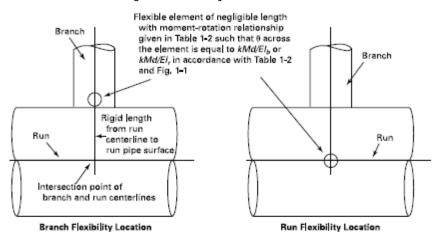

Figure 1-1 Orientations for Sketches 2.1 Through 2.6 of Table 1-1


Figure 1-2 Orientations for Bends

-

(d)

Figure 1-4 Rexibility and Stress Intensification Factors for Bends and Miters

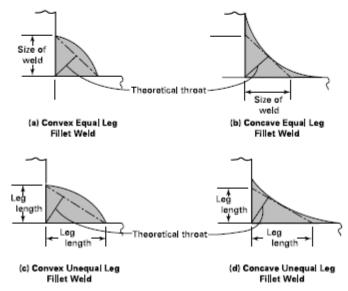

Figure 1-5 Ranged End Corrections for Bends and Mitters

Figure 1-6 Rexibility Rement Locations

GENERAL NOTE: See Figure 1-1 for flexibility orientations.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 5 of NC-3641.1.

$$P = \frac{2SEt_m}{D - 2Yt_m}$$

where

P = allowable pressure

S = allowable stress

E = joint factor (input as material property)

 t_m = minimum required thickness, including mechanical and corrosion allowances

 $= t \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

- t = nominal pipe thickness
- D =outside diameter
- d = inside diameter
- Y = pressure coefficient
 - = 0.4 for $D/t_m \ge 6$
 - = d/(D+d) for $D/t_m < 6$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 9 of NC-3652.

$$S_L = \frac{PD}{4t} + \frac{0.75iM_A}{Z} \le S_h$$

where

P = maximum pressure

D =outside diameter

t = nominal wall thickness

i = stress intensification factor. The product 0.75*i*, shall not be less than 1.0

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

Z = section modulus, for reduced outlets, effective section modulus

 S_h = hot allowable stress

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_O) such as earthquake or wind from Equation 10 of NC-3652.2. Wind and earthquake are not considered concurrently.

$$S_{LO} = S_L + \frac{0.75iM_B}{Z} \le 1.2S_h$$

where

 M_B = resultant moment due to occasional loads

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation 11 of NC-3652.3.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

 M_C = resultant moment due to thermal expansion

 $S_A = f(1.25S_c + 0.25S_h)$

 S_c = allowable stress at cold temperature

f = stress range reduction factor from Table NC-3611.2(e)-1

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation 13 of NC-3652.2.

$$S_{TE} = S_L + S_E \le S_h + S_A$$

NC-3000 — DESIGN

Fig. NC-3673.2(b)-1

Description	Flexibility Characteristic <i>h</i>	Flexibility Factor <i>k</i>	Stress Intensi- fication Factor /	Sketch
Welding elbow or pipe bend (Notes (1), (2), (3))	<i>t<u>a</u>R</i> r ^z	1.65 ħ	$\frac{0.9}{h^{3/3}}$	
Closely spaced miter bend [Notes (1), (2), (3)] s < r (1 + tan θ)	$\frac{st_{a}\cot\theta}{2r^{2}}$	1.52 h ⁵ /e	$\frac{0.9}{h^{2/3}}$	$S = \frac{S \cot \theta}{2}$
Widely spaced miter bend [Notes {1}, (2), {4}] $s \ge r (1 + \tan \theta)$	$\frac{t_n(1+\cot\theta)}{2r}$	<u>1.52</u> հ∜⊧	0.9 h ^{2/2}	$\frac{\theta}{R} = \frac{r(1 + \cot \theta)}{2}$
Welding tee per ANSI B16.9 [Notes (1), (2)]	$\frac{4.4 t_n}{r}$	1	<u>0.9</u> h ^{?/3}	
Reinforced fabricated tee [Notes (1), (2), (5)]	$\frac{\left(t_{n}+\frac{t_{0}}{2}\right)^{5/2}}{r(t_{n})^{3/2}}$	1	0.9 <i>h</i> ⁷ / ₂	$ \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\$
Unreinforced fabricated tee [Notes (1), (2)]	<u>r.</u> T	1	$\frac{0.9}{h^{2i_2}}$	

FIG. NC-3673.2(b)-1 FLEXIBILITY AND STRESS INTENSIFICATION FACTORS ($D_o/t_n \le 100$)

Fig. NC-3673.2(b)-1

SECTION III, DIVISION 1 - SUBSECTION NC

Description	Flexibility Factor k	Stress Intensification Factor i	Sketch
Branch connection (Note (6))	1	For checking branch end $Z = \pi (r'_m)^2 T_6$ $i = 1.5 \left(\frac{R_m}{T}\right)^{2/2} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T_b}{T_c}\right) \left(\frac{r_m}{r_b}\right)$ For checking run ends $Z = \pi (R_m)^{2/2} T_c$ $i = 0.4 \left(\frac{R_m}{T_c}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)$ but not less than 1.5	Fig. NC-3673.2(b)-2
Butt weid [Note [1)] $t_n > \frac{3}{t_0}$ and $\frac{\delta}{t_0} \le 0.1$	1	1.0	
Butt weld [Note (1)] $t_a \leq \sqrt[3]{t_b} \text{ or } \frac{\delta}{t_a} > 0.1$	1	1.0 for flush weld 1.8 for as-welded	
Fillet welded joint, socket welded flange, or single welded slip-on flange	1	2.1	Fig. NC-3673.2(b)-3 sketches (a), (b), (c), (e), and (f)
Brazed joint	1	2.1	Fig. NC-4511-1
Full fillet weld	1	1.3	Fig. NC-3673.2(b)-3 sketch (d)
30 deg. tapered transition (ANSI B16.25) [Note (1)]	1	1.9 max. or 1.3 + 0.0036 $\frac{D_o}{t_n}$ + 3.6 $\frac{\delta}{t_n}$	deg. max
Concentric reducer [Note (7)] (ANSI B16.9 or MSS SP48)	1	2.0 max. or 0.5 + 0.01 $\alpha \left(\frac{D_2}{t_2}\right)^{1/r}$	$ \begin{array}{c} \downarrow^{t_1} \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$
Threaded pipe joint or threaded flange	1	2.3	
Corrugated straight pipe or corrugated or creased bend [Note (8)]	5	2.5	(See notes on next page

FIG. NC-3673.2(b)-1 FLEXIBILITY AND STRESS INTENSIFICATION FACTORS ($D_o/t_n \le 100$) (CONT'D)

NC-3000 - DESIGN

Fig. NC-3673.2(b)-1

NOTES TO FIG. NC-3673.2(b)-1:

- (1) The following nomenclature applies.
 - r = mean radius of pipe, in. (matching pipe for tees and elbows)
 - $t_n =$ nominal wall thickness of pipe, in. [matching pipe for tees and elbows, see Note (9)]
 - R = bend radius of elbow or pipe bend, in.
 - θ = one-half angle between adjacent miter axes
 - s = miter spacing at center line, in.
 - t_{\bullet} = reinforced thickness, in.
 - δ = mismatch, in.
- D_{o} = outside diameter, in.
- (2) The flexibility factors k and stress intensification factors i apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees. The values of k and i can be read directly by entering with the characteristic h computed from the equations given.
- (3) Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factor c given below, which can be read directly from Fig. NC-3673.2(b)-5, entering with the computed h.
 - (a) One end flanged, $c = h^{1/4}$
 - (b) Both ends flanged, $c = h^{\gamma_2}$
- (4) Also includes single miter joints.
- (5) When $t_e > 1.5t_n$, $h = 4.05t_n/r$
- (6) The equation applies only if the following conditions are met:
 - (a) The reinforcement area requirements of NC-3643 are met.
 - (b) The axis of the branch pipe is normal to the surface of run pipe wall.
 - (c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the sum of their radii along the circumference of the run pipe.
 - (d) The inside corner radius r1 [Fig. NC-3673.2(b)-2] is between 10% and 50% of Tr
 - (e) The outer radius r_2 is not less than the larger of $T_b/2$, $(T_b + Y)/2$ [Fig. NC-3673-2(b)-2 sketch (c)] or $T_c/2$.
 - (f) The outer radius r_3 is not less than the larger of (1) $0.002\theta d_o$
 - (2) 2 (sin θ ³ times the offset for the configurations shown in Figs. NC-3673.2(b)-2 sketches (a) and (b).
 - (g) $R_m / T_r \le 50$ and $r'_m / R_m \le 0.5$.
- (7) The equation applies only if the following conditions are met:
 - (a) Cone angle α does not exceed 60 deg., and the reducer is concentric.
 - (b) The larger of D_1/t_1 and D_2/t_2 does not exceed 100.
 - (c) The wall thickness is not less than t_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t_2 .
- (8) Factors shown apply to bending; flexibility factor for torsion equals 0.9.
- (9) The designer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 5 of NC-3641.1.

$$P = \frac{2SEt_m}{D - 2Yt_m}$$

where

P = allowable pressure

S = allowable stress

E = joint factor (input as material property)

 t_m = minimum required thickness, including mechanical and corrosion allowance

= $t \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

- t = nominal pipe thickness
- D =outside diameter
- d = inside diameter
- Y = pressure coefficient
 - = 0.4 for $D/t_m \ge 6$
 - = d/(D+d) for $D/t_m < 6$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 8 of NC-3652.

$$S_L = B1\frac{PD}{2t} + B2\frac{M_A}{Z} \le 1.5S_h$$

where

B1, B2 = primary stress indices from NB-3680

P = maximum pressure

D = outside diameter

t = nominal wall thickness

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

Z = section modulus, for reduced outlets, effective section modulus

 S_h = hot allowable stress

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_O) such as earthquake or wind from Equation 9 of NC-3653.1. Wind and earthquake are not considered concurrently.

$$S_{LO} = S_L + B2 \frac{M_B}{Z} \le 1.8S_h$$

where

 M_B = resultant moment due to occasional loads

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation 10 of NC-3653.2.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor M_c = resultant moment due to thermal expansion S_A = $f(1.25S_c + 0.25S_h)$ S_c = allowable stress at cold temperature f = stress range reduction factor from Table NC-3611.2(e)-1

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation 11 of NC-3653.2(c).

$$S_{TE} = \frac{PD}{4t} + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_h + S_A$$

0.75i shall not be less than 1.0.

1986 Edition

NC-3000 — DESIGN

Fig. NC-3673.2(b)-1

Description	Flexibility Characteristic <i>h</i>	Flexibility Factor &	Stress Intensi- fication Factor /	Sketch
Welding elbow or pipe bend [Notes (1), (2), (3)]	t <u>"R</u> r ²	1.65 b	0.9 h ^{1/2}	
Closely spaced miter bend [Notes (1), (2), (3)] s < r (1 + tan θ)	$\frac{st_n \cot \theta}{2r^2}$	<u>1.52</u> h [%]	0.9 ħ [%]	$R = \frac{S \cot \theta}{2}$
Widely spaced miter bend [Notes (1), (2), (4)] s ≥ r (1 + tan θ)	$\frac{t_n(1+\cot\theta)}{2r}$	<u>1.52</u> ℎ ^{*/} ▲	0.9 h ^{2/2}	$\frac{1}{2} = \frac{1}{2}$
Welding tee per ANSI 816.9 [Notes (1), (2)]	<u>4.4 fn</u>	. 1	0.9 h [%]	
Reinforced fabricated tee [Notes (1), (5), (10)]	$\frac{\left(t_n+\frac{t_n}{2}\right)^{1/2}}{r(t_n)^{1/2}}$	1	0.9 h ^{3/3}	Pad Saddie
Unreinforced fabricated tee [Notes (1), (10)]	<u>tn</u> r	1	0.9 h ^{2/n}	

FIG. NC-3673.2(b)-1 FLEXIBILITY AND STRESS INTENSIFICATION FACTORS ($D_o/t_n \le 100$)

Fig. NC-3673.2(b)-1

SECTION III, DIVISION 1 - SUBSECTION NC

1986 Edition

•

Description	Flexibility Factor k	Stress Intensification Factor <i>i</i>	Sketch
Branch connection [Note (6)]	1	For checking branch end $Z = \pi (r'_m)^2 T'_b$ $i = 1.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T'_b}{T_r}\right) \left(\frac{r'_m}{r_p}\right)$ For checking run ends $Z = \pi (R_m)^2 T_r$ $i = 0.4 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)$ but not less than 1.5	Fig. NC-3673.2(b)-2
Girth butt weld [Note (1)] $t_n \ge 0.237$ in.	1	1.0	
Girth butt weld [Note (1)] t _n < 0.237 in.	1	1.9 max. or 0.9(1 + 3δ/t _n) but not less than 1.0	
Circumferential fillet welded or socket welded joints [Note (11)]	1	$\frac{2.1/(C_x/t_n)}{\text{but not less than 1.3}}$	Fig. NC-4427-1 sketches (c-1), (c-2), and (c-3)
Brazed joint	1	2.1	Fig. NC-4511-1
30 deg. tapered transition (ANSI B16.25) (Note (1))	1	1.9 max. or 1.3 + 0.0036 $\frac{D_a}{t_n}$ + 3.6 $\frac{\delta}{t_n}$	
Concentric and eccentric reducers [Note (7)] (ANSI B16.9)	ı	2.0 max. or 0.5 + 0.01 $\alpha \left(\frac{D_2}{t_2}\right)^{1/2}$	
Threaded pipe joint or threaded fiange	1	2.3	
Corrugated straight pipe or corrugated or creased bend [Note (8)]	5	2.5	(See notes on next pag

FIG. NC-3673.2(b)-1 FLEXIBILITY AND STRESS INTENSIFICATION FACTORS ($D_o/t_n \le 100$) (CONT'D)

1986 Edition

NC-3000 — DESIGN

Fig. NC-3673.2(b)-1

FIG. NC-3673.2(b)-1 (CONT'D);

NOTES:

- (1) The following nomenclature applies:
 - r = mean radius of pipe, in. (matching pipe for tees and elbows)
 - t_n = nominal wall thickness of pipe, in. [matching pipe for tess and elbows, see Note (9)]
 - R = bend radius of elbow or pipe bend, in.
 - θ = one-half angle between adjacent miter axes, deg.
 - s = miter spacing at center line, in.
 - $t_{\bullet} = reinforced thickness, in.$
 - δ = average permissible mismatch at girth butt welds as shown in Fig. NC-4233-1. A value of 8 less than ½ in. may be used provided the smaller mismatch is specified for fabrication. For "flush" welds, as defined in Fig. NB-3683.1(c)-1, δ may be taken as zero, I = 1.0, and flush welds need not be ground.
 - D_e = outside diameter, in.
- (2) The flexibility factors k and stress intensification factors i apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees. The values of k and i can be read directly by entering with the characteristic h computed from the equations given.
- (3) Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factor c given below, which can be read directly from Fig. NC-3673.2(b)-5, entering with the computed h.
 - (a) One end flanged, $c = h^{2s}$
 - (b) Both ends flanged, $c = h^{\frac{1}{2}}$
- (4) Also includes single miter joints.
- (5) When $t_s > 1.5t_n$, $h = 4.05t_n/r$
- (6) The equation applies only if the following conditions are met.
 - (a) The reinforcement area requirements of NC-3643 are met.
 - (b) The axis of the branch pipe is normal to the surface of run pipe wall.
 - (c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or not less than two times the sum of their inside radii along the circumference of the run pipe.
 - (d) The inside corner radius r, [Fig. NC-3673.2(b)-2] for nominal branch pipe size greater than 4 in, shall be between 10% and 50% T_c. The radius r₁ is not required for nominal branch pipe size smaller than 4 in.
 - (e) The outer radius r_2 is not less than the larger of $T_b/2$, $(T_b + Y)/2$ [Fig. NC-3673-2(b)-2 sketch (c)] or $T_c/2$.
 - (f) The outer radius r_a is not less than the larger of
 (1) 0.002 θ d_a
 - (2) 2 (sin θ)⁴ times the offset for the configurations shown in Fig. NC-3673.2(b)-2 sketches (a) and (b).
 - (g) $R_m/T_r \le 50$ and $r'_m/R_m \le 0.5$.
 - (h) The outer radius r_2 is not required provided an additional multiplier of 2.0 is included in the equations for branch end and run end stress intensification factors. In this case, the calculated value of *i* for the branch or run shall not be less than 2.1.
- (7) The equation applies only if the following conditions are met.
 - (a) Cone angle α does not exceed 50 deg.
 - (b) The larger of D_1/t_1 and D_2/t_2 does not exceed 100.
 - (c) The wall thickness is not less than t₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t₂.
 - (d) For eccentric reducers, α is the maximum cone angle.
- (B) Factors shown apply to bending; flexibility factor for torsion equals 0.9.
- (9) The designer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
 (10) The stress intensification factor *i* shall in no case be taken as less than 2.1.
- (11) C_x is the fillet weld length. For unequal leg lengths, use the smaller leg length for C_x .

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 5 of NC-3641.1.

$$P = \frac{2SEt_m}{D - 2Yt_m}$$

where

P = allowable pressure

S = allowable stress

- E = joint factor (input as material property)
- t_m = minimum required thickness, including mechanical and corrosion allowance

= $t \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

- t = nominal pipe thickness
- D =outside diameter
- d = inside diameter
- Y = pressure coefficient

$$= 0.4$$
 for $D/t_m \ge 6$

= d/(D+d) for $D/t_m < 6$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 8 of NC-3652 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_L = 2.B1.ABS\left(\frac{PD}{4t_n}\right) + B2\frac{M_A}{Z} \le 1.5S_h$$

where

B1, B2 = primary stress indices from NB-3680

- P = internal Design Pressure = maximum of CAEPIPE Input pressures P1 through P10
- D = outside diameter
- t_n = nominal wall thickness

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)
- S_h = material allowable stress at Design Temperature = maximum of CAEPIPE Input Temperatures T1 through T10

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 8 of NC-3652 as follows.

$$S_L = 2.B1.ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + B2\frac{M_A}{Z} \le 1.5S_h$$

As an option, the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_L may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_O) (such as earthquake or wind) from Equation 9 of NC-3653.1 (in case the option "Include Axial force in stress calculations" is turned OFF). Wind and earthquake are not considered concurrently.

$$S_{LO} = 2.B1.ABS\left(\frac{f_p PD}{4t_n}\right) + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(AU)}$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 9a as follows.

$$S_{LO} = 2.B1.ABS\left[\left(\frac{f_p PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust} + \left(\frac{F}{A}\right)_{occa}\right] + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

where

 $\begin{array}{ll} M_A &= \text{resultant bending moment due to sustained loads} = \sqrt{M_X^2 + M_Y^2 + M_Z^2} \\ M_B &= \text{resultant moment due to occasional loads, inclusive of seismic anchor movements} \\ &= \sqrt{M_X^2 + M_Y^2 + M_Z^2} \\ f_p &= \text{peak pressure factor input into CAEPIPE} \\ P &= \text{internal Design Pressure defined above} \end{array}$

- D = outside diameter
- t_n = nominal wall thickness
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)

 $S_{LO(AII)}$ = minimum (1.80S_h, 1.5S_v) for Level B Service Limits as per NC-3653.1

- =minimum (2.25S_h, 1.8S_v) for Level C Service Limits as per NC-3654.2 (a)
- = minimum $(3.0S_{\rm h}, 2.0S_{\rm y})$ for Level D Service Limits as per NC-3655 (a)(2)

 S_h = material allowable stress at Design Temperature defined above

 S_v = material yield strength at Design Temperature

As an option, the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_{LO} may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation (10a) of NC-3653.2.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from NB-3680

- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NC-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- f = stress range reduction factor from Table NC-3611.2(e)-1

Sustained + Expansion Stress

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation 11 of NC-3653.2(c) (in case the option "Include Axial force in stress calculations" is turned OFF)..

$$S_{TE} = ABS\left(\frac{PD}{4t_n}\right) + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 11 as follows.

$$S_{TE} = ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

0.75i shall not be less than 1.0.

where

P = internal Design Pressure = maximum of CAEPIPE Input pressures P1 through P10

- D = outside diameter
- $t_n =$ nominal wall thickness
- M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NC-3611.2(e)

- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- S_H = material allowable stress at Design Temperature defined above
- f = stress range reduction factor from Table NC-3611.2(e)-1

Settlement Stress

The stress (S_S) due to single nonrepeated anchor movement (e.g., predicted building settlement) is calculated from Equation (10b) of NC-3653.2.

$$S_S = \frac{iM_D}{Z} \le 3S_C$$

where

i = stress intensification factor from Table NC-3673.2(b)-1

- M_D = resultant moment due to any single nonrepeated anchor movement (e.g., predicted building settlement)
- S_c = allowable stress at the Reference Temperature in CAEPIPE
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)

Fig. NC-3673.2(b)-1

1992 SECTION III, DIVISION I --- NC

Description	Flexibility Characteristic h	Flexibility Factor k	Stress Intensi- fication Factor i	Sketch
Welding elbow or pipe bend (Notes (1), (2), (3))	t <u>aR</u> 7 ²	<u>1.65</u> h	<mark>0:9</mark> - 22 h ^{1/2}	
Closely spaced miter bend (Notes (1), (2), (3)) s < r (1 + tan θ)	<u>sta cot θ</u> 2r²	1.52 h ¹ /4	0.9 h ^{1/2}	$\frac{1}{2} = \frac{1}{2}$
Widely spaced miter bend [Notes (1), (2), (4)] $s \ge r$ (1 + tan θ)	$\frac{t_n(1+\cot\theta)}{2r}$	1.52 h %	0.9 h ^{1/3}	$\frac{3}{2}$ $R = \frac{r(1 + \cot \theta)}{2}$
Welding tee per ANSI B16.9 [Notes (1), (2)]	<u>4.4 in</u> r	1	0.9 h ¹ /2	
Reinforced fabricated tee [Notes (1), (5), (10]]	$\frac{\left(t_n+\frac{t_n}{2}\right)^{\frac{4}{2}}}{r(t_n)^{\frac{4}{2}}}$	1	0.9 h ^{?/s}	$ \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\$
Unreinforced (abricated tee (Notes (1), (10))	<u>i.</u> r	ĩ	0.9 //,	

FIG. NC-3673.2(b)-1 FLEXIBILITY AND STRESS INTENSIFICATION FACTORS ($D_0/t_o \le 100$)

Fig. NC-3673.2(b)-1

SECTION III, DIVISION 1 — SUBSECTION NC

1986 Edition

•

	Flow/hillh.	Stress Intensification	
Description	Flexibility Factor <i>k</i>	Factor <i>i</i>	Sketch
Branch connection (Note (6))	1	For checking branch end $Z = \pi (r'_m)^2 T'_b$ $i = 1.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T'_b}{T_r}\right) \left(\frac{r'_m}{r_b}\right)$ For checking run ends $Z = \pi (R_m)^2 T_r$ $i = 0.4 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)$ but not less than 1.5	Fig. NC-3673.2(b)-2
Girth butt weld [Note (1)] $t_n \ge 0.237$ in.	1	1.0	
Girth butt weld [Note (1)] $t_n < 0.237$ in.	1	1.9 max. or 0.9(1 + 38∕t _n) but not less than 1.0	
Circumferential fillet welded or socket welded joints [Note (11)]	1	$\frac{2.1}{C_x/t_n}$ but not less than 1.3	Fig. NC-4427-1 sketches (c-1), (c-2), and (c-3)
Brazed joint	1	2.1	Fig. NC-4511-1
30 deg. tapered transition (ANSI B16.25) [Note (1)]	1	1.9 max. or 1.3 + 0.0036 $\frac{D_o}{t_n}$ + 3.6 $\frac{\delta}{t_n}$	
Concentric and eccentric reducers [Note (7)] (ANSI B16.9)	1	2.0 max. or 0.5 + 0.01 $\alpha \left(\frac{D_2}{t_2}\right)^{\gamma_2}$	$ \begin{array}{c} $
Threaded pipe joint or threaded flange	1	2.3	
Corrugated straight pipe or corrugated or creased bend [Note (8)]	5	2.5	(See notes on next page)

FIG. NC-3673.2(b)-1 FLEXIBILITY AND STRESS INTENSIFICATION FACTORS ($D_o/t_n \le 100$) (CONT'D)

Fig. NC-3673.2(h)-1

1992 SECTION III, DIVISION 1 -- NC

- NOTES:
- (1) The following nomenciature applies:
 - r = mean radius of pipe, in. (matching pipe for tees and albows)
 - $t_s =$ nominal well thickness of pipe, in. [matching pipe for tees and elbows, see Note (9)]
 - R bend radius of elbow or pipe bend, in.
 - # = one-half engle between adjacent miter exes, deg.
 - s = miter spacing at center line. in.
 - f, = reinforced thickness, in.
 - D. outside diameter, in.
- (2) The flexibility factors k and stress intensification factors i apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees.

A . 5

23

- (3) Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factor c given below. (a) One end flanged, $c = h^{2e}$
 - (b) Both and a flanged, $c = h^{b}$
- (4) Also includes single miter joints.
- (5) When $t_r > 1.6 t_a$, $h = 4.05 t_a/r$
- (6) The equation applies only if the following conditions are met.
 - (a) The reinforcement area requirements of NC-3643 are met.
 - (b) The sxis of the branch pipe is normal to the surface of run pipe well.
 - (c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or not less than two times the sum of their inside radii along the circumference of the run pipe.
 - (d) The Inside corner redius r, (Fig. NC-3673.2(b)-2) for nominal branch pipe size greater than 4 in. shall be between 10% and 50% T,. The redius r, is not required for nominal branch pipe size smaller than 4 in.
 - (e) The outer radius r_2 is not less than the larger of $T_a/2$, $(T_a + Y)/2$ [Fig. NC-3673-2(b)-2 sketch (c)] or $T_a/2$.
 - (f) The outer radius r₃ is not less than the larger of
 - (1) 0.0020 d.

(2) 2 (sin θ)² times the offset for the configurations shown in Fig. NC-3673.2(b)-2 sketches (a) and (b).

- (g) R_m/T_r ≤ 50 and r^{*}_m/R_m ≤ 0.5.
- (h) The outer radius r₂ is not required provided an additional multiplier of 2.0 is included in the equations for branch and and run and stress intensification factors. In this case, the calculated value of i for the branch or run shall not be loss than 2.1.
- (7) The equation applies only if the following conditions are met.
 - (a) Cone angle a does not exceed 60 deg.
 - (b) The larger of D_1/t_1 and D_2/t_2 does not exceed 100.
 - (c) The wall thickness is not less than t, throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small and, where the thickness shall not be less than t_2 .
 - (d) For eccentric reducers, a is the maximum cone angle.
- (8) Factors shown apply to bending; flaxibility factor for torsion equals 0.8.
- (9) The designer is cautioned that cast butt walding albows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (10) The stress intensification factor I shall in no case be taken as less than 2.1.
- (11) In Fig. NC-4427-1(c-1) and (c-2), C_e shall be taken as X_{min} and C_e ≥ 1.25 t_e. In Fig. NC-4427-1 (c-3), C_e ≥ 0.75 t_e. For unequal leg lengths use the smaller leg length for C,.

FIG. NC-3673.2(b)-1 FLEXIBILITY AND STRESS INTENSIFICATION FACTORS (Ddt. = 100) (CONT'D)

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 5 of NC-3641.1.

$$P_a = \frac{2SEt_m}{D - 2Yt_m}$$

where

 P_a = allowable pressure

S = allowable stress for the material at the Design Temperature

E = joint factor (input as material property)

 t_m = minimum required thickness, including mechanical and corrosion allowance

= $t \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

- t = nominal pipe thickness
- D =outside diameter
- d = inside diameter
- Y = pressure coefficient

= 0.4 for
$$D/t_m \ge 6$$

= d/(D+d) for $D/t_m < 6$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 8 of NC-3652 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_L = 2.B1.ABS\left(\frac{PD}{4t_n}\right) + B2\frac{M_A}{Z} \le 1.5S_h$$

where

B1, B2 = primary stress indices from Table NC-3673.2(b)-1

- *P* = maximum of CAEPIPE Input pressures P1 through P10
- D = outside diameter
- t_n = nominal wall thickness

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)
- S_h = material allowable stress at maximum of CAEPIPE Inputtemperatures T1 through T10

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 8 of NC-3652 as follows.

$$S_L = 2.B1.ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + B2\frac{M_A}{Z} \le 1.5S_h$$

As an option, the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_L may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_O) (such as thrusts from relief and safety valve loads from pressure and flow transients, and reversing and nonreversing dynamic loads, if the Design Specification requires calculation of moments due to reversing and non-reversing dynamic loads) from Equation 9a of NC-3653.1 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_{LO} = 2.B1.ABS\left(\frac{f_p PD}{4t_n}\right) + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 9aof NC-3653.1as follows.

$$S_{LO} = 2.B1.ABS\left[\left(\frac{f_p PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust} + \left(\frac{F}{A}\right)_{occa}\right] + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

where

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

 M_B = resultant moment due to occasional loads, inclusive of seismic anchor movements and movements due to reversing and nonreversing dynamic loads

$$=\sqrt{M_X^2 + M_Y^2 + M_Z^2}$$

 f_p = peak pressure factor input into CAEPIPE

- *P* = maximum of CAEPIPE Input pressures P1 through P10
- D = outside diameter
- t_n = nominal wall thickness
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)

 $S_{LO(All)}$ = minimum (1.80S_h, 1.5S_y) for Level B Service Limits as per NC-3653.1

=minimum $(2.25S_{h}, 1.8S_{v})$ for Level C Service Limits as per NC-3654.2 (a)

= minimum $(3.0S_h, 2.0S_v)$ for Level D Service Limits as per NC-3655 (a)(2)

- S_h = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- S_y = material yield strength at maximum of CAEPIPE Input temperatures T1 through T10

As an option, the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_{LO} may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Note:

Movements at anchors and nozzles due to seismic event and due to reversing and nonreversing dynamic loads are to be input as "specified displacements" for seismic and they will be included as a part of the Occasional Stress evaluation given above.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation (10a) of NC-3653.2.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from Table NC-3673.2(b)-1

- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NC-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- f = stress range reduction factor from Table NC-3611.2(e)-1

Sustained + Expansion Stress

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation 11 of NC-3653.2(c) (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_{TE} = ABS\left(\frac{PD}{4t_n}\right) + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 11of NC-3653.2(c)as follows.

$$S_{TE} = ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

0.75i shall not be less than 1.0.

where

P = maximum of CAEPIPE Input pressures P1 through P10

D =outside diameter

 $t_n =$ nominal wall thickness

$$M_A$$
 = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NC-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- S_H = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- f = stress range reduction factor from Table NC-3611.2(e)-1

Settlement Stress

The stress (S_S) due to single nonrepeated anchor movement (e.g., predicted building settlement) is calculated from Equation (10b) of NC-3653.2.

$$S_S = \frac{iM_D}{Z} \le 3S_C$$

where

i = stress intensification factor from Table NC-3673.2(b)-1

- M_D = resultant moment due to any single nonrepeated anchor movement (e.g., predicted building settlement)
- S_c = allowable stress at the Reference Temperature in CAEPIPE
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)

ASME Section III, Subsection NC - Class 2 (2015)

Table NC-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors							
Description	I 	Flexibility Characteristic, fr	Flexibility Factor, k	Stress Intensification Factor, i	Sketch		
Welding elbaw ar pipe bend [Nate [1]], [Nate [2]]	0.4⊳h –0.1 ⊻0.5 aand > 0	$\frac{1.30}{\hbar^{273}}$	$\frac{t_{n}R}{r^{2}}$	$\frac{1.65}{h}$	$\frac{0.9}{h^{2/3}}$		
Closely spaced miter bend [Note (1)] $s < r (1 + \tan \vartheta)$	Q.5	$\frac{1.30}{\hbar^{2/2}}$	$\frac{s_{0} \cot \theta}{2r^{2}}$	$\frac{1.52}{b^{5/6}}$	$\frac{0.9}{\hbar^{2/3}}$	$s \xrightarrow{\theta} \left(\frac{1}{r} \right) \xrightarrow{t} \left(\frac$	
Widely spaced miter bend [Note (1)], [Note (3)] $s \ge r (1 + \tan \theta)$	a.5	$\frac{1.30}{h^{2/3}}$	$\frac{t_0(1 + \cot \theta)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$s = \frac{t}{r} + \frac{t}{r}$ $R = \frac{t(1 + \cot \theta)}{2}$	
Welding tee per ASME B16.9 [Note (4)]	û.5	Branch end: $B_{2b} = 0.4 \left(\frac{r}{t_0}\right)^{2/3}$ Run end: $B_{2r} = 0.5 \left(\frac{r}{t_0}\right)^{2/3}$	$\frac{4A t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$ For branch leg of a reduced outlet use $\frac{0.9}{h^{2/3}} \left(\frac{T'_h}{T_r}\right)$		

Additional Note for Welding elbow or Pipe bend:

If the value of B1 = (0.4h - 0.1) < 0.0, then B1 is set to 0.0.

	Primary Stress Index				Stress	
Description	Ba	B2	Flexibility Characteristic, Jr	Flexibility Factor, k	Intensification Factor, i	Sketch
ieinforced folmicated tee (Note (3)), (Note (5)), (Note (6))	Q.5	Branch end: $\begin{array}{l} B_{2b} &= 0.75 \Big(\frac{r}{t_0}\Big)^{2/3} \Big(\frac{r'_0}{r}\Big)^{1/2} \Big(\frac{r'_0}{t_0}\Big) \Big(\frac{r'_m}{t_0}\Big) \\ &\geq 1.0 \\ \hline \mbox{Piote [7]]} \\ \hline \mbox{Run end:} \\ B_{2r} &= \frac{0.675 (r/t_0)^{2/3}}{(1 + (c'_s/2t_0)^{5/3}} \geq 1.0 \\ \hline \mbox{[Note [3]]} \end{array}$	$\frac{\left[t_{\rm tr} + \frac{t_{\rm s}}{2}\right]^{3/2}}{r(t_{\rm tr})^{3/2}}$	1	$\begin{array}{l} \frac{0.9}{\hbar^{2/3}} \geq 2.1 \\ \\ \hline \mbox{For branch leg of a reduced outlet use} \\ \frac{0.9}{\hbar^{2/3}} \left(\frac{\Gamma_0}{T_{\rm c}} \right) \geq 2.1 \end{array}$	$\begin{array}{c c} & \downarrow \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$

Additional Note for Reinforced fabricated tee:

For calculating the value of rps and t'_e, the value of r_e is assumed to be equal to $2 \ge r'_m$, where r'_m is the mean radius of the branch leg.

	Str	ess Indices, Flexibili	Table NC-3 ity, and Stre		ation Factors (Cont'd	ŧ)	
				Flexibility			
Description	B ₁	B ₂		Factor, k	Stress Intensificat	tion Factor, i	Sketch
Fillet welded and partial penetration welded branch connections [Note [4]], [Note [6]], [Note [10]]	û.S	Branch leg: $B_{2b} = 2.25 \left(\frac{R_{B}}{T_{r}}\right)^{2/3} \left(\frac{r'_{B}}{R_{B}}\right)^{1/2}$ Run legs: $B_{2r} = 1.3 \left(\frac{r'_{B}}{t_{0}}\right)^{1/2}$		5 1	Branch leg: $i_{\rm b} = 4.5 \left(\frac{R_{\rm m}}{T_{\rm r}}\right)^{2/3} \left(\frac{r'_{\rm m}}{R_{\rm m}}\right)^{1/2} \left(\frac{T'_{\rm b}}{T_{\rm r}}\right) \left(\frac{r'_{\rm m}}{r_{\rm p}}\right) \ge 3.0$ Run legs: $i_{\rm f} = 0.8 \left(\frac{R_{\rm m}}{T_{\rm r}}\right)^{2/3} \left(\frac{r'_{\rm m}}{R_{\rm m}}\right) \ge 2.1$		- Figure NC-3643.2(b)-2
Girth butt weld	0.5	1.0		1	1.0		
Grounderential fillet welded or socket welded joints [Note (11)]	$0.75 \left(\frac{t_0}{c_x} \right) \ge 0.5$	$1.5 \left[\frac{t_{0}}{c_{X}}\right]$		1	$\label{eq:constraint} \begin{split} & \operatorname{For} \mathcal{C}_x \geq 1.09 t_n, i=1.3 \\ & \operatorname{For} \mathcal{C}_x < 1.09 t_n, i=2.1 (t_n/\mathcal{C}_x) \geq 1.3 \end{split}$		Figure NG 4427-1 sketche (c-1), (c-2), and (c-3)
Brazed joint	0.5	1.6		1	2.1		Figure NC-4511-1
30 deg ta pered transition (ASME B16.25) t _n < 0.237 in. (6 mm)	0.5	1.0		1	(U.S. Customary Units) 1.3 + 0.0036 $\frac{D_0}{t_n}$ + 0.113 / $t_n \le 1.9$ (SI Units) 1.3 + 0.0036 $\frac{D_0}{t_n}$ + 2.87 / $t_n \le 1.9$		
Description	Primary B ₂	Stress Index B ₂	Flexibility Factor, k	S T	Stress Intensification Factor, i		Sketch
30 deg tapered transition (ASME B16.25) t _n ≥ 0.237 in. (6 mm)	0.5	1.0	1	1.3 + 0.0036 D _a / t _n ± 1.9			
Concentric and eccentric reducers (ASME 8169) [Note (12)]	0.5 for a ≤ 30 deg 1.0 for 30 deg ⊲ a ≤ 60 deg	1.0	1	$0.5 + 0.01 a \left(\frac{b_2}{b_2}\right)^{1/2} \le 2.0$		$\begin{array}{c} \downarrow^{z_1} & \downarrow \\ \uparrow \uparrow & & & \downarrow \\ D_1 & & & \downarrow \\ D_2 & & & \downarrow \\ D_1 & & & & \downarrow \\ \end{array}$	

Additional Note for Circumferential fillet welded or socket welded joints:

Values of B1, B2 and Stress Intensification Factor (SIF) are taken as 0.75, 1.50 and 1.3 respectively in CAEPIPE for the following reasons.

- 1. There is no provision to input the value of Cx in CAEPIPE for fillet and socket welded flanges.
- 2. The definition of Cx as per Note 11 of Table NC-3673.2(b)-1 contradicts with the definition of Cx as defined in Notes (3) and (4) of Figure NC-4427-1.

	Primary Stres	-	Flexibility	ss Intensification Factors (Cont'd)	
Description	B ₁	B2	Factor, k	Stress Intensification Factor, i	Sketch
Dreaded pipe joint or threaded flange	0.75	1.7	1	2.3	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	nester of branch, in (norn) ameter, in (norn) ameter, in (norn) is of albow or pipe band, i. e, in (norn) (matching pipe, pipe, in (norn) nch pipe, in (norn) nch pipe, in (norn) ness of norm (norm) ness of pipe, in (norn) ness of branch, pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) ness of branch pipe, in (norm) (norm) set of branch pipe, in (norm) ness of branch pipe, in (norm) (norm) set of the pipe, in (norm) ness of branch pipe, in (norm) (e for tees and elbo tcluing pipe for tes m) deg MC-3643.2(b)-2 an <i>j</i> and stress indices r land stress intensif piped by the factor incceed 1.0; $T = De$ a exceed 1.0; $T = D$ a exceed 1.0; $T = D$	es and elbows, see f id. MC-3673.2(b)-2. Es B_2 apply to nome ches) for curved ann- ission factors are a r 1/(XY), where: isign temperature (* Design temperature (* Design temperature (*)	nts in any plane for fittings and shall in no case be to miter elbows, and to the intersection point for te oplicable to D _a /t _a ≤ 100. For products and joints w F) (°C)	es.
effect of these greater this rotes (CONTO): 3) Also includes single miter 4) For checking branch leg st	Stress I	ndices, Flexib	Table NC-3 bility, and Stre	573.2(b)-1 ss Intensification Factors (Cont'd)	
			Z = 2	$(r'_{m})^{2}T'_{b}$	
For checking run leg stres:	2:				
			Z = z	$r (R_m)^2 \overline{T}_r$	
(b) The axis of the brand (c) For branch connection (c) For branch connection (d) The run pipe is a str (d) The run pipe is a str (m/r such as b) r ['] m/r shall not be taken The definition of r _g , is: r _g = [r' _m + r _g] 2 for t _g	if the following conditions trea requirements of NC-3 h pipe is normal to the su- ns in a pipe, the arc distan- limal direction or not less the aight pipe. is for $r'_m/r > 0.5$. as less than 0.5. $\geq 0.8t_n$	643 are met rface of the run pi ce measured betw	een the centers of a	djacent branches along the surface of the run pipe. radii along the circumference of the run pipe.	is not less than three times the sum of the
	it not greater than 1.0 t_n (Figure NC-3.673.2(b)-2) th For $r'_m/R_m \le 0.5$, the i fa f $r'_m/R_m \le 0.5$.	ctors for checking	run ends are indej	$T'_{h} + y$)/2 (sketch (c)), or $T_{r}/2$, then the calculated endent of whether r_2 is provided or not Figure NE-4427-1 sketch (c-3), $C_{h} \approx 0.75$ (s. For un	

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 5 of NC-3641.1.

$$P_a = \frac{2SEt_m}{D - 2Yt_m}$$

where

 P_a = allowable pressure

S = allowable stress for the material at the Design Temperature

E = joint factor (input as material property)

 t_m = minimum required thickness, including mechanical and corrosion allowance

= $t \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

- t = nominal pipe thickness
- D =outside diameter
- d = inside diameter
- Y = pressure coefficient

$$= 0.4$$
 for $D/t_m \ge 6$

= d/(D+d) for $D/t_m < 6$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 8 of NC-3652 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_L = 2.B1.ABS\left(\frac{PD}{4t_n}\right) + B2\frac{M_A}{Z} \le 1.5S_h$$

where

B1, B2 = primary stress indices from Table NC-3673.2(b)-1

- *P* = maximum of CAEPIPE Input pressures P1 through P10
- D = outside diameter
- t_n = nominal wall thickness

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)
- S_h = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 8 of NC-3652 as follows.

$$S_L = 2.B1.ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + B2\frac{M_A}{Z} \le 1.5S_h$$

As an option, the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_L may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_O) (such as thrusts from relief and safety valve loads from pressure and flow transients, and reversing and nonreversing dynamic loads, if the Design Specification requires calculation of moments due to reversing and nonreversing dynamic loads) from Equation 9a of NC-3653.1 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_{LO} = 2.B1.ABS\left(\frac{f_p PD}{4t_n}\right) + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 9aof NC-3653.1as follows.

$$S_{LO} = 2.B1.ABS\left[\left(\frac{f_p PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust} + \left(\frac{F}{A}\right)_{occa}\right] + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

where

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

 M_B = resultant moment due to occasional loads, inclusive of seismic anchor movements and movements due to reversing and non-reversing dynamic loads

$$=\sqrt{M_X^2 + M_Y^2 + M_Z^2}$$

 f_p = peak pressure factor input into CAEPIPE

- *P* = maximum of CAEPIPE Input pressures P1 through P10
- D = outside diameter
- t_n = nominal wall thickness
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)

 $S_{LO(All)}$ = minimum (1.80S_h, 1.5S_y) for Level B Service Limits as per NC-3653.1

- =minimum $(2.25S_h, 1.8S_y)$ for Level C Service Limits as per NC-3654.2 (a)
- = minimum $(3.0S_h, 2.0S_v)$ for Level D Service Limits as per NC-3655 (a)(2)
- S_h = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- S_y = material yield strength at maximum of CAEPIPE Input temperatures T1 through T10

As an option, the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_{LO} may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Note:

Movements at anchors and nozzles due to seismic event and due to reversing and nonreversing dynamic loads are to be input as "specified displacements" for seismic and they will be included as a part of the Occasional Stress evaluation given above.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation (10a) of NC-3653.2.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from Table NC-3673.2(b)-1

- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NC-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- f = stress range reduction factor from Table NC-3611.2(e)-1

Sustained + Expansion Stress

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation 11 of NC-3653.2(c) (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_{TE} = ABS\left(\frac{PD}{4t_n}\right) + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 11of NC-3653.2(c)as follows.

$$S_{TE} = ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

0.75i shall not be less than 1.0.

where

P = maximum of CAEPIPE Input pressures P1 through P10

D =outside diameter

 $t_n =$ nominal wall thickness

$$M_A$$
 = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NC-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- S_H = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- f = stress range reduction factor from Table NC-3611.2(e)-1

Settlement Stress

The stress (S_S) due to single nonrepeated anchor movement (e.g., predicted building settlement) is calculated from Equation (10b) of NC-3653.2.

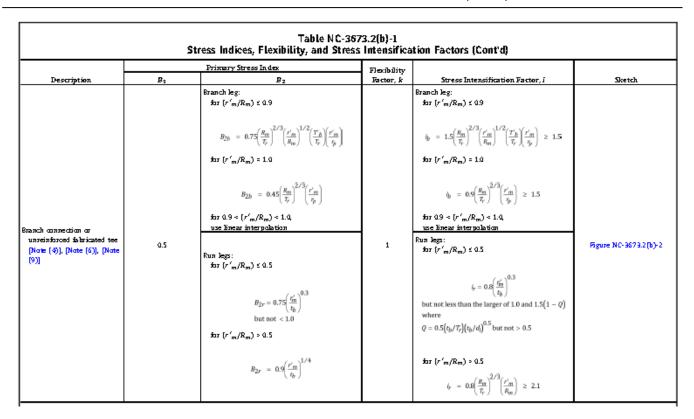
$$S_S = \frac{iM_D}{Z} \le 3S_C$$

where

i = stress intensification factor from Table NC-3673.2(b)-1

- M_D = resultant moment due to any single nonrepeated anchor movement (e.g., predicted building settlement)
- S_c = allowable stress at the Reference Temperature in CAEPIPE
- Z = section modulus; for reduced outlets, effective section modulus as per NC-3653.3(d)

Welding elbaw ar pipe bend [Note [1]], [Nate [2]]	0.4-h -0.1 ≤ 0.5 and > 0	$\frac{1.30}{\hbar^{2/3}}$	$\frac{t_{\eta}R}{r^2}$	$\frac{1.65}{h}$	0.9 h ^{2/3}	
Closely spaced miter bend [Note [1]] $s < r$ [1 + tan ϑ)	0.5	$\frac{1.30}{h^{273}}$	$\frac{s_{0}\cot\theta}{2r^{2}}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c} \downarrow \\ \downarrow \\ \uparrow \\ R = \frac{s \cot \theta}{2} \end{array} $
Widely spaced miter bend [Note (1)], [Note (3)] s ≥ r (1 + tan Ø)	Q.5	$\frac{1.30}{h^{273}}$	$\frac{t_0(1 + \cot\theta)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$s \xrightarrow{r} \frac{1}{r} \xrightarrow{r} \frac{1}{r} $
Welding tee per ASME B16.9 [Note [4]]	0.5	Branch end: $B_{2b} = 0.4 \left(\frac{r}{t_0}\right)^{2/3}$ Run end: $B_{2r} = 0.5 \left(\frac{r}{t_0}\right)^{2/3}$	$\frac{4.4 t_{0}}{r}$	1	$\begin{array}{c} \frac{0.9}{\hbar^{2/3}} \\ \end{array}$ For branch leg of a reduced outlet use $\begin{array}{c} \frac{0.9}{\hbar^{2/3}} \\ \frac{0.9}{\hbar^{2/3}} \left(\frac{T_{\rm A}}{T_{\rm F}} \right) \end{array}$	


Additional Note for Welding elbow or Pipe bend:

If the value of B1 = (0.4h - 0.1) < 0.0, then B1 is set to 0.0.

		Primary Stress Index			Stress	
Description	B ₁	B2	Flexibility Characteristic, Jr	Flexibility Factor, k	Intensification Factor, i	Sketch
Reinforced fabricated tee [Note (4)], [Note (5)], [Note [6)]	û.S	Branch end: $B_{2b} = 0.75 \left(\frac{r}{t_0}\right)^{2/3} \left(\frac{r'm}{r}\right)^{1/2} \left(\frac{T_0}{t_0} \left(\frac{r'm}{t_0}\right)\right)^{1/2} \left(\frac{T_0}{t_0}\right)^{1/2} \left(\frac{r'm}{t_0}\right)^{1/2}$ Run end: $B_{2r} = \frac{0.675(r/t_0)^{2/3}}{\left[1 + (t'_a/2t_0)\right]^{5/3}} \ge 1.0$ [Note [8]]	$\frac{\left[t_{0} + \frac{t_{0}}{2}\right]^{3/2}}{r(t_{0})^{3/2}}$	1	$\begin{array}{l} \frac{0.9}{\hbar^{2/3}} \geq 2.1 \\ \\ \hline \mbox{For branch leg of a reduced outlet use} \\ \frac{0.9}{\hbar^{2/3}} \left(\frac{\Gamma_0}{T_c} \right) \geq 2.1 \end{array}$	$\begin{array}{c c} & \downarrow \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$

Additional Note for Reinforced fabricated tee:

For calculating the value of rps and t'_e , the value of r_e is assumed to be equal to $2 \ge r'_m$, where r'_m is the mean radius of the branch leg.

	Str	ess Indices, Flexibili	Table NC-3 ty, and Stre		ation Factors (Cont'	Ŋ			
	Primary Stress Index			Flexibility					
Description	B ₁	B2		Factor, k	Stress Intensificat	ion Factor, i	Sketch		
Fillet welded and partial penetration welded branch connections [Note (4)], [Note (6)], [Note [10]]	û.5	Branch leg: $B_{2b} = 2.25 \left(\frac{R_{0}}{T_{r}}\right)^{2/3} \left(\frac{r'_{m}}{R_{m}}\right)^{1/2}$ Run legs: $B_{2r} = 1.3 \left(\frac{r'_{m}}{t_{0}}\right)^{1/2}$		5 — 1	Branch leg: $\begin{split} \hat{\eta}_{p} &= 4.5 \bigg(\frac{R_{eq}}{T_{p}}\bigg)^{2/3} \bigg(\frac{r'_{m}}{R_{eq}}\bigg)^{1/2} \bigg(\frac{T'_{p}}{T_{p}}\bigg) \frac{r'_{m}}{r_{p}}\bigg) \geq 3.0 \\ \hline \mathbf{Run legs:} \\ i_{f'} &= 0.8 \bigg(\frac{R_{eq}}{T_{p}}\bigg)^{2/3} \bigg(\frac{r'_{m}}{R_{eq}}\bigg) \geq 2.1 \end{split}$		- Figure NC-8649.2(b)-2		
Girth butt weld	0.5	1.0		1	1.0		1.0		
Grounderential fillet welded or socket welded joints [Note [11]]	$0.75 \left(\frac{t_0}{c_x} \right) \ge 0.5$	$1.5 \left(\frac{t_R}{c_X}\right)$		1	$ \begin{aligned} & \mbox{Far } \mathcal{C}_{x} \ge 1.09 t_{n}, i = 1.3 \\ & \mbox{Far } \mathcal{C}_{x} < 1.09 t_{n}, i = 2.1 (t_{n}/\mathcal{C}_{x}) \ge 1.3 \end{aligned} $		Figure NO-4427-1 sketche (c-1), (c-2), and (c-3)		
Brazed joint	0.5	1.6		1	2.1		Figure NC-4511-1		
30 deg tapered transition (ASME B16.25) t _n < 0.237 in. (6 mm)	0.5	1.0		1	(U.S. Customary Units) 1.3 + 0.0036 $\frac{D_0}{\ell_n}$ + 0.113 / $\ell_n \le 1.9$ (SI Units) 1.3 + 0.0036 $\frac{D_0}{\ell_n}$ + 2.87 / $\ell_B \le 1.9$				
Description	Primary B ₂	Stress Index B ₂	Flexibility Factor, k	Street Inter	Stress Intensification Factor, J		Sketch		
30 deg tapered transition (ASME B16.25) t _n ≥ 0.237 in. (6 mm)	0.5	1.0	1		136 D _a / t _n ≤ 1.9				
Concentric and eccentric reducers (ASME 8169) [Note (12)]	0.5 for a ≤ 30 deg 1.0 for 30 deg ⊲ a ≤ 60 deg	1.0	1	0.5 + 0.	$0.5 + 0.01 a \left(\frac{D_2}{b_2}\right)^{1/2} \le 2.0$ $\int_{D_1}^{1/2} \int_{D_1}^{1/2}				

Additional Note for Circumferential fillet welded or socket welded joints:

Values of B1, B2 and Stress Intensification Factor (SIF) are taken as 0.75, 1.50 and 1.3 respectively in CAEPIPE for the following reasons.

- 3. There is no provision to input the value of Cx in CAEPIPE for fillet and socket welded flanges.
- 4. The definition of Cx as per Note 11 of Table NC-3673.2(b)-1 contradicts with the definition of Cx as defined in Notes (3) and (4) of Figure NC-4427-1.

	Stress I	ndices, Flexi	Table NC-3 ibility, and Stre	8673.2(b)-1 ess Intensification Factors (Cont'd)	
	Primary Stress		Flexibility		5 .1
Description Floreaded pipe joint or	B ₁ 0.75	B2 1.7	Factor, k	Stress Intensification Factor, i 2.3	Sketch
threaded flange	4.75	1.7	1	2.3	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	anester of baanch, in (norn) iameter, in. (norn) iameter, in. (norn) iameter, in. (norn) pe, in. (norn) (matching pipe in ppe, in. (norn) anch pipe, in. (norn) anch pipe, in. (norn) ancer soft pipe, in. (norn) cases of pipe, in	for tees and elb (mm) ching pipe for te a) es C=3643.2(b)-2 at and stress indic mes in the sket d stress intensi disc by the factor walkes of k and . not be taken as 1	nd HC-3673.2(b)-2. es B, apply to mom tabes) for curved an fication factors are: or 1/(X7), where: esign temperature (Design temperature i shall be corrected less than 1.0.	ents in any plane for fittings and shall in no case b d miter elbows, and to the intersection point for pplicable to $D_a/t_n \le 100$. For products and joint of p	- rees. 2 with 5 D < D _a /t _a ≤ 1 DD, the B ₃ index in Ta
DTES (EDNT'D): i) Also includes single mite i) For checking branch leg :	- jaints.	idices, Flexi		ss Intensification Factors (Cont'd)	
			Z =	$\pi (r'_m)^2 T'_b$	
For checking run leg stre	15 :				
			Z =	$\pi \left(R_{m}\right)^{2} \overline{r}_{r}$	
 (h) The axis of the branch connect. (c) For branch connect. (d) The run pipe is a start of the range of the	(if the following conditions: area requirements of I/(T-36 chi pipe is normal to the sum ones in a pipe, the arc distance dutal direction or not less the raight pipe. 5 for $r'_m/r > 0.5$, a select than 0.5. $r \geq 0.8t_n$	43 are met face of the run p e measured betw	ween the centers of	adjacent branches along the surface of the run pij le radii along the circumference of the run pipe.	se is not less than three times the sum of the
$r_{\mu\nu} = r'_m + (T'_h/2) \text{ for } t$ (8) The definition of t'_e is: $t'_e = t_e \left[(r_e / r'_m) - 1 \right] t$ (9) If an r_2 radius is provided with $f_h \ge 1.5$ and $f_e \ge 1.5$ (10) The equations apply only (11) In Figure HC-4427-1 sket for C_e . (2) The equation applies only (a) Eone angle α does (b) The larger of D_e/t_5 , (c) The wall duckness i be less than t_2 .	$_{c} < 0.8 t_{a}$ with not greater than 1.0 t_{a} (Figure MC-3 6/3.2 (b)-2) that For $r'_{m}/R_{m} \le 0.5$, the i fact is $r'_{m}/R_{m} \le 0.5$. thes (c-1) and (c-2), t_{a} shall with the fallowing conditions: not exceed 6D deg and D ₂ / t_{2} does not exceed in otless than t , throughout	tors for checkin be taken as X _{m In} are met: 1DD. the body of the r	g run ends are inde , and C _x ≈ 1.25 (_n . b	$(T'_{a} + y)/2$ (sketch (c)), or $T_{x}/2$, then the calculat pendent of whether r_{2} is provided or not a Figure HC-4427-1 sketch (\sim 3), $C_{z} \ge 0.75$ t _a . For d intraediately adjacent to the cylindrical portion	unequal leg lengths, use the smaller leg leng
	ers, a is the maximum cone	angle			

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 5 of ND-3641.1.

$$P_a = \frac{2SEt_m}{D - 2Yt_m}$$

where

 P_a = allowable pressure

S = allowable stress for the material at the Design Temperature

E = joint factor (input as material property)

 t_m = minimum required thickness, including mechanical and corrosion allowance

= $t \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

- t = nominal pipe thickness
- D =outside diameter
- d = inside diameter
- Y = pressure coefficient

= 0.4 for
$$D/t_m \ge 6$$

= d/(D+d) for $D/t_m < 6$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 8 of ND-3652 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_L = 2.B1.ABS\left(\frac{PD}{4t_n}\right) + B2\frac{M_A}{Z} \le 1.5S_h$$

where

B1, B2 = primary stress indices from Table ND-3673.2(b)-1

- *P* = maximum of CAEPIPE Input pressures P1 through P10
- D = outside diameter
- t_n = nominal wall thickness

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

- Z = section modulus; for reduced outlets, effective section modulus as per ND-3653.3(d)
- S_h = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 8 of ND-3652 as follows.

$$S_L = 2.B1.ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + B2\frac{M_A}{Z} \le 1.5S_h$$

As an option, the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_L may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_O) (such as thrusts from relief and safety value loads from pressure and flow transients, and reversing and nonreversing dynamic loads, if the Design Specification requires calculation of moments due to reversing and non-reversing dynamic loads) from Equation 9a of ND-3653.1 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_{LO} = 2.B1.ABS\left(\frac{f_p PD}{4t_n}\right) + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 9aof ND-3653.1as follows.

$$S_{LO} = 2.B1.ABS\left[\left(\frac{f_p PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust} + \left(\frac{F}{A}\right)_{occa}\right] + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

where

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

 M_B = resultant moment due to occasional loads, inclusive of seismic anchor movements and movements due to reversing and non-reversing dynamic loads

$$= \sqrt{M_X^2 + M_Y^2 + M_Z^2}$$

 f_p = peak pressure factor input into CAEPIPE

- *P* = maximum of CAEPIPE Input pressures P1 through P10
- D = outside diameter
- t_n = nominal wall thickness
- Z = section modulus; for reduced outlets, effective section modulus as per ND-3653.3(d)

 $S_{LO(AII)}$ = minimum (1.80S_h, 1.5S_y) for Level B Service Limits as per ND-3653.1

- =minimum $(2.25S_{h}, 1.8S_{v})$ for Level C Service Limits as per ND-3654.2 (a)
- = minimum $(3.0S_h, 2.0S_v)$ for Level D Service Limits as per ND-3655 (a)(2)
- S_h = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- S_y = material yield strength at maximum of CAEPIPE Input temperatures T1 through T10

As an option, the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_{LO} may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Note:

Movements at anchors and nozzles due to seismic event and due to reversing and nonreversing dynamic loads are to be input as "specified displacements" for seismic and they will be included as a part of the Occasional Stress evaluation given above.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation (10a) of ND-3653.2.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from Table ND-3673.2(b)-1

- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per ND-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per ND-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- f = stress range reduction factor from Table ND-3611.2(e)-1

Sustained + Expansion Stress

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation 11 of ND-3653.2(c) (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_{TE} = ABS\left(\frac{PD}{4t_n}\right) + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 11of ND-3653.2(c)as follows.

$$S_{TE} = ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

0.75i shall not be less than 1.0.

where

P = maximum of CAEPIPE Input pressures P1 through P10

D =outside diameter

 $t_n =$ nominal wall thickness

$$M_A$$
 = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per ND-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per ND-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- S_H = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- f = stress range reduction factor from Table ND-3611.2(e)-1

Settlement Stress

The stress (S_S) due to single non-repeated anchor movement (e.g., predicted building settlement) is calculated from Equation (10b) of ND-3653.2.

$$S_S = \frac{iM_D}{Z} \le 3S_C$$

where

i = stress intensification factor from Table ND-3673.2(b)-1

- M_D = resultant moment due to any single nonrepeated anchor movement (e.g., predicted building settlement)
- S_c = allowable stress at the Reference Temperature in CAEPIPE
- Z = section modulus; for reduced outlets, effective section modulus as per ND-3653.3(d)

Stress Indices, Flexibility, and Stress Intensification Factors										
Description	Primary Stress Index B 1 B 2		Flexibility Characteristic, h	Flexibility Factor, k	Stress Intensification Factor, i	Sketch				
Welding elbow or pipe bend [Note (1)], [Note (2)]	0.4 <i>h</i> −0.1 ≤ 0.5 and > 0	$\frac{1.30}{h^{2/3}}$	$\frac{t_{\rm B}R}{r^2}$	$\frac{1.65}{h}$	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c} & \downarrow \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				
Closely spaced miter bend [Note (1)] $s < r (1 + \tan \theta)$	0.5	$\frac{1.30}{h^{2/3}}$	$rac{st_n\cot heta}{2r^2}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$s_{r} \xrightarrow{\theta} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$				
Widely spaced miter bend [Note (1)]. [Note (3)] $s \ge r (1 + \tan \theta)$	0.5	$\frac{1.30}{h^{2/3}}$	$\frac{t_{\theta}(1 + \cot \theta)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$s \xrightarrow{r} \frac{1}{r}				
Welding tee per ASME B16.9 [Note (4)]	0.5	Branch end: $B_{2b} = 0.4 \left(\frac{r}{t_n}\right)^{2/3}$ Run end: $B_{2r} = 0.5 \left(\frac{r}{t_n}\right)^{2/3}$	$\frac{4At_B}{r}$	1	$\frac{\frac{0.9}{h^{2/3}}}{\text{For branch leg of a reduced outlet,}}$ use $\frac{0.9}{h^{2/3} \left(\frac{T_b}{T_r}\right)}$	$\frac{1}{r} \frac{1}{r} \frac{1}{r}$				

Table ND-3673.2(b)-1

Additional Note for Welding elbow or Pipe bend:

If the value of B1 = (0.4h - 0.1) < 0.0, then B1 is set to 0.0.

Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)										
	Prim	ary Stress Index			Stress					
Description	B 1	B ₂	Flexibility Characteristic, h	Flexibility Factor, k	Intensification Factor, i	Sketch				
Reinforced fabricated tee [Note (4)], [Note (5)], [Note (6)]	0.5	Branch end: $B_{2b} = 0.75 \left(\frac{r}{t_0}\right)^{2/3} \left(\frac{r'm}{r}\right)^{1/2} \left(\frac{T_b}{t_0}\right) \left(\frac{r'm}{r_{05}}\right)^{1/2} \left(\frac{T_b}{r_{05}}\right)^{1/2} \left(\frac{T_b}{r_{05}}\right)^{1/2} = 1.0$ [Note (7)] Run end: $B_{2r} = \frac{0.675(r/t_0)^{2/3}}{\left(1 + (r'e'/2t_0)\right)^{5/3}} \ge 1.0$ [Note (8)]	$\frac{\left(t_n + \frac{t_c}{2}\right)^{5/2}}{r(t_n)^{3/2}}$	1	$\begin{array}{ll} \frac{0.9}{h^{2/3}} & \geq \ 2.1 \end{array}$ For branch leg of a reduced outlet, use $\begin{array}{l} \frac{0.9}{h^{2/3}} \left(\frac{T_b}{T_r} \right) & \geq \ 2.1 \end{array}$	$\begin{array}{c c} & \downarrow & \downarrow \\ \hline & & \uparrow \\ \hline & & \downarrow \\ \hline \\ \hline & & \downarrow \\ \hline \\ \hline & & \downarrow \\ \hline \\ \hline & & \downarrow \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$				

Table ND-3673.2(b)-1									
Stress Indices,	Flexibility, a	nd Stress	Intensification	Factors (Cont'd)					

Additional Note for Reinforced fabricated tee:

For calculating the value of rps and t'_{e} , the value of r_{e} is assumed to be equal to 2 x r'_{m} , where r'_{m} is the mean radius of the branch leg.

ASME Section III, Subsection ND - Class 3 (2017)

Table ND-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

	Str	ess Indices, Flexibi		3673.2(b)-1 ess Intensifica	tion Factors (Cont'o	i)	
		Primary Stress Index		Flexibility			
Description	B ₁	B ₂		Factor, k	Stress Intensificat	ion Factor, i	Sketch
Fillet welded and partial penetration welded branch connections [Note (4)], [Note (6)], [Note (10)]	0.5	Branch leg: $B_{2b} = 2.25 \left(\frac{B_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^1$ Run legs: $B_{2r} = 1.3 \left(\frac{r'_m}{T_b}\right)$		1.5	Branch leg: $i_b = 4.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T'_b}{T_r}\right) \left(\frac{r'_m}{r_p}\right) \ge 3.0$ Run legs: $i_r = 0.8 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right) \ge 2.1$		• Figure ND-3643.2(b)-2
Girth butt weld	0.5	1.0		1	1.0		
Circumferential fillet welded or socket welded joints [Note (11)]	$0.75\left(\frac{t_{\rm fl}}{c_{\rm X}}\right) \geq 0.5$	$1.5 \left(\frac{t_{B}}{c_{X}}\right)$		For $C_x \ge 1.09t_n$, $i = 1.3$ 1 For $C_x < 1.09t_n$, $i = 2.1$ $(t_n/C_x) \ge 1.3$		$/C_x) \ge 1.3$	Figure ND-4427-1 sketches (c-1), (c-2), and (c-3)
Brazed joint	0.5	1.6		1	2.1		Figure ND-4511-1
30 deg tapered transition (ASME B16.25) t _n < 0.237 in. (6 mm)	0.5	1.0		1	$\begin{array}{l} (U.S. \ Customary \ Units) \\ 1.3 \ + \ (.0036 \ \frac{D_0}{t_n} \ + \\ (SI \ Units) \\ 1.3 \ + \ 0.0036 \ \frac{D_0}{t_n} \ + \end{array}$		
	Primary	Stress Index	Flexibility		•		•
Description	B ₁	B 2	Factor, k	Stress Inter	sification Factor, i		Sketch
30 deg tapered transition (ASME B16.25) $t_n \ge 0.237$ in. (6 mm)	0.5	1.0	1	$1.3 + 0.0036 D_o \ / \ t_n \ \leq 1.9$			
Concentric and eccentric reducers (ASME B16.9) [Note (12)]	0.5 for α ≤ 30 deg 1.0 for 30 deg < α ≤ 60 deg	1.0	1	0.5 + 0.	$01 \alpha \left(\frac{p_2}{b_2}\right)^{1/2} \leq 2.0$	↓ ^t 1 ↑↑ D1	$\xrightarrow{\alpha} \stackrel{t_2}{\longrightarrow}$

Additional Note for Circumferential fillet welded or socket welded joints:

Values of B1, B2 and Stress Intensification Factor (SIF) are taken as 0.75, 1.50 and 1.3 respectively in CAEPIPE for the following reasons.

- 5. There is no provision to input the value of Cx in CAEPIPE for fillet and socket welded flanges.
- 6. The definition of Cx as per Note 11 of Table ND-3673.2(b)-1 contradicts with the definition of Cx as defined in Notes (3) and (4) of Figure ND-4427-1.

	Primary Stre	ss Index	Flexibility		
Description	B_1	B 2	Factor, k	Stress Intensification Factor, i	Sketch
hreaded pipe joint or threaded flange	0.75	1.7	1	2.3	***
$\begin{array}{l} r &= \mbox{mean radius of pi}\\ r'_m &= \mbox{mean radius of pi}\\ R &= \mbox{mean radius of ru}\\ \theta &= \mbox{mean radius of ru}\\ \theta &= \mbox{mean radius of ru}\\ \theta &= \mbox{mean radius of ru}\\ \theta &= \mbox{mean radius relation}\\ t_b &= \mbox{mean radius relation}\\ t_b &= \mbox{mean radius relation}\\ t_c &= \mbox{pad or saddle thic}\\ t_n &= \mbox{nominal wall thicl}\\ T'_b &= nominal wall thic$	iameter, in (mm) meter of branch, in. (mm pe, in. (mm) (matching pi anch pipe, in. (mm) us of elbow or pipe bend n pipe, in. (mm) ween adjacent miter axes enter line, in. (mm) mess of pipe, in. (mm) mess of pranch pipe, in. (mm) cases of run pipe, in. (mm) T_{k} , $\frac{1}{2}$, sketches (a) and (b): T_{k} , $\frac{1}{2}$	pe for tees and elb , in. (mm) , deg in. (mm) hatching pipe for tr mm)) . ND-3643.2(b)-2 : s i, and stress indensity tiplied by the fact exceed 1.0; T = D	tes and elbows, see l and ND-3673.2(b)-2. es B_2 apply to more tables) for curved an fication factors are a or $1/(XY)$, where: esign temperature (nts in any plane for fittings and shall in no case be d miter elbows, and to the intersection point for t pplicable to $D_o/t_n \le 100$. For products and joints (F)	tees.
1) Where flanges are attach		ne values of k and	i shall be corrected	by the factor c given below.	
(a) One end flanged, c (b) Both ends flanged.					

	Table ND-3673.2(b)-1								
Stress Indices.	. Flexibility, and Stress Intensification Factors (Cont'd)							

(b) Both ends flanged, $c = h^{\frac{1}{2}}$ But after such multiplication, values of k and i shall not be taken as less than 1.0.

(2) The designer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.

Table ND-3673.2(b)-1

Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

IOTES (CONT'D):

- Also includes single miter joints.
 For checking branch leg stress:

 $Z = \pi (r'_m)^2 T'_b$

For checking run leg stress:

```
Z = \pi \left( R_m \right)^2 T_r
```

5) When $t_e > 1.5 t_n$, $h = 4.05t_n/r$. 6) The equation applies only if the

- (a) The requirement area requirements of ND-3643 are met: (b) The axis of the branch pipe is normal to the surface of the run pipe wall.
- (c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or not less than two times the sum of their inside radii along the circumference of the run pipe.
- (d) The run pipe is a straight pipe.
 7) r'm/r shall be taken as 0.5 for r'm/r > 0.5. r'm/rps shall not be taken as less than 0.5.

- The definition of r_{ps} is: $r_{ps} = (r'_m + r_e) / 2$ for $t_e \ge 0.8t_n$ $r_{ps} = r'_m + (T'_b/2)$ for $t_e < 0.8t_n$ 8) The definition of t'_e is:

- 6) The definition of t_e is:
 6) The definition of t_e is:
 6) The definition of t_e is:
 7) If an t₂ = t₁ [t_e + t^e] 1 but not greater than 1.0t_n
 9) If an t₂ = radius is provided [Figure ND-3673.2(b)-2] that is not less than the larger of T_b/2, (T'_b + y)/2 [sketch (c)], or T_r/2, then the calculated values of i_b and i_r may be divided by 2, but wit i_b ≥ 1.5 and i_r ≥ 1.5 for t^em/R_m ≤ 0.5, the *i* factors for checking run ends are independent of whether t₂ is provided or not.
 10) The equations apply only if t^em/R_m ≤ 0.5.
 11) In Figure ND-4427-1 sketches (c-1) and (c-2), C_x shall be taken as X_{min} and C_x ≥ 1.25 t_n. In Figure ND-4427-1 sketch (c-3), C_x ≥ 0.75 t_n. For unequal leg lengths, use the smaller leg length for C
- for C_x .

10 Up to Up.
12 The equation applies only if the following conditions are met:
(a) Cone angle a does not exceed 60 deg.
(b) The larger of D₁(t₁ and D₂(t₂ does not exceed 100.
(c) The wall thickness is not less than t₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t_2 . (d) For eccentric reducers, α is the maximum cone angle.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 5 of NCD-3641.1.

$$P_a = \frac{2SEt_m}{D - 2Yt_m}$$

where

 P_a = allowable pressure

S = allowable stress for the material at the Design Temperature

E = joint factor (input as material property)

 t_m = minimum required thickness, after deducting mechanical and corrosion allowance

= $t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

- t_n = nominal pipe thickness
- D = nominal outside diameter
- d = nominal inside diameter
- Y = pressure coefficient
 - = 0.4 for $D/t_m \ge 6$
 - = d/(D+d) for $D/t_m < 6$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 8 of NCD-3652 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_L = 2.B1.ABS\left(\frac{PD}{4t_n}\right) + B2\frac{M_A}{Z} \le 1.5S_h$$

where

B1, B2 = primary stress indices from Table NCD-3673.2(b)-1

- *P* = maximum of CAEPIPE Input pressures P1 through P10
- D = nominal outside diameter
- t_n = nominal wall thickness

$$M_A$$
 = resultant moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)
- S_h = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 8 of NCD-3652 as follows.

$$S_L = 2.B1.ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F_s}{A}\right)_{sust}\right] + B2\frac{M_A}{Z} \le 1.5S_h$$

where

 F_S = axial force due to sustained loads

A = nominal metal area

As an option, as suggested in NCD-3651 (a), the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_L may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Occasional Stress

The occasional stress (S_{LO}) due to sustained loads (pressure, weight and other sustained mechanical loads) and stress due to occasional loads (such as thrusts from relief and safety valve loads, pressure and flow transients, and reversing and nonreversing dynamic loads, if the Design Specification requires calculation of moments due to reversing and nonreversing dynamic loads) is calculated from Equation 9a of NCD-3653.1 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_{LO} = 2.B1.ABS\left(\frac{f_p PD}{4t_n}\right) + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 9a of NCD-3653.1as follows.

$$S_{LO} = 2.B1.ABS\left[\left(\frac{f_p PD}{4t_n}\right) + \left(\frac{F_s}{A}\right)_{sust} + \left(\frac{F_o}{A}\right)_{occa}\right] + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

where

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

 M_B = resultant moment due to occasional loads, inclusive of seismic anchor movements and movements due to reversing and non-reversing dynamic loads

$$=\sqrt{M_X^2+M_Y^2+M_Z^2}$$

 f_p = peak pressure factor input into CAEPIPE

P = maximum of CAEPIPE Input pressures P1 through P10

D = nominal outside diameter

- t_n = nominal wall thickness
- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)

 $S_{LO(All)}$ = minimum (1.80S_h, 1.5S_v) for Level B Service Limits as per NCD-3653.1

= minimum (2.25S_h, 1.8S_v) for Level C Service Limits as per NCD-3654.2 (a)

= minimum $(3.0S_h, 2.0S_v)$ for Level D Service Limits as per NCD-3655 (a)(2)

- S_h = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- S_y = material yield strength at maximum of CAEPIPE Input temperatures T1 through T10
- F_0 = axial force due to occasional loads

A = nominal metal area

As an option, as suggested in NCD-3651 (a), the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_{LO} may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Note:

Movements at anchors and nozzles due to seismic event and due to reversing and nonreversing dynamic loads are to be input as "specified displacements" for seismic and they will be included as a part of the Occasional Stress evaluation given above.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation (10a) of NCD-3653.2.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from Table NCD-3673.2(b)-1

- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NCD-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- f = stress range reduction factor from Table NCD-3611.2(e)-1

Sustained + Expansion Stress

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation 11 of NCD-3653.2(c) (in case the option "Include Axial force in stress calculations" is turned OFF)..

$$S_{TE} = ABS\left(\frac{PD}{4t_n}\right) + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 11 of NCD-3653.2(c) as follows.

$$S_{TE} = ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

0.75i shall not be less than 1.0.

where

- P = maximum of CAEPIPE Input pressures P1 through P10
- D = nominal outside diameter
- $t_n =$ nominal wall thickness
- M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NCD-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- S_H = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- f = stress range reduction factor from Table NCD-3611.2(e)-1

Settlement Stress

The stress (S_S) due to single nonrepeated anchor movement (e.g., predicted building settlement) is calculated from Equation (10b) of NCD-3653.2.

$$S_S = \frac{iM_D}{Z} \le 3S_C$$

where

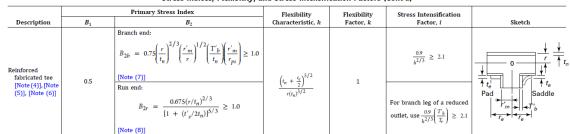

- i = stress intensification factor from Table NCD-3673.2(b)-1
- M_D = resultant moment due to any single non-repeated anchor movement (e.g., predicted building settlement)
- S_c = allowable stress at the Reference Temperature in CAEPIPE
- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)

Table NCD-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors											
Description	B1	Primary Stress Index B2	Flexibility Characteristic, h	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch					
Welding elbow or pipe bend [Note (1)], [Note (2)]	-0.1 + 0.4h, $0.5 \ge B_1 > 0$	$\frac{1.30}{h^2/3}$	$\frac{t_{B}R}{r^{2}}$	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c} & \downarrow & t_n \\ \hline & & r & \downarrow \\ \hline & & r & \downarrow \\ \hline & & \uparrow & \uparrow \\ \hline \end{array}$					
Closely spaced miter bend [Note (1)] $s < r (1 + \tan \theta)$	0.5	$\frac{1.30}{h^2/3}$	$\frac{st_n\cot\theta}{2r^2}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$s \stackrel{\theta}{\underset{r}{\overset{r}{\overset{r}{\overset{r}{\overset{r}{\overset{r}{\overset{r}{r$					
Widely spaced miter bend [Note (1)], [Note (3)] $s \ge r (1 + \tan \theta)$	0.5	$\frac{1.30}{h^2/3}$	$\frac{t_n(1 + \cot\theta)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$s \xrightarrow{r} \frac{\theta}{\uparrow} \frac{\downarrow}{\uparrow} \frac{\downarrow}{\uparrow} \frac{1}{\uparrow} \frac{1}{\downarrow} \frac{1}{\uparrow} \frac{1}{\uparrow} \frac{1}{\uparrow} \frac{1}{\downarrow} \frac{1}{\uparrow} \frac{1}{\uparrow} \frac{1}{\uparrow} \frac{1}{\downarrow} \frac{1}{\uparrow} \frac{1}{\downarrow} \frac{1}{$					
Welding tee per ASME B16.9 [Note (4)]	0.5	Branch end: $B_{2b} = 0.4 \left(\frac{r}{t_n}\right)^{2/3}$ Run end: $B_{2r} = 0.5 \left(\frac{r}{t_n}\right)^{2/3}$	- 44 <i>t_n</i>	1	$\frac{\frac{0.9}{h^{2/3}}}{$ For branch leg of a reduced outlet, use $\frac{0.9}{h^{2/3}}\left(\frac{T_{b}}{T_{c}}\right)$	$\begin{array}{c} & & \downarrow \\ & & \downarrow \\ & & \uparrow \\ & & \downarrow \\ & & \uparrow \\ & & \uparrow \\ & & \downarrow \\ & & \uparrow \\ & & \downarrow \\ & & \uparrow \\ & & \downarrow \\$					

Additional Note for Welding elbow or Pipe bend:

If the value of B1 = (0.4h - 0.1) < 0.0, then B1 is set to 0.0.

Table NCD-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

Additional Note for Reinforced fabricated tee:

For calculating the value of rps and t'_e , the value of r_e is assumed to be equal to $2 \ge r'_m$, where r'_m is the mean radius of the branch leg.

	Primary Stress Index		Flexibility		
Description	B ₁	B ₂	Factor, k	Stress Intensification Factor, i	Sketch
Branch connection or unreinforced fabricated tee [Note (4)], [Note (6)], [Note (9)]	0.5	$\begin{array}{l} \text{Branch leg:} \\ \text{for } (r'_m/R_m) \leq 0.9 \\ \\ B_{2b} &= 0.75 \bigg(\frac{R_m}{T_r} \bigg)^{2/3} \bigg(\frac{r'_m}{R_m} \bigg)^{1/2} \bigg(\frac{T'_b}{T_r} \bigg) \bigg(\frac{r'_m}{r_p} \bigg) \\ \text{for } (r'_m/R_m) = 1.0 \\ \\ B_{2b} &= 0.45 \bigg(\frac{R_m}{T_r} \bigg)^{2/3} \bigg(\frac{r'_m}{r_p} \bigg) \\ \\ \text{for } 0.9 < (r'_m/R_m) < 1.0, \text{ use linear interpolation} \\ \\ \text{Run legs:} \\ \text{for } (r'_m/R_m) \leq 0.5 \\ \\ B_{2r} &= 0.75 \bigg(\frac{r'_m}{t_b} \bigg)^{0.3} \\ \\ \text{but not } < 1.0 \\ \\ \text{for } (r'_m/R_m) > 0.5 \\ \\ B_{2r} &= 0.9 \bigg(\frac{r'_m}{t_b} \bigg)^{1/4} \end{array}$	1	$\begin{array}{l} & \text{Branch leg:}\\ & \text{for } (r'_m/R_m) \leq 0.9\\ & i_b = 1.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T'_b}{T_r}\right) \left(\frac{r'_m}{r_p}\right) \geq 1.5\\ & \text{for } (r'_m/R_m) = 1.0\\ & i_b = 0.9 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{r_p}\right) \geq 1.5\\ & \text{for } 0.9 < (r'_m/R_m) < 1.0, \text{ use linear interpolation}\\ & \text{Run legs:}\\ & \text{for } (r'_m/R_m) \leq 0.5\\ & i_r = 0.8 \left(\frac{r'_m}{t_b}\right)^{0.3}\\ & \text{but not less than the larger of 1.0 and } 1.5(1-Q)\\ & \text{where}\\ & Q = 0.5(t_b/T_r)(t_b/d_l)^{0.5} \text{ but not } > 0.5\\ & i_r = 0.8 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right) \geq 2.1 \end{array}$	Figure NCD-3673.2(b)-2
Fillet welded and partial penetration welded branch connections [Note (4)], [Note (6)], [Note (10)]	0.5	Branch leg: $B_{2b} = 2.25 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T'_b}{T_r}\right) \left(\frac{r'_m}{r_p}\right) \ge 1.5$ Run legs: $B_{2r} = 1.3 \left(\frac{r'_m}{t_b}\right)^{1/4} \ge 1.5$	1	Branch leg: $i_b = 4.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T'_b}{T_r}\right) \left(\frac{r'_m}{r_p}\right) \ge 3.0$ Run legs: $i_r = 0.8 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right) \ge 2.1$	Figure NCD-3643.2(b)-2
Girth butt weld	0.5	1.0	1	1.0	

Table NCD-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

	Primary Stress Index		Flexibility			
Description	<i>B</i> ₁	B ₂	Factor, k	Stress Intensification Factor, i	Sketch	
Circumferential fillet welded or socket welded joints [Note (11)]	$0.75 \left(\frac{t_n}{c_x}\right) \ge 0.5$	$1.5\left(\frac{t_n}{c_x}\right)$	1	For $C_x \ge 1.09t_n$, $i = 1.3$ For $C_x < 1.09t_n$, $i = 2.1$ $(t_n/C_x) \ge 1.3$	Figure NCD-4427-1 sketches (c-1), (c-2), and (c-3)	
Brazed joint	0.5	1.6	1	2.1	Figure NCD-4511-1	
30 deg tapered transition (ASME B16.25) $t_n < 0.237$ in. (6 mm)	0.5	1.0	1	(U.S. Customary Units) $1.3 + 0.0036 \frac{D_0}{t_n} + 0.113/t_n \le 1.9$ (SI Units) $1.3 + 0.0036 \frac{D_0}{t_n} + 2.87/t_n \le 1.9$		
30 deg tapered transition (ASME B16.25) <i>t_n</i> ≥ 0.237 in. (6 mm)	0.5	1.0	1	$1.3 + 0.0036 D_o/t_n \le 1.9$		
Concentric and eccentric reducers (ASME B16.9) [Note (12)]	0.5 for α ≤ 30 deg 1.0 for 30 deg < α ≤ 60 deg	1.0	1	$0.5 + 0.01 a \left(\frac{D_2}{t_2}\right)^{1/2} \le 2.0$	$\begin{array}{c c} \downarrow^{t_1} & \downarrow \\ \uparrow \uparrow & & \\ D_1 & & \\ \end{array}$	
Threaded pipe joint or threaded flange	0.75	1.7	1	2.3		

Table NCD-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

GENERAL NOTES:

(a) The following nomenclature applies: $D_o = \text{nominal outside diameter, in. (mm)}$ $d_i = \text{nominal inside diameter of branch, in. (mm)}$ r = mean radius of pipe, in. (mm) (matching pipe for tees and elbows) $r'_m = \text{mean radius of branch pipe, in. (mm)}$ R = nominal bend radius of elbow or pipe bend, in. (mm)

- R_m = mean radius of run pipe, in. (mm) θ = one-half angle between adjacent miter axes, deg
- s = miter spacing at center line, in. (mm) t_b = thickness in reinforcement zone of branch, in. (mm)
- t_e = pad or saddle thickness, in. (mm)

 $t_e = path or saure unconess, in (inin) to the path of the path$

Additional Note for Circumferential fillet welded or socket welded joints:

Values of B1, B2 and Stress Intensification Factor (SIF) are taken as 0.75, 1.50 and 1.3 respectively in CAEPIPE for the following reasons.

- 1. There is no provision to input the value of Cx in CAEPIPE for fillet and socket welded flanges.
- 2. The definition of Cx as per Note 11 of Table NCD-3673.2(b)-1 contradicts with the definition of Cx as defined in Notes (3) and (4) of Figure NCD-4427-1.

Table NCD-3673.2(b)-1

Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

GEN	ERAL NOTES: (Cont'd)
	T_r = nominal wall thickness of run pipe, in. (mm)
	For Figure NCD-3673.2(b)-2, sketches (a) and (b):
	$t_b = T_b \inf L_2 \ge 0.5(2\pi'_m T_b)'_2$
	$= T'_{b}$ if $L_{1} < 0.5(2r'_{m}T_{b})^{1/2}$ For Figure NCD-3673.2(b)-2, sketch (c):
	For Figure ACD-307-3.2(D)-2, SecUre (C): $b_0 = Tb_0 + (7)/(3) t i f = 5 a d eg$
	$r_{0} - r_{0} \cdot (r_{3})r_{0} + r_{0} - so \cos \theta$ = $T_{0} + 0.35L_{11}$ if $\theta_{n} > 30$ deg
	For Figure NCD-3673.2(b)-2, sketch (d):
	$t_b = T'_b = T_b$
	For branch connection nomenclature, refer to Figs. NCD-3643.2(b)-2 and NCD-3673.2(b)-2.
(b)	The flexibility factors k, stress intensification factors i, and stress indices B2 apply to moments in any plane for fittings and shall in no case be taken as less than 1.0. Flexibility factors apply over
	the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees.
(c)	Primary stress indices are applicable to Do/tn ≤ 50 and stress intensification factors are applicable to Do/tn ≤ 100. For products and joints with 50 < Do/tn ≤ 100, the B1 index in
	Table NCD-3673.2(b)-1 is valid. The B_2 index shall be multiplied by the factor $1/(XY)$, where:
	$X = 1.3 - 0.006(D_o/t_n)$, not to exceed 1.0
	Y = 1.033 - 0.00033T for Ferritic Material, not to exceed 1.0; $T =$ Design temperature (°F)
	Y = 1.0224 - 0.000594T for Ferritic Material, not to exceed 1.0; T = Design temperature (°C)
	Y = 1.0 for other materials
NOT	'ES:
(1)	Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factor c given below.
	(a) One end flanged, $c = h^{1/6}$
	(b) Both ends flanged, $c = h^{1/3}$
	But after such multiplication, values of k and i shall not be taken as less than 1.0.
(2)	The designer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of
	these greater thicknesses is considered.
(3)	Also includes single miter joints.
(4)	For checking branch leg stress:
	$Z = \pi (r'_m)^2 T'_b$
	For checking run leg stress:
	$Z = \pi (R_m)^2 T_r$
	$Z = \pi (R_m)^- T_r$
(5)	When $t_{e} > 1.5 t_{p_{i}} h = 4.05 t_{m}/r$.
(6)	The equation applies only if the following conditions are met:
(-)	(a) The reinforcement area requirements of NCD-3643 are met.
	(b) The axis of the branch pipe is normal to the surface of the run pipe wall.
	(c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in
	the longitudinal direction or not less than two times the sum of their inside radii along the circumference of the run pipe.
	(d) The run pipe is a straight pipe.
(7)	r'_m/r shall be taken as 0.5 for $r'_m/r > 0.5$.
	r'_m/r_{ps} shall not be taken as less than 0.5.
	The definition of r_{ps} is:
	$r_{pz} = (r'_m + r_c)/2 \text{ for } t_c \ge 0.8 t_m$
	$r_{pt} = r'_m + (T'_b/2) \text{ for } t_e < 0.8t_n$
(8)	The definition of t'_{e} is:
(-)	$L_{r} = L_{p} \left[(r_{r}/r_{m}) - 1 \right]$ but not greater than 1.0 t_{m}
(9)	$e_{i} \in e_{i} (v_{i}', m_{j}') = j$ our not go event using $100n$ find n_{i} radius is provided [Figure ACD-3673.2(b)-2] that is not less than the larger of $T_{b}/2$, $(T'_{b}+y)/2$ [sketch (c)], or $T_{c}/2$, then the calculated values of i_{b} and i_{c} may be divided by 2, but with
<i>(</i> -)	$m_{ij} \ge 1.5$ and $i_j \ge 1.5$. For $f_{ij}/R_m = 0.05$ the <i>i</i> factors for checking run ends are independent of whether γ_{ij} is provided or not.
(10)	$r_0 = r_0$ $r_0 = r_0$ r_0
	In Figure NCD-4427-1 sketch (c-1) and (c-2), C _x shall be taken as X _{min} and C _x ≥ 1.25 t _w . In Figure NCD-4427-1 sketch (c-3), C _x ≥ 0.75 t _w . For unequal leg lengths, use the smaller leg length for C _x .
	The equation applies only if the following conditions are met:
	(o) Cone angle α does not exceed 60 deg.
	(p) The larger of D_1/t_1 and D_2/t_2 does not exceed 100.
	(a) The wall thickness is not less than t, throughout the body of the reducer, except in and immediately adjacent to the cylindrical nortion on the small end, where the thickness shall not be

- (q) The wall thickness is not less than t₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t₂.
 (r) For eccentric reducers, α is the maximum cone angle.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 5 of NCD-3641.1.

$$P_a = \frac{2SEt_m}{D - 2Yt_m}$$

where

 P_a = allowable pressure

S = allowable stress for the material at the Design Temperature

E = joint factor (input as material property)

 t_m = minimum required thickness, after deducting mechanical and corrosion allowance

= $t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

- t_n = nominal pipe thickness
- D = nominal outside diameter
- d = nominal inside diameter
- Y = pressure coefficient

= 0.4 for
$$D/t_m \ge 6$$

= d/(D+d) for $D/t_m < 6$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 8 of NCD-3652 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_L = 2.B1.ABS\left(\frac{PD}{4t_n}\right) + B2\frac{M_A}{Z} \le 1.5S_h$$

where

B1, B2 = primary stress indices from Table NCD-3673.2(b)-1

- *P* = maximum of CAEPIPE Input pressures P1 through P10
- D = nominal outside diameter
- t_n = nominal wall thickness

$$M_A$$
 = resultant moment due to sustained loads = $\sqrt{M_{AX}^2 + M_{AY}^2 + M_{AZ}^2}$

- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)
- S_h = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 8 of NCD-3652 as follows.

$$S_L = 2.B1.ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F_S}{A}\right)_{sust}\right] + B2\frac{M_A}{Z} \le 1.5S_h$$

where

 F_S = axial force due to sustained loads

A = nominal metal area

As an option, as suggested in NCD-3651 (a), the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_L may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Occasional Stress

The occasional stress (S_{LO}) due to sustained loads (pressure, weight and other sustained mechanical loads) and stress due to occasional loads (such as thrusts from relief and safety valve loads, pressure and flow transients, and reversing and nonreversing dynamic loads, if the Design Specification requires calculation of moments due to reversing and nonreversing dynamic loads) is calculated from Equation 9a of NCD-3653.1 (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_{LO} = 2.B1.ABS\left(\frac{f_p PD}{4t_n}\right) + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(AU)}$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 9a of NCD-3653.1as follows.

$$S_{LO} = 2.B1.ABS\left[\left(\frac{f_p PD}{4t_n}\right) + \left(\frac{F_s}{A}\right)_{sust} + \left(\frac{F_o}{A}\right)_{occa}\right] + B2\left(\frac{M_A + M_B}{Z}\right) \le S_{LO(All)}$$

where

$$M_A$$
 = resultant bending moment due to sustained loads = $\sqrt{M_{AX}^2 + M_{AY}^2 + M_{AZ}^2}$

 M_B = resultant moment due to occasional loads, inclusive of seismic anchor movements and movements due to reversing and non-reversing dynamic loads

$$=\sqrt{M_{BX}^2+M_{BY}^2+M_{BZ}^2}$$

 f_p = peak pressure factor input into CAEPIPE

- *P* = maximum of CAEPIPE Input pressures P1 through P10
- D = nominal outside diameter
- t_n = nominal wall thickness
- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)

 $S_{LO(AII)}$ = minimum (1.80S_h, 1.5S_v) for Level B Service Limits as per NCD-3653.1

=minimum (2.25S_h, 1.8S_v) for Level C Service Limits as per NCD-3654.2 (a)

= minimum $(3.0S_h, 2.0S_v)$ for Level D Service Limits as per NCD-3655 (a)(2)

- S_h = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- S_y = material yield strength at maximum of CAEPIPE Input temperatures T1 through T10
- F_0 = axial force due to occasional loads
- A = nominal metal area

As an option, as suggested in NCD-3651 (a), the pressure stress term $\left(\frac{PD}{4t_n}\right)$ in the above equations for S_{LO} may be replaced with the expression $\left(\frac{Pd^2}{D^2-d^2}\right)$ using the CAEPIPE Options > Analysis > Pressure.

Note:

Movements at anchors and nozzles due to seismic event and due to reversing and nonreversing dynamic loads are to be input as "specified displacements" for seismic and they will be included as a part of the Occasional Stress evaluation given above.

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation (10a) of NCD-3653.2.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from Table NCD-3673.2(b)-1

- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_{CX}^2 + M_{CY}^2 + M_{CZ}^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NCD-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- f = stress range reduction factor from Table NCD-3611.2(e)-1

Sustained + Expansion Stress

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation 11 of NCD-3653.2(c) (in case the option "Include Axial force in stress calculations" is turned OFF).

$$S_{TE} = ABS\left(\frac{PD}{4t_n}\right) + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

In case the option "Include Axial force in stress calculations" is turned ON, then CAEPIPE evaluates Equation 11 of NCD-3653.2(c) as follows.

$$S_{TE} = ABS\left[\left(\frac{PD}{4t_n}\right) + \left(\frac{F}{A}\right)_{sust}\right] + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_H + S_A$$

0.75i shall not be less than 1.0.

where

- P = maximum of CAEPIPE Input pressures P1 through P10
- D = nominal outside diameter
- $t_n =$ nominal wall thickness
- M_A = resultant bending moment due to sustained loads = $\sqrt{M_{AX}^2 + M_{AY}^2 + M_{AZ}^2}$
- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of moment ONLY due to thermal anchor movements = $\sqrt{M_{CX}^2 + M_{CY}^2 + M_{CZ}^2}$
- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)
- S_A = allowable stress range for expansion stress = $f(1.25S_c + 0.25S_h)$ as per NCD-3611.2(e)
- S_c = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis
- S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis
- S_H = material allowable stress at maximum of CAEPIPE Input temperatures T1 through T10
- f = stress range reduction factor from Table NCD-3611.2(e)-1

Settlement Stress

The stress (S_S) due to single nonrepeated anchor movement (e.g., predicted building settlement) is calculated from Equation (10b) of NCD-3653.2.

$$S_S = \frac{iM_D}{Z} \le 3S_C$$

where

i = stress intensification factor from Table NCD-3673.2(b)-1

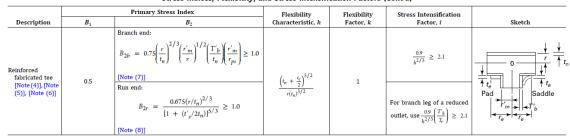

- M_D = resultant moment due to any single non-repeated anchor movement (e.g., predicted building settlement) = $\sqrt{M_{DX}^2 + M_{DY}^2 + M_{DZ}^2}$
- S_c = allowable stress at the Reference Temperature in CAEPIPE
- Z = section modulus; for reduced outlets, effective section modulus as per NCD-3653.3(d)

	Table NCD-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors					
Developing	Primary Stress Index		Flexibility Characteristic, h	Flexibility Factor, <i>k</i>	Stress Intensification	
Description Welding elbow or pipe bend [Note (1)], [Note (2)]	$B_1 = -0.1 + 0.4h,$ $0.5 \ge B_1 > 0$	B_2 $\frac{1.30}{h^2/3}$	$\frac{t_n R}{r^2}$	$\frac{1.65}{h}$	Factor, <i>i</i> $\frac{0.9}{h^{2/3}}$	$ \begin{array}{c} $
Closely spaced miter bend [Note (1)] $s < r (1 + \tan \theta)$	0.5	$\frac{1.30}{h^2/3}$	$\frac{st_n\cot\theta}{2r^2}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$s \stackrel{\theta}{\underset{r}{\overset{r}{\overset{r}{\overset{r}{\overset{r}{\overset{r}{\overset{r}{r$
Widely spaced miter bend [Note (1)], [Note (3)] $s \ge r (1 + \tan \theta)$	0.5	$\frac{1.30}{h^2/3}$	$\frac{t_n(1 + \cot\theta)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$s \xrightarrow{r} (1 + \cot\theta)$ $R = \frac{r(1 + \cot\theta)}{2}$
Welding tee per ASME B16.9 [Note (4)]	0.5	Branch end: $B_{2b} = 0.4 \left(\frac{r}{t_n}\right)^{2/3}$ Run end: $B_{2r} = 0.5 \left(\frac{r}{t_n}\right)^{2/3}$	<u>4.4 t_n</u>	1	$\frac{\frac{0.9}{h^{2/3}}}{\text{For branch leg of a reduced}}$ outlet, use $\frac{0.9}{h^{2/3}} \left(\frac{T_h}{T_r}\right)$	$\begin{array}{c} \downarrow \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Additional Note for Welding elbow or Pipe bend:

If the value of B1 = (0.4h - 0.1) < 0.0, then B1 is set to 0.0.

Table NCD-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

Additional Note for Reinforced fabricated tee:

For calculating the value of rps and t'_e , the value of r_e is assumed to be equal to $2 \ge r'_m$, where r'_m is the mean radius of the branch leg.

	Primary Stress Index		Flexibility		
Description	B ₁	B ₂	Factor, k	Stress Intensification Factor, i	Sketch
Branch connection or unreinforced fabricated tee [Note (4)], [Note (6)], [Note (9)]	0.5	$\begin{array}{l} \text{Branch leg:} \\ \text{for } (r'_m/R_m) \leq 0.9 \\ \\ B_{2b} &= 0.75 \bigg(\frac{R_m}{T_r} \bigg)^{2/3} \bigg(\frac{r'_m}{R_m} \bigg)^{1/2} \bigg(\frac{T'_b}{T_r} \bigg) \bigg(\frac{r'_m}{r_p} \bigg) \\ \text{for } (r'_m/R_m) = 1.0 \\ \\ B_{2b} &= 0.45 \bigg(\frac{R_m}{T_r} \bigg)^{2/3} \bigg(\frac{r'_m}{r_p} \bigg) \\ \\ \text{for } 0.9 < (r'_m/R_m) < 1.0, \text{ use linear interpolation} \\ \\ \text{Run legs:} \\ \text{for } (r'_m/R_m) \leq 0.5 \\ \\ B_{2r} &= 0.75 \bigg(\frac{r'_m}{t_b} \bigg)^{0.3} \\ \\ \text{but not } < 1.0 \\ \\ \text{for } (r'_m/R_m) > 0.5 \\ \\ B_{2r} &= 0.9 \bigg(\frac{r'_m}{t_b} \bigg)^{1/4} \end{array}$	1	$\begin{array}{l} & \text{Branch leg:}\\ & \text{for } (r'_m/R_m) \leq 0.9\\ & i_b = 1.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T'_b}{T_r}\right) \left(\frac{r'_m}{r_p}\right) \geq 1.5\\ & \text{for } (r'_m/R_m) = 1.0\\ & i_b = 0.9 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{r_p}\right) \geq 1.5\\ & \text{for } 0.9 < (r'_m/R_m) < 1.0, \text{ use linear interpolation}\\ & \text{Run legs:}\\ & \text{for } (r'_m/R_m) \leq 0.5\\ & i_r = 0.8 \left(\frac{r'_m}{t_b}\right)^{0.3}\\ & \text{but not less than the larger of 1.0 and } 1.5(1-Q)\\ & \text{where}\\ & Q = 0.5(t_b/T_r)(t_b/d_l)^{0.5} \text{ but not } > 0.5\\ & i_r = 0.8 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right) \geq 2.1 \end{array}$	Figure NCD-3673.2(b)-2
Fillet welded and partial penetration welded branch connections [Note (4)], [Note (6)], [Note (10)]	0.5	Branch leg: $B_{2b} = 2.25 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T'_b}{T_r}\right) \left(\frac{r'_m}{r_p}\right) \ge 1.5$ Run legs: $B_{2r} = 1.3 \left(\frac{r'_m}{t_b}\right)^{1/4} \ge 1.5$	1	Branch leg: $i_b = 4.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right)^{1/2} \left(\frac{T'_b}{T_r}\right) \left(\frac{r'_m}{r_p}\right) \ge 3.0$ Run legs: $i_r = 0.8 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r'_m}{R_m}\right) \ge 2.1$	Figure NCD-3643.2(b)-2
Girth butt weld	0.5	1.0	1	1.0	

Table NCD-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

	Primary Stress Index		Flexibility			
Description	<i>B</i> ₁	B ₂	Factor, k	Stress Intensification Factor, i	Sketch	
Circumferential fillet welded or socket welded joints [Note (11)]	$0.75 \left(\frac{t_n}{c_x}\right) \ge 0.5$	$1.5\left(\frac{t_n}{c_x}\right)$	1	For $C_x \ge 1.09t_n$, $i = 1.3$ For $C_x < 1.09t_n$, $i = 2.1$ $(t_n/C_x) \ge 1.3$	Figure NCD-4427-1 sketches (c-1), (c-2), and (c-3)	
Brazed joint	0.5	1.6	1	2.1	Figure NCD-4511-1	
30 deg tapered transition (ASME B16.25) $t_n < 0.237$ in. (6 mm)	0.5	1.0	1	(U.S. Customary Units) $1.3 + 0.0036 \frac{D_0}{t_n} + 0.113/t_n \le 1.9$ (SI Units) $1.3 + 0.0036 \frac{D_0}{t_n} + 2.87/t_n \le 1.9$		
30 deg tapered transition (ASME B16.25) <i>t_n</i> ≥ 0.237 in. (6 mm)	0.5	1.0	1	$1.3 + 0.0036 D_o/t_n \le 1.9$		
Concentric and eccentric reducers (ASME B16.9) [Note (12)]	0.5 for α ≤ 30 deg 1.0 for 30 deg < α ≤ 60 deg	1.0	1	$0.5 + 0.01 a \left(\frac{D_2}{t_2}\right)^{1/2} \le 2.0$	$\begin{array}{c c} \downarrow^{t_1} & \downarrow \\ \uparrow \uparrow & & \\ D_1 & & \\ \end{array}$	
Threaded pipe joint or threaded flange	0.75	1.7	1	2.3		

Table NCD-3673.2(b)-1 Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

GENERAL NOTES:

(a) The following nomenclature applies: $D_o = \text{nominal outside diameter, in. (mm)}$ $d_i = \text{nominal inside diameter of branch, in. (mm)}$ r = mean radius of pipe, in. (mm) (matching pipe for tees and elbows) $r'_m = \text{mean radius of branch pipe, in. (mm)}$ R = nominal bend radius of elbow or pipe bend, in. (mm)

- R_m = mean radius of run pipe, in. (mm) θ = one-half angle between adjacent miter axes, deg
- s = miter spacing at center line, in. (mm) t_b = thickness in reinforcement zone of branch, in. (mm)
- t_e = pad or saddle thickness, in. (mm)
- $t_e = path or saure unconess, in (inin) to the path of the path$

Additional Note for Circumferential fillet welded or socket welded joints:

Values of B1, B2 and Stress Intensification Factor (SIF) are taken as 0.75, 1.50 and 1.3 respectively in CAEPIPE for the following reasons.

- 3. There is no provision to input the value of Cx in CAEPIPE for fillet and socket welded flanges.
- 4. The definition of Cx as per Note 11 of Table NCD-3673.2(b)-1 contradicts with the definition of Cx as defined in Notes (3) and (4) of Figure NCD-4427-1.

Table NCD-3673.2(b)-1

Stress Indices, Flexibility, and Stress Intensification Factors (Cont'd)

GEN	NERAL NOTES: (Cont'd)
	T_r = nominal wall thickness of run pipe, in. (mm)
	For Figure NCD-3673.2(b)-2, sketches (a) and (b):
	$ \begin{aligned} t_b &= T_b \text{ if } L_1 \geq 0.5 (2r'_m T_b)^{1/2}_2 \\ &= T'_b \text{ if } L_1 < 0.5 (2r'_m T_b)^{1/2}_2 \end{aligned} $
	$= t_{b} \ t_{1} \le 0.5(t' \ t_{b}) + 2$ For Figure MCD-3673.2(b)-2, setch (c):
	For figure two structures, see (16), $t_0 = T_0 + t_0^2/g^2$ (30 deg
	$= T'_b + 0.385 L_1$ if $\theta_n > 30 \text{ deg}$
	For Figure NCD-3673.2(b)-2, sketch (d):
	$t_b = T'_b = T_b$
	For branch connection nomenclature, refer to Figs. NCD-3643.2(b)-2 and NCD-3673.2(b)-2.
(b)	The flexibility factors k, stress intensification factors i, and stress indices B ₂ apply to moments in any plane for fittings and shall in no case be taken as less than 1.0. Flexibility factors apply over
~	the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows, and to the intersection point for tees.
(c)	Primary stress indices are applicable to $D_o/t_n \le 50$ and stress intensification factors are applicable to $D_o/t_n \le 100$. For products and joints with $50 < D_o/t_n \le 100$, the B_1 index in Table NCD-3673.2(b)-1 is valid. The B_2 index shall be multiplied by the factor $1/(XY)$, where:
	Table NCD-367.3.(0)-1 is valid. The B_2 index shall be multiplied by the factor $1/(AT)$, where: $X = 1.3 - 0.006(D_0/r_0)$, not to exceed 1.0
	F = 1.03 - 0.00037 for Ferritic Material, not to exceed 1.0; $T = Design temperature (°F)$
	Y = 1.0224 - 0.000594T for Ferritic Material, not to exceed 1.0; $T = Design temperature (°C)$
	Y = 1.0 for other materials
NO	TES:
(1)	Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factor c given below.
	(a) One end flanged, $c = h^{1/6}$
	(b) Both ends flanged, $c = h^{1/3}$ But after such multiplication, values of k and i shall not be taken as less than 1.0.
(2)	-
(2)	The designer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
(3)	Also includes single miter joints.
(4)	For checking branch leg stress:
(-)	$Z = \pi (r'_m)^2 T'_h$
	$Z = \pi (r_m) I_b$
	For checking run leg stress:
	$Z = \pi (R_m)^2 T_r$
(5)	
(6)	The equation applies only if the following conditions are met: (a) The reinforcement area requirements of NCD-3643 are met.
	(a) The removement area requirements of NCD-50F5 are met. (b) The axis of the branch pipe is normal to the surface of the run pipe wall.
	(c) For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in
	the longitudinal direction or not less than two times the sum of their inside radii along the circumference of the run pipe.
	(d) The run pipe is a straight pipe.
(7)	r'_m/r shall be taken as 0.5 for $r'_m/r > 0.5$.
	r'_m/r_{pr} shall not be taken as less than 0.5.
	The definition of p_{p_2} is:
	$\begin{array}{l} r_{ps} = (r'_m + r_e)/2 \ \text{for} \ t_e \ge 0.8 t_n \\ r_{ps} = r'_m + (T'_b/2) \ \text{for} \ t_e < 0.8 t_n \end{array}$
	$r_{p2} = r_m \cdot (1_{p2}/2)$ so $t_e \sim 0.0t_m$
(8)	The definition of t'_e is:
	$t'_e = t_e \left[(r_e/r'_m) - 1 \right]$ but not greater than $1.0t_n$
(9)	If an r_2 radius is provided [Figure NCD-3673.2(b)-2] that is not less than the larger of $T_b/2$, $(T'_b + y)/2$ [sketch (c)], or $T_r/2$, then the calculated values of i_b and i_r may be divided by 2, but with
	$i_b \ge 1.5$ and $i_r \ge 1.5$. For $r'_m/R_m \le 0.5$, the <i>i</i> factors for checking run ends are independent of whether r_2 is provided or not.
	The equations apply only if $r'_m/R_m \leq 0.5$.
	In Figure NCD-4427-1 sketches (c-1) and (c-2), C_x shall be taken as X_{\min} and $C_x \ge 1.25 t_n$. In Figure NCD-4427-1 sketch (c-3), $C_x \ge 0.75 t_n$. For unequal leg lengths, use the smaller leg length for C_x .
(12)	The equation applies only if the following conditions are met: (o) Cone angle α does not exceed 60 deg.
	(o) Joine angle a does not exceed to deg. (p) The larger of D ₁ /t ₁ and D ₂ /t ₂ does not exceed 100.
	(p) the angle of p 1/v1 and p 2/v2 area not sheed 100.

(p) The targer of D₁/t₁ and D₂/t₂ does not exceed 100.
 (q) The wall thickness is not less than t₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t₂.
 (r) For eccentric reducers, α is the maximum cone angle.

General

The Code Compliance requirements provided in this Section as per ASME NM.1 are valid for above ground installation of Thermoplastic Piping Systems.

Analysis of buried piping (i.e., restrained piping) as per Non-mandatory Appendix B of this code is not yet implemented in CAEPIPE.

Allowable Pressure

(a) Straight Pipes made of materials other than HDPE

The allowable pressure for straight pipes made of materials other than HDPE is calculated using eq. (2-3-3) in para. 2-3.2.1.1 (b).

$$P_a = \frac{2St_a}{(D_o - t_a)}$$

(b) Bends/Elbows/Miters made of materials other than HDPE

The allowable pressure for Bends/Elbows made of materials other than HDPE is calculated using eq. (2-3-5b) in para. 2-3.2.2 (b).

$$P_a = DF \frac{2St_a}{(D_o - t_a)}$$

(c) Straight Pipes/Bends/Elbows made of HDPE

The allowable pressure for Pipes/Bends/Elbows made of HDPE is calculated using eq. (2-3-5a) in para. 2-3.2.2 (b).

$$P_a = GSR \frac{2St_a}{(D_o - t_a)}$$

where

 P_a = allowable pressure

S = maximum allowable stress from ASME NM.3.3 Table 1-1-1 at Design Temperature input in CAEPIPE

 t_a = available thickness for pressure design = $t_n \times (1 - \text{mill tolerance}/100)$ - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 D_0 = nominal outside diameter of pipe

DF = Design Factor from Table 2-3.2.2-2 corresponding to Molded fittings = 0.6

GSR = Geometry Shape Rating (GSR) for HDPE Fittings from Table 2-3.2.2-1 corresponding to Molded fittings = 1.0

(d) Miter Bends made of HDPE

For miter bends, the allowable pressure is calculated in CAEPIPE as lesser of Eqs. 2-3-6 and 2-3-7 with $\theta \le 22.5$ deg.

$$P_{a} = min\left[\frac{S.t_{a}(R-r)}{r(R-0.5r)}, \frac{S.t_{a}^{2}}{r(t_{a}+0.622tan\theta\sqrt{r.t_{a}})}\right]$$

where

 $r = mean radius of pipe = (D - t_n)/2$

R = equivalent bend radius of the miter (an input in CAEPIPE for Miter)

$$\theta = \text{miter half angle} = \tan^{-1} \left(\frac{1.0}{\left(\frac{2R}{r} - 1.0\right)} \right)$$

Notes:

As per para. 2-3.2.4, equation given above to compute allowable internal pressure for Miter Bend is valid only when $\theta \leq 22.5$ deg. Hence, CAEPIPE will leave the Allowable Pressure row BLANK for Miter Bend elements where $\theta \geq 22.5$ degree in Code Compliance Results.

Sustained Stress

The longitudinal stress S_L due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para. 2-3.3.1.1 and eq. (2-3-8).

$$S_L = \left| S_{lp} \right| + \frac{0.75iM_A}{Z} \le S_h$$

where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal design pressure that shall be not less than the maximum sustained operating pressure within the piping system, including the effects of static head (as per para. 2-1.2.2 (a)) = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from Appendix IV and 0.75i shall not be less than 1.0

 M_A = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure)

$$= \sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note 2 below.

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Notes:

1. When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal material area

2. Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe =
$$\frac{\pi (D_{oh}^4 - d_h^4)}{32D_{oh}}$$
 and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_b^4)}{32D_{ob}}$

where

 D_{oh} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_{h} = Inside Diameter of header d_{b} = Inside Diameter of branch

Occasional Stress

The longitudinal stresses S_{LO} , calculated as the sum of stress due to sustained loads S_L and stress due to occasional loads S_O such as earthquake or wind is calculated using eq. (2-3-9) of para. 2-3.3.1.2. Wind and earthquake are not considered to act concurrently.

$$S_{LO} = S_L + \left| S_{lpo} \right| + \frac{0.75 i M_B}{Z} \le k. S_h$$

 S_{lpo} = peak pressure stress = $\left|\frac{(P_o - P)d^2}{D^2 - d^2}\right|$ or $\left|\frac{(P_o - P)D}{4t_n}\right|$ This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

- P_o = peak pressure = (peak pressure factor in CAEPIPE) x P
- P = Maximum of CAEPIPE input pressures P1 through P10
- Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note 2 below.
- i = stress intensification factor from Appendix IV and 0.75i shall not be less than 1.0
- M_B = resultant bending moment due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc. = $\sqrt{(M_{Bx})^2 + (M_{By})^2 + (M_{Bz})^2}$
- S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]
- k = 1.2 corresponding to the event duration occurring for not more than 1 h at any one time and not more than 80 h/yr

Note:

1. When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lpo}|$ with $|S_{lpo} + \frac{F_B}{A}|$

where

 F_B = axial force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

A = nominal material Area

2. Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe =
$$\frac{\pi (D_{ob}^4 - d_h^4)}{32D_{oh}}$$
 and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_b^4)}{32D_{ob}}$

where

 D_{ob} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_h = Inside Diameter of header d_b = Inside Diameter of branch

Expansion Stress Range

Stress range (S_E) due to thermal expansion is calculated using eq. (2-3.-11) in para. 2-3.3.1.3 (a) and (b).

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from Appendix IV

 M_C = resultant of bending moment range due to the thermal load range under analysis = $\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note 2 below.

 S_A = allowable stress range, SA, as given in ASME NM.3.3 based on the fatigue properties for the given material at the given temperature as per para. 2-2.3.3(b). S_A is a user input in CAEPIPE Material Properties.

Note:

1. When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_E as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_C}{Z} \le S_A$$

where

 F_C = axial force range due to reference displacement load range.

A = nominal material area

2. Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe = $\frac{\pi (D_{oh}^4 - d_h^4)}{32D_{oh}}$ and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_h^4)}{32D_{ob}}$ D_{oh} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_h = Inside Diameter of header d_b = Inside Diameter of branch

Settlement Stress

Stress range (S_s) caused by applied noncyclic secondary axial and longitudinal loads is calculated using eq. (2-3.-12) in para. 2-3.3.1.4 (a) and (b).

$$S_S = \frac{iM_D}{Z} \le 2.S_h$$

where

i = stress intensification factor from Appendix IV

 M_C = noncyclic resultant moment loading due to settlement = $\sqrt{(M_{Dx})^2 + (M_{Dy})^2 + (M_{Dz})^2}$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note below.

 S_h = allowable stress at CAEPIPE reference temperature

Note:

Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe =
$$\frac{\pi (D_{ob}^4 - d_h^4)}{32D_{oh}}$$
 and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_b^4)}{32D_{ob}}$

 D_{oh} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_{h} = Inside Diameter of header d_{b} = Inside Diameter of branch

Hydrotest Stress

The longitudinal stress S_H due to test pressure, weight and other sustained mechanical loads is calculated from para. 2-3.3.4 and eq. (2-3-8).

$$S_L = \left| S_{lp} \right| + \frac{0.75iM_T}{Z} \le S_{LA}$$

where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = Test pressure input for Hydrotest load

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from Appendix IV and 0.75i shall not be less than 1.0

 M_T = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure)

$$= \sqrt{(M_{Tx})^2 + (M_{Ty})^2 + (M_{Tz})^2}$$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note 2 below.

 $S_{LA} = 1.2 \text{ S}_{h}$ where, S_{h} = allowable stress at CAEPIPE reference temperature

Notes:

1. When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

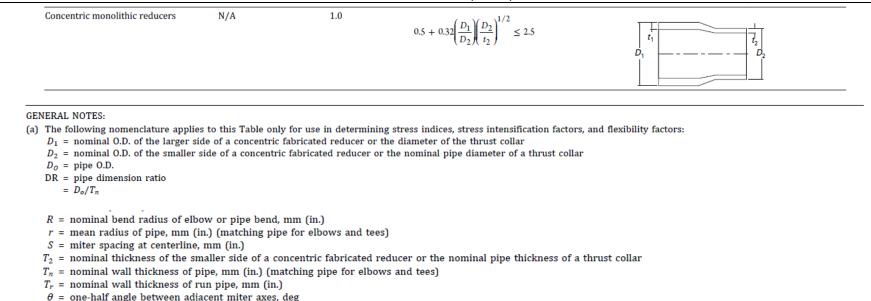
where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal material area

2. Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe =
$$\frac{\pi (D_{ob}^4 - d_h^4)}{32D_{oh}}$$
 and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_b^4)}{32D_{ob}}$


where

 D_{oh} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_{h} = Inside Diameter of header d_{b} = Inside Diameter of branch

Thermoplastic Piping Systems ASME NM.1 (2022) Stress Intensification Factors (SIFs) and Flexibility Factors (FFs)

Table IV-1 Stress Intensification Factors, i, and Flexibility Factors, k, for High-Density Polyethylene				
Description	Flexibility Characteristic, h	Flexibility Factor, k [Note (1)]	Stress Intensification Factor, <i>i</i> [Note (1)]	Sketch
Straight pipe	N/A	1.0	1.0	N/A
Butt-fusion joint	N/A	1.0	1.0	N/A
Molded elbow	$\frac{t_n R}{r^2}$		$\frac{1.25}{h^{2/3}}$	
Miter elbow $s \ge r(1 + \tan \theta)$ [Note (2)]	or $\frac{\frac{(1 + \cot\theta)}{DR - 1}}{\frac{t_n(1 + \cot\theta)}{2r}}$	In-plane loading [Note (3)] $\frac{\frac{1.1}{h^{5/6}}}$	$\frac{1.7}{h^{2/3}}$	$R = \frac{s \cot \theta}{2}$
Equal outlet molded tee [Note (4)]	$\frac{4.4t_n}{r}$	1.0	$\frac{i_b = \frac{1.73}{h^{2/3}}}{i_r = \frac{1.17}{h^{2/3}}}$	
Equal outlet mitered tee	$\frac{4.4t_n}{r} \text{ or } \frac{8.8}{\text{DR}-1}$	1.0	$\frac{i_b = \frac{4.45}{h^{2/3}}}{i_r = \frac{2.21}{h^{2/3}}}$	
Sidewall fusion branch connection [Note (5)]	N/A	1.0	$\begin{split} i_b &= 1.74 \bigg(\frac{R_m}{T_r}\bigg)^{2/3} \bigg(\frac{T'_b}{T_r}\bigg) \bigg(\frac{r'_m}{r_p}\bigg) \geq 1.5\\ i_r &= 1.54 \bigg(\frac{R_m}{T_r}\bigg)^{2/3} \bigg(\frac{r_p}{R_m}\bigg) \geq 1.5 \end{split}$	$ \begin{array}{c} - T'_{b} \\ \hline r'_{m} \\ \hline r_{p} \\ \hline R_{m} \end{array} $

Thermoplastic Piping Systems ASME NM.1 (2022)

(b) All abutting piping fittings of differing DRs shall meet the requirements of Figure 2-3.2.4-1, illustration (a) or illustration (b), as applicable.

NOTES:

(1) The stress intensification factors, i, and the flexibility factors, k, shall not be taken as less than 1.0. They are applicable to moments in any plane for fittings except as noted.

- (2) One-half miter angle, θ, shall be limited to ≤11.25 deg.
- (3) The flexibility factor, k, is applicable only for in-plane bending moment loading.
- (4) The tee thickness, t_n, shall be 1.4 times the pipe thickness, T_r (1.4T_r).
- (5) The ratio OD_{branch}/OD_{run} shall be <0.4.
- (6) The ratio OD_{branch}/OD_{run} shall be <0.6.

Notes:

- SIF computation for "Sidewall fusion branch connection" (Branch Connection) in CAEPIPE is valid only when Branch OD / Run OD is less than 0.4 as per Note 5 above. As the code is NOT explicit about the SIF to be used when Branch OD / Run OD >= 0.4, CAEPIPE uses the same SIF equation even for Branch Connection with Branch OD / Run OD > 0.4.
- 2. In case the user wants to input at a node a SIFs for a component which is not listed above, then user can input the desired value using the data type "User SIF" at that node. See the Section titled "User SIF" in CAEPIPE Technical Reference Manual for further details.

General

The Code Compliance requirements provided in this Section as per ASME NM.1 are valid for above ground installation of Thermoplastic Piping Systems.

Analysis of buried piping (i.e., restrained piping) as per Non-mandatory Appendix B of this code is not yet implemented in CAEPIPE.

Allowable Pressure

(e) Straight Pipes/Bends/Elbows/Miters made of materials other than HDPE

The allowable pressure for Straight Pipes/Bends/Elbows/Miters made of materials other than HDPE is calculated using eq. (2-3-5b) in para. 2-3.2.2 (c).

$$P_a = DF \frac{2St_a}{(D_o - t_a)}$$

(f) Straight Pipes/Bends/Elbows made of HDPE

The allowable pressure for Pipes/Bends/Elbows made of HDPE is calculated using eq. (2-3-5a) in para. 2-3.2.2 (b).

$$P_a = GSR \frac{2St_a}{(D_o - t_a)}$$

where

 P_a = allowable pressure

S = maximum allowable stress from ASME NM.3.3 Table 1-1-1 at Design Temperature input in CAEPIPE

 t_a = available thickness for pressure design = $t_n \times (1 - \text{mill tolerance}/100)$ - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 D_0 = nominal outside diameter of pipe

DF = Design Factor from Table 2-3.2.2-2 for materials other than HDPE

DF = 1.0 for straight pipes and DF = 0.6 for molded fittings, solvent welded

GSR = Geometry Shape Rating (GSR) from Table 2-3.2.2-1 for HDPE materials

GSR = 1.0 for straight pipes and molded fittings

(g) Miter Bends made of HDPE

For miter bends, the allowable pressure is calculated in CAEPIPE as lesser of Eqs. 2-3-6 and 2-3-7 with $\theta \le 22.5$ deg.

$$P_{a} = min\left[\frac{S.t_{a}(R-r)}{r(R+0.5r)}, \frac{S.t_{a}^{2}}{r(t_{a}+0.622tan\theta\sqrt{r.t_{a}})}\right]$$

where

 $r = mean radius of pipe = (D - t_n)/2$

R = equivalent bend radius of the miter (an input in CAEPIPE for Miter)

$$\theta = \text{miter half angle} = \tan^{-1} \left(\frac{1.0}{\left(\frac{2R}{r} - 1.0\right)} \right)$$

Notes:

As per para. 2-3.2.4, equation given above to compute allowable internal pressure for Miter Bend is valid only when $\theta \leq 22.5$ deg. Hence, CAEPIPE will leave the Allowable Pressure row BLANK for Miter Bend elements where $\theta \geq 22.5$ degree in Code Compliance Results.

Sustained Stress

The longitudinal stress S_L due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para. 2-3.3.1.1 and eq. (2-3-8).

$$S_L = \left| S_{lp} \right| + \frac{0.75iM_A}{Z} \le S_h$$

where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$ as per Eqs. 2-2-3 and 2-2-4 in para. 2-2.3.3 (a)(3). This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal pressure including the effects of static head (as per para. 2-2.3.3 (a)(3)) = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from Appendix IV and 0.75i shall not be less than 1.0

 M_A = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure) =

$$\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note 2 below.

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Notes:

3. When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal material area

4. Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe =
$$\frac{\pi (D_{oh}^4 - d_h^4)}{32D_{oh}}$$
 and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_b^4)}{32D_{ob}}$

where

 D_{oh} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_{h} = Inside Diameter of header d_{b} = Inside Diameter of branch

Occasional Stress

The longitudinal stresses S_{LO} , calculated as the sum of stress due to sustained loads S_L and stress due to occasional loads S_O such as earthquake or wind is calculated using eq. (2-3-9) of para. 2-3.3.1.2. Wind and earthquake are not considered to act concurrently.

$$S_{LO} = S_L + \left| S_{lpo} \right| + \frac{0.75iM_B}{Z} \le k.S_h$$

 S_{lpo} = peak pressure stress = $\left|\frac{(P_o - P)d^2}{D^2 - d^2}\right|$ or $\left|\frac{(P_o - P)D}{4t_n}\right|$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

- P_o = peak pressure = (peak pressure factor in CAEPIPE) x P
- P = Maximum of CAEPIPE input pressures P1 through P10
- Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note 2 below.
- i = stress intensification factor from Appendix IV and 0.75i shall not be less than 1.0
- M_B = resultant bending moment due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc. = $\sqrt{(M_{Bx})^2 + (M_{By})^2 + (M_{Bz})^2}$
- S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]
- k = 1.2 corresponding to the occasional event duration occurring for not more than 1 h at any one time and not more than 80 h/yr

Note:

2. When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lpo}|$ with $|S_{lpo} + \frac{F_B}{4}|$

where

 F_B = axial force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

A = nominal material Area

2. Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe =
$$\frac{\pi (D_{oh}^4 - d_h^4)}{32D_{oh}}$$
 and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_b^4)}{32D_{ob}}$

where

 D_{ob} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_h = Inside Diameter of header d_b = Inside Diameter of branch

Expansion Stress Range

Stress range (S_E) due to thermal expansion is calculated using eq. (2-3-11) in para. 2-3.3.1.3 (a) and (b).

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from Appendix IV

$$M_C$$
 = resultant of bending moment range due to the thermal load range under analysis =

$$\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note 2 below.

 S_A = allowable stress range, SA, as given in ASME NM.3.3 based on the fatigue properties for the given material at the given temperature as per para. 2-2.3.3(b). S_A is a user input in CAEPIPE Material Properties.

Note:

2. When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_E as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_C}{Z} \le S_A$$

where

 F_C = axial force range due to reference displacement load range.

A = nominal material area

2. Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe = $\frac{\pi (D_{oh}^4 - d_h^4)}{32D_{oh}}$ and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_h^4)}{32D_{ob}}$ D_{oh} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_h = Inside Diameter of header d_b = Inside Diameter of branch

Settlement Stress

Stress range (S_s) caused by applied noncyclic secondary axial / longitudinal loads is calculated using eq. (2-3-12) in para. 2-3.3.1.4 (a) and (b).

$$S_S = \frac{iM_D}{Z} \le 2.S_h$$

where

i = stress intensification factor from Appendix IV

 M_C = noncyclic resultant moment loading due to settlement = $\sqrt{(M_{Dx})^2 + (M_{Dy})^2 + (M_{Dz})^2}$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note below.

 S_h = allowable stress at CAEPIPE reference temperature

Note:

Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe =
$$\frac{\pi (D_{ob}^4 - d_h^4)}{32D_{oh}}$$
 and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_b^4)}{32D_{ob}}$

 D_{oh} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_{h} = Inside Diameter of header d_{b} = Inside Diameter of branch

Hydrotest Stress

The longitudinal stress S_H due to test pressure, weight and other sustained mechanical loads is calculated from para. 2-2.3.4 and eq. (2-3-8).

$$S_{LT} = \left| S_{lp} \right| + \frac{0.75iM_T}{Z} \le S_{LA}$$

where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = Test pressure input for Hydrotest load

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from Appendix IV and 0.75i shall not be less than 1.0

 M_T = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure) =

$$(M_{Tx})^2 + (M_{Ty})^2 + (M_{Tz})^2$$

Z = un-corroded section modulus; for a branch, effective section modulus as per para. 2-3.3.3(a). See Note 2 below.

 $S_{LA} = 1.2 \text{ S}_{h}$ where, S_{h} = allowable stress at CAEPIPE reference temperature

Notes:

3. When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

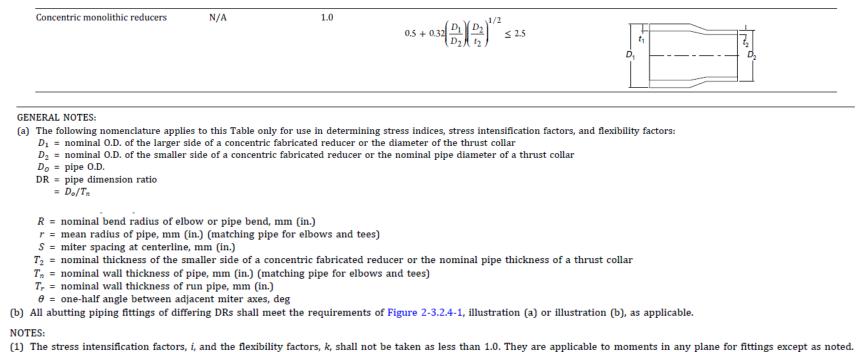
 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal material area

4. Branch Section modulus "Z" as per para. 2-3.3.3(a),

for Run pipe =
$$\frac{\pi (D_{ob}^4 - d_h^4)}{32D_{oh}}$$
 and Branch Pipe = $\frac{\pi (D_{ob}^4 - d_b^4)}{32D_{ob}}$

where


 D_{oh} = Outside Diameter of header D_{ob} = Outside Diameter of branch d_{h} = Inside Diameter of header d_{b} = Inside Diameter of branch

Stress Intensification Factors (SIFs) and Flexibility Factors (FFs)

Description	Flexibility Characteristic, <i>h</i>	Flexibility Factor, <i>k</i> [Note (1)]	Stress Intensification Factor, <i>i</i> [Note (1)]	Sketch
Straight pipe	N/A	1.0	1.0	N/A
Butt-fusion joint	N/A	1.0	1.0	N/A
Molded elbow	$\frac{t_{\eta}R}{r^2}$		$\frac{1.25}{h^{2/3}}$	
Miter elbow s ≥ r(1 + tan θ) [Note (2)]	or $\frac{\frac{(1+\cot\theta)}{DR-1}}{\frac{t_n(1+\cot\theta)}{2r}}$	In-plane loading [Note (3)] $\frac{1.1}{h^{5/6}}$	$\frac{1.7}{h^{2/3}}$	$R = \frac{s \cot \theta}{2}$
Equal outlet molded tee [Note (4)]	$\frac{4.4t_n}{r}$	1.0	$\frac{i_b = \frac{1.73}{h^{2/3}}}{i_r = \frac{1.17}{h^{2/3}}}$	
Equal outlet mitered tee	$\frac{4.4t_n}{r} \text{ or } \frac{8.8}{\text{DR}-1}$	1.0	$\frac{i_b = \frac{4.45}{h^{2/3}}}{i_r = \frac{2.21}{h^{2/3}}}$	
Sidewall fusion branch connection [Note (5)]	N/A	1.0	$\begin{split} i_b &= 1.74 \bigg(\frac{R_m}{T_r}\bigg)^{2/3} \bigg(\frac{T'_b}{T_r}\bigg) \bigg(\frac{r'_m}{r_p}\bigg) \geq 1.5\\ i_r &= 1.54 \bigg(\frac{R_m}{T_r}\bigg)^{2/3} \bigg(\frac{r_p}{R_m}\bigg) \geq 1.5 \end{split}$	$ \begin{array}{c} \hline $

Table IV-1 Stress Intensification Factors, i, and Flexibility Factors, k, for High-Density Polyethylene

Thermoplastic Piping Systems ASME NM.1 (2020)

(2) One-half miter angle, θ , shall be limited to ≤ 11.25 deg.

- (3) The flexibility factor, k, is applicable only for in-plane bending moment loading.
- (4) The tee thickness, t_n , shall be 1.4 times the pipe thickness, T_r (1.4 T_r).
- (5) The ratio OD_{branch}/OD_{run} shall be <0.4.
- (6) The ratio OD_{branch}/OD_{run} shall be <0.6.

Notes:

- 3. SIF computation for "Sidewall fusion branch connection" (Branch Connection) in CAEPIPE is valid only when Branch OD / Run OD is less than 0.4 as per Note 5 above. As the code is NOT explicit about the SIF to be used when Branch OD / Run OD >= 0.4, CAEPIPE uses the same SIF equation even for Branch Connection with Branch OD / Run OD > 0.4.
- 4. In case the user wants to input at a node a SIFs for a component which is not listed above, then user can input the desired value using the data type "User SIF" at that node. See the Section titled "User SIF" in CAEPIPE Technical Reference Manual for further details.

General

The Code Compliance requirements provided in this Section as per ASME NM.2 are valid for above ground installation of GRP/FRP Piping.

Section 2-6.3 of ASME NM 2 (2022) refers to AWWA Manual M45 (second edition) for Buried GRP/FRP Piping Analysis. AWWA Manual M45 is also referred by ISO 14692-3 for detailed analysis of Buried GRP/FRP Piping. Code Compliance as per ISO 14692-3 is built into CAEPIPE Version 12.00 or later. Hence, for Buried GRP/FRP Piping Analysis, ISO 14692-3 can be selected in CAEPIPE for Code Compliance checks.

Allowable Pressure

Straight Pipes and Bends

For <u>straight pipes and bends</u>, CAEPIPE calculates allowable pressure using Eq. (2-3-2) of para.2-3.2.2 and Eqs. (2-3-6) of para. 2-3.3.1 and Eqs. (2-3-9), (2-3-10) & (2-3-11) of para. 2-3.3.2 (a) & (b).

$$P_a = \frac{2.S_{H(2:1)}.t_a}{K_1.D.m}$$

where

 P_a = allowable pressure

 $S_{H(2:1)}$ = design hoop allowable stress at Design Temperature (can be obtained from applicable table in ASME NM.3.3)

 t_a = available thickness for pressure design = $t_n \times (1 - \text{mill tolerance}/100)$ - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE as per para. 2-3.2.1 (a))

 $t_n = nominal pipe/bend thickness$

D = outside diameter of pipe/bend, to be conservative

m = 1.0 for straight pipes and at the side wall on the bend / elbow centerline radius

 $K_1 = 1.0$ for Pipe with Type I and Type II laminates

 $K_1 = 1.2$ for Bends / Elbows with Type I and Type II laminates

Note:

Allowable pressure at the "intrados" of a bend can be manually computed by dividing the CAEPIPE computed allowable pressure for that bend by the factor "m" given by Eq. (2-3-7) in para. 2-3.3.1. Similarly, allowable pressure at the "Extrados" of a bend can be manually computed by diving the CAEPIPE computed allowable pressure for that bend by the factor "m" given by Eq. (2-3-8) in para. 2-3.3.1.

For closely spaced miter bends, the allowable pressure computed by CAEPIPE shall be the lesser of the two values calculated from Eqs. 2-3-9 and 2-3-10 with $\theta \le 22.5$ deg.

$$P_{a} = min\left[\frac{S_{H(2:1)} \cdot t_{a}(R-r)}{r(R-0.5r)}, \frac{S_{H(2:1)} \cdot t_{a}^{2}}{r(t_{a}+0.643tan\theta\sqrt{r.t_{a}})}\right]$$

For widely spaced miter bends with $\theta \leq 22.5$ deg, the allowable pressure is calculated in CAEPIPE by Eq. 2-3-9

$$P_a = \frac{S_{H(2:1)} t_a^2}{r(t_a + 0.643 tan\theta \sqrt{r.t_a})}$$

For widely spaced miter bends and closely spaced miter bends with $\theta > 22.5$ deg, the allowable pressure is calculated in CAEPIPE by Eq. 2-3-11

$$P_a = \frac{S_{H(2:1)} \cdot t_a^2}{r(t_a + 1.25 \tan\theta \sqrt{r.t_a})}$$

where

 $r = mean radius of pipe = (D - t_n)/2$

R = equivalent bend radius of the miter (an input in CAEPIPE for Miter)

$$\theta$$
 = miter half angle = $\tan^{-1}\left(\frac{1.0}{\left(\frac{2R}{r}-1.0\right)}\right)$

Integrally Molded Tee fittings

For <u>integrally molded Tee fittings</u>, CAEPIPE calculates allowable pressure for Run and Branch of a Tee using Eq. (2-3-18) of para.2-3.4.

For Tee Run

$$P_{aR} = \frac{2.S_{H(2:1)}.t_{aR}}{D_R.m}$$

For Tee Branch

$$P_{aB} = \frac{2.S_{H(2:1)}.t_{aB}}{D_B.m}$$

where

 P_{aR} = allowable pressure for Run

 P_{aB} = allowable pressure for Branch

 $S_{H(2:1)}$ = design hoop allowable stress (can be obtained from applicable table in ASME NM.3.3) at Design Temperature input in CAEPIPE load dialog.

m = pressure stress multiplier for integral tees = $1.4\lambda_z^{0.25}$

 λ_z = geometry factor as given below

For equal tees (i.e., $D_B = D_R$)

$$\lambda_z = \frac{D_R}{2.t_{aR}}$$

For unequal or reducing tees (i.e., $D_B < D_R$)

$$\lambda_z = \left(\frac{D_B}{2.t_{aB}}\right)^2 \left(\frac{2t_{aR}}{D_R}\right)$$

where

 $t_{aR}\text{=}$ available Run thickness for pressure design = t_{nR} \times (1 - mill tolerance/100) - corrosion allowance

 $t_{aB}\text{=}$ available Branch thickness for pressure design = t_{nB} \times (1 - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE as per para. 2-3.2.1 (a))

 t_{nR} = nominal thickness of Run

 t_{nB} = nominal thickness of Branch

 D_R = inside diameter of the main run pipe structural wall = Run OD - 2 * t_{aR}

 D_B = inside diameter of the tee branch pipe structural wall = Branch OD - 2 * t_{aB}

Sustained Load

(a) The Hoop Stress (S_{HL}) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eq. (2-4-1) of para. 2-4.4.4 (a)(1) and compared against the limit given in para. 2-4.4.4 (b)(1).

$$S_{HL} = \sqrt{\left[\frac{mPD_m}{2T_s} + \frac{\sqrt{(i_{ih}M_i)^2 + (i_{oh}M_o)^2}}{Z}\right]^2 + \left(\frac{i_tM_t}{Z}\right)^2} \le S_{H.max}$$

(b) The Longitudinal Stress (S_{AL}) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eqs. (2-4-2a) & (2-4-2b) of para. 2-4.4.4 (a)(2) and compared against the limit given in para. 2-4.4.4 (b)(1).

$$S_{AL1} = \sqrt{\left[\frac{PD_{is}^{2}}{D_{o}^{2} - D_{is}^{2}} + \frac{F_{A}}{A_{s}} - \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]^{2} + \left(\frac{i_{t}M_{t}}{Z}\right)^{2}}$$
$$S_{AL2} = \sqrt{\left[\frac{PD_{is}^{2}}{D_{o}^{2} - D_{is}^{2}} + \frac{F_{A}}{A_{s}} + \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]^{2} + \left(\frac{i_{t}M_{t}}{Z}\right)^{2}}$$

 $S_{AL.min} = minimum(S_{AL1}, S_{AL2}) \leq S_{A.max}$

 $S_{AL.max} = maximum(S_{AL1}, S_{AL2}) \leq S_{A.max}$

where

P = maximum of CAEPIPE input pressures P1 through P10

 $D_0 = outside diameter$

 T_s = corroded wall thickness = t_n - corrosion allowance

 $t_n = nominal thickness$

 D_{is} = inside diameter = D_{o} - $2T_{s}$

m = pressure stress multiplier from Appendix III

 i_{ih} = stress intensification factor, hoop stress due to in-plane moment as per Appendix III

 i_{oh} = stress intensification factor, hoop stress due to out-of-plane moment as per Appendix III

 i_t = torsional stress intensification factor as per Appendix III

 i_i = stress intensification factor, axial stress due to in-plane moment as per Appendix III

 i_0 = stress intensification factor, axial stress due to out-of-plane moment as per Appendix III

 i_t = torsional stress intensification factor as per Appendix III

 M_i , M_o , M_t = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads

 F_A = axial force due to weight and other sustained mechanical loads (excluding pressure)

 $Z = \text{section modulus} = \pi [D_o^4 - (D_o - 2T_s)^4]/32D_o$

 $A_s = \text{area of cross-section} = \pi [D_o^2 - D_{is}^2]/4$

S_{A.max} = axial allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 .. T10)]

S_{ALmin} = minimum longitudinal stress due to pressure, weight and other sustained mechanical loads

S_{ALmax} = maximum longitudinal stress due to pressure, weight and other sustained mechanical loads

Occasional Load (Sustained + Occasional)

(a) The Hoop stress (S_{HO}) due to sustained and occasional loads is calculated from Eq. (2-4-1) of para. 2-4.4.4 (a)(1) as the combined stress due to (a) sustained loads such as pressure, weight and other sustained mechanical loads and (b) occasional loads such as earthquake or wind and compared against the limit given in para. 2-4.4.4 (b)(2). Wind and earthquake are not considered to act concurrently as per para. 2-2.3.8 (a).

$$S_{HO} = S_{HL} + \sqrt{\left[\frac{m(P_{peak} - P)D_m}{2T_s} + \frac{\sqrt{(i_{ih}M_{io})^2 + (i_{oh}M_{oo})^2}}{Z}\right]^2 + \left(\frac{i_tM_{to}}{Z}\right)^2} \le 1.33S_{H.max}$$

(b) The Longitudinal stress (S_{AO}) due to sustained and occasional is calculated is calculated from Eqs. (2-4-2a) and (2-4-2b) of para. 2-4.4.4 (a)(2) as the combined stress due to (a) sustained loads such as pressure, weight and other sustained mechanical loads and (b) occasional loads such as earthquake or wind and compared against the limit given in para. 2-4.4.4 (b)(2). Wind and earthquake are not considered to act concurrently as per para. 2-2.3.8 (a).

$$S_{AO1} = \sqrt{\left[\frac{(P_{peak} - P)D_{is}^{2}}{D_{o}^{2} - D_{is}^{2}} + \frac{F_{AO}}{A_{s}} - \frac{\sqrt{(i_{i}M_{io})^{2} + (i_{o}M_{oo})^{2}}}{Z}\right]^{2} + \left(\frac{i_{t}M_{to}}{Z}\right)^{2} \le 1.33S_{A.max}}$$
$$S_{AO2} = \sqrt{\left[\frac{(P_{peak} - P)D_{is}^{2}}{D_{o}^{2} - D_{is}^{2}} + \frac{F_{AO}}{A_{s}} + \frac{\sqrt{(i_{i}M_{io})^{2} + (i_{o}M_{oo})^{2}}}{Z}\right]^{2} + \left(\frac{i_{t}M_{to}}{Z}\right)^{2} \le 1.33S_{A.max}}$$

 $S_{A0.min} = S_{AL.min} + minimum(S_{A01}, S_{A02}) \le 1.33 S_{A.max}$

 $S_{AO.max} = S_{AL.max} + maximum(S_{AO1}, S_{AO2}) \le 1.33 S_{A.max}$

where

P = maximum of CAEPIPE pressures P1 through P10

 P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P

 $T_s = corroded$ wall thickness = t_n - corrosion allowance

 $t_n = nominal thickness$

 $D_0 =$ outside diameter of the component

 D_{is} = inside diameter = $D_o - 2T_S$

m = pressure stress multiplier from Appendix III

 i_{ih} = stress intensification factor, hoop stress due to in-plane moment as per Appendix III

 i_{oh} = stress intensification factor, hoop stress due to out-of-plane moment as per Appendix III

 i_t = torsional stress intensification factor as per Appendix III

 i_i = stress intensification factor, axial stress due to in-plane moment as per Appendix III

 i_0 = stress intensification factor, axial stress due to out-of-plane moment as per Appendix III

 i_t = torsional stress intensification factor as per Appendix III

 F_{AO} = axial force due to occasional loads such as wind or seismic, etc.

 M_{io} , M_{oo} , M_{to} = in-plane, out-of-plane and torsional moment respectively due to occasional loads such as wind or seismic, etc.

Z = section modulus = $\pi [D_o^4 - (D_o - 2T_s)^4]/32D_o$

 $A_s = \text{area of cross-section} = \pi [D_o^2 - D_{is}^2]/4$

S_{H.max} = hoop allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 .. T10)]

- $S_{A,max}$ = axial allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 .. T10)]
- $S_{AO.min}$ = minimum longitudinal stress due to occasional loads such as wind or seismic, etc.
- $S_{AO.max}$ = maximum longitudinal stress due to occasional loads such as wind or seismic, etc.

Operating Load (Sustained + Expansion)

(c) The Hoop Stress (S_{HE}) due to operating loads (pressure, weight, other sustained mechanical loads and thermal displacement) is calculated from Eq. (2-4-1) of para. 2-4.4.4 (a)(1) and compared against the limit given in para. 2-4.4.4 (b)(1).

$$S_{HE} = \sqrt{\left[\frac{mP_n D_m}{2T_s} + \frac{\sqrt{(i_{ih}M_{iE})^2 + (i_{oh}M_{oE})^2}}{Z}\right]^2 + \left(\frac{i_t M_{tE}}{Z}\right)^2} \le 1.1S_{H.max}$$

(a) The Longitudinal stress (S_{AE}) due to operating loads (pressure, weight, other sustained mechanical loads and thermal displacement) is calculated from Eqs. (2-4-2a) and (2-4-2b) of para. 2-4.4.4 (a)(2) and compared against the limit given in para. 2-4.4.4 (b)(1).

$$S_{AE1} = \sqrt{\left[\frac{P_n D_{is}^2}{D_o^2 - D_{is}^2} + \frac{F_{AE}}{A_s} - \frac{\sqrt{(i_i M_{iE})^2 + (i_o M_{oE})^2}}{Z}\right]^2 + \left(\frac{i_t M_{to}}{Z}\right)^2}$$
$$S_{AE2} = \sqrt{\left[\frac{P_n D_{is}^2}{D_o^2 - D_{is}^2} + \frac{F_{AE}}{A_s} + \frac{\sqrt{(i_i M_{iE})^2 + (i_o M_{oE})^2}}{Z}\right]^2 + \left(\frac{i_t M_{to}}{Z}\right)^2}$$

 $S_{AE.min} = minimum(S_{AE1}, S_{AE2}) \le 1.1 S_{A.max}$

 $S_{AE.max} = maximum(S_{AE1}, S_{AE2}) \le 1.1 S_{A.max}$

where

 P_n = internal operating pressure P1 through P10. For example, for Operating Load 1, P_n = P1

 $T_s = corroded$ wall thickness = t_n - corrosion allowance

 t_n = nominal component thickness

 $D_0 =$ outside diameter of the component

 D_{is} = inside diameter = D_{o} - $2T_{s}$

m = pressure stress multiplier from Appendix III

 i_{ih} = stress intensification factor, hoop stress due to in-plane moment as per Appendix III

 i_{oh} = stress intensification factor, hoop stress due to out-of-plane moment as per Appendix III

- i_t = torsional stress intensification factor as per Appendix III
- i_i = stress intensification factor, axial stress due to in-plane moment as per Appendix III
- i_0 = stress intensification factor, axial stress due to out-of-plane moment as per Appendix III

 i_t = torsional stress intensification factor as per Appendix III

 F_{AE} = axial force due to operating load such as weight, other sustained mechanical loads and thermal displacement

 M_{iE} , M_{oE} , M_{tE} = in-plane, out-of-plane and torsional moment respectively due to weight, other sustained mechanical loads and thermal displacement

 $Z = \text{section modulus} = \pi [D_o^4 - (D_o - 2T_s)^4]/32D_o$

 $A_s = \text{area of cross-section} = \pi [D_o^2 - D_{is}^2]/4$

 $S_{H,max}$ = hoop allowable stress at operating temperatures T1 through T10

 $S_{A.max}$ = axial allowable stress at operating temperature. For example, for Operating Load 1, Operating temperature is T1.

 $S_{AE.min}$ = minimum longitudinal stress due to weight, other sustained mechanical loads and thermal displacement

 $S_{AE.max}$ = maximum longitudinal stress due to weight, other sustained mechanical loads and thermal displacement

Flexibility Factors (FFs), Stress Intensification Factors (SIFs) and Pressure Stress Multipliers (PSMs)

The FFs, SIFs and PSMs as per ASME NM.2 code are given below (extracted from Appendix III of the code). How they are implemented in CAEPIPE is described below.

- Flexibility Factors, Stress Intensification Factors and Pressure Multipliers are calculated as per Appendix III of ASME NM.2 only for Type I and Type II components in CAEPIPE at this time. Type I and Type II components can be differentiated in CAEPIPE by selecting the Material Type as "FR – Fiber/Glass Reinforced Plastics (FRP)" OR "F1 – Fiber/Glass Reinforced Plastics (FRP) Type I" and "F2 – Fiber/Glass Reinforced Plastics (FRP) Type II" respectively.
- 2. Flexibility factor (k) for all components except for Bends & Mitres is set as 1.0 internally in CAEPIPE.
- **3.** Flexibility factor (k) for Bend / Mitre is 1.0 when Radius is NOT equal to long radius (i.e., k = 1.00 when Radius is <= 1.35D or >= 1.65D, where D is Outside Diameter).
- 4. Flexibility factor (k) for long radius Bend and Mitre is 1.0 when the Diameter / Thickness ratio is greater than 140. i.e., k = 1.00 when D/t > 140.
- 5. Flexibility factor (k) for long radius Bend and Mitre is 1.0 when Pipe Diameter is greater than 48".
- 6. Since thicknesses at intrados and extrados are not input at this time, thickness input at Bend / Mitre dialog or Thickness of section (when thickness field at Bend / Mitre dialog is left blank) (= t_n = nominal thickness) is considered in computing "t_i", "t_e", "t_e", "t_{es}" and "t_{es}" in the calculation, i.e.,

 $t_{is} = t_{es} = t_n - mill \text{ tolerance} - corrosion allowance}$

 $t_i = t_e = t_n - mill tolerance$

where,

 t_n = nominal thickness = thickness input at Bend / Mitre dialog or Thickness of section

- 7. Correction factor (α_2) is accounted as 1.00 in Stress Intensification Factor (SIF) calculation for the Bend / Mitre as intrados and extrados thicknesses cannot be input at this time in CAEPIPE.
- 8. Correction factor (α_3) is accounted as 1.00 in Pressure Stress Multiplier (m) calculation for the Bend / Mitre as intrados and extrados thicknesses cannot be input at this time in CAEPIPE.
- 9. Minimum value of Longitudinal Stress SIF and Shear Stress SIF for all components is 1.00.
- **10.** Hoop SIF for all components (excepting Bend / Mitre) is 0.0. For Bend / Mitre, Minimum Hoop Stress SIF is 1.00.
- **11.** Minimum Pressure Stress Multiplier is 1.00 for all components.
- **12.** Pressure Stress Multiplier is 1.0 for both Type I and Type II Tees when the Diameter is greater than 24".

Flexibility Factors (FFs)

Elbows

III-2.1.1 Type I and Type II Elbows. The equations below may be used to calculate the flexibility factor, k_i for Type I and Type II long-radius elbows that comply with the following criteria:

(a) The diameter-to-total-thickness ratio is not greater than 140.

(b) The pipe size does not exceed 1200 mm (48 in.) diameter.

(c) The butt joint between the elbow and the pipe is a Type II laminate, and the connected pipe is Type II or filament-wound laminate.

For Type I elbows

$$k = 0.22\gamma \left(\frac{D}{t_e}\right) \left(\frac{t_i}{t_e}\right)^{-1.04}$$
(III-2-2)

For Type II elbows

$$k = \gamma \left[0.2 \left(\frac{D}{t_e} \right) - 0.7 \right] \left(\frac{t_i}{t_e} \right)^{-0.98}$$
(III-2-3)

where

D = inside diameter of pipe, mm (in.)

- t_e = thickness of the total wall of the elbow measured at the extrados [including a corrosion-barrier thickness of at least 2.8 mm (0.11 in.)], mm (in.)
- t_i = thickness of the total wall of the elbow measured at the intrados [including a corrosion barrier thickness of at least 2.8 mm (0.11 in.)], mm (in.)
- γ = correction factor for reduction in flexibility due to internal pressure

$$= \left(1 + 2.53 \frac{Pr}{E_{h}t_{e}} \times R_{1}^{0.333} \frac{r}{t_{e}^{1.333}}\right)^{-1}$$

$$E_h$$
 = hoop modulus of the elbow, MPa (psi)

- P = pressure, MPa (psi)
- R_1 = radius of the bend, mm (in.)

The flexibility factor, *k*, for tees shall be taken to be 1.0.

- = 1.5D
- r = inside radius of the elbow, mm (in.)

NOTE: k shall not be taken as less than 1.0.

TEES

III-3.1 Flexibility Factors for Tees

Reducers

III-4.1 Flexibility Factors for Concentric Reducers

The flexibility factor, k, for concentric reducers shall be taken to be 1.0.

III-2.1.3 Flanged Elbows. The flexibility factor for flanged elbows shall be reduced by multiplying k by one of the following factors, *c*:

(a) For elbows with one flanged end

$$c = \left(\frac{t_e R_1}{\left(\frac{D}{2}\right)^2}\right)^{1/6} \tag{III-2-4}$$

(b) For elbows with two flanged ends

$$c = \left(\frac{t_c R_1}{\left(\frac{D}{2}\right)^2}\right)^{1/3}$$
(III-2-5)

where

D = inside diameter of pipe, mm (in.) of bend, mm (in.)

$$R_1 = radius$$

$$= 1.5D$$

 t_e = thickness of the total wall of the elbow measured at the extrados, mm (in.)

NOTE: k shall not be taken as less than 1.0.

Stress Intensification Factors (SIFs)

Elbows

Correction factor α_2 is not included in the SIF calculation for Elbows as the Bend/Elbow in CAEPIPE can only have uniform thickness around its entire circumference.

III-2.2.1 Type I and Type II Elbows

(a) The following equation shall be used to calculate *i* for Type I and Type II long-radius elbows for which the diameter-to-structural-thickness ratio is not greater than 140, and for which the pipe size does not exceed 1 200 mm (48 in.) diameter:

$$i = \frac{\alpha_2 \gamma}{h^{0.667}}$$
 (III-2-7)

where

h = flexibility characteristic

$$= t_{es}R_1$$

- r^2
 - r = inside radius of the elbow, mm (in.)
 - $R_1 = radius of the bend, mm (in.)$
 - = 1.5D where D is the inside diameter of the pipe
 - t_{es} = thickness of the structural wall of the elbow measured at the extrados, mm (in.)
- α₂ = correction factor for reduction in SIF due to increased thickness at the intrados compared to the extrados; see (c) below
- γ = correction factor for reduction in SIF due to internal pressure

$$\left(1 + 2.53 \frac{Pr}{E_h t_e} \times R_1^{0.333} \frac{r}{t_e^{1.333}}\right)^{-1}$$

E_h = hoop modulus of the elbow, MPa (psi)
P = pressure, MPa (psi)

 t_e = thickness of the total wall of the elbow measured at the extrados [including a corrosion-barrier thickness of at least 2.8 mm (0.11 in.)], mm (in.)

TEES

III-3.2.1 Type I and Type II Tees

(*a*) For Type I and Type II tees and reducing tees for which the diameter does not exceed 600 mm (24 in.), the SIF, *i*, is a function of the pipe factor, λ_t . The pipe factor, λ_t is defined as follows:

$$h_t = \frac{2t_R}{D_R} \tag{III-2-12}$$

where

- D_R = inside diameter of the main run structural wall, mm (in.)
- t_R = thickness of the structural layer of the main run of the tee, mm (in.)

(b) The longitudinal SIFs shall be determined by

$$i_{x} = i_{ox} = 0.66(\lambda_t)^{-0.5}$$
 (III-2-13)

- (c) The hoop SIFs, i_{ih} and i_{oh} , may be taken to be 0.0.
- (d) The torsional SIF, i_t , may be taken to be 1.5.

(b) Five SIFs are required to quantify the stresses in an elbow.

- (1) longitudinal SIF due to in-plane moment, i_{ix} .
- (2) longitudinal SIF due to out-of-plane moment, iox.
- (3) hoop SIF due to in-plane moment, i_{ih}.
- (4) hoop SIF due to out-of-plane moment, ioh.
- (5) shear stress SIF due to torsional moment, it. For

Type I and Type II elbows, i_t may be taken to be 1.0.

III-2.2.3 Flanged Elbows. The SIFs for flanged elbows may be reduced by multiplying *i* by one of the following factors, *c*:

(a) For elbows with one flanged end

$$c = \left(\frac{t_{cs}R_1}{\left(\frac{D}{2}\right)^2}\right)^{1/6}$$
(III-2-8)

(b) For elbows with two flanged ends

$$= \left(\frac{t_{es}R_1}{\left(\frac{D}{2}\right)^2}\right)^{1/3}$$
(III-2-9)

where

D = inside diameter of pipe, mm (in.)

 $R_1 = radius of bend, mm$ (in.)

= 1.5D

t_{es} = thickness of the structural wall of the elbow measured at the extrados, mm (in.)

Reducers

III-4.2 SIFs for Concentric Reducers

In the absence of more directly applicable data, the SIFs, *i*, for concentric reducers may be determined as described in paras. III-4.2.1 and III-4.2.2. In no case shall *i* be less than 1.0 except that the hoop SIFs, *i*_{ih} and *i*_{oh}, may be taken to be 0.0.

III-4.2.1 Type I and Type II Concentric Reducers. The following values for SIFs may be used for Type I and Type II concentric reducers for which the diameter-to-structural-thickness ratio is not greater than 120, and for which the pipe size does not exceed 1200 mm (48 in.) diameter:

	SIF		
Concentric Reducer Type	Large Diameter End	Small Diameter End	
Ι	2.5	1.3	
II	2.5	1.3	

Pressure Stress Multipliers

Elbows

III-2.3.1 Type I and Type II Elbows

(a) The following equation may be used to calculate m for Type I and Type II elbows:

$$m = \alpha_3 \left(\frac{4\frac{R_1}{D} - 1}{4\frac{R_1}{D} - 2} \right)$$
(III-2-11)

where

- D = inside diameter of elbow, mm (in.)
- R_1 = bend radius of the elbow, mm (in.); $R_1 > D$
- α_3 = correction factor for reduction in *m* due to increased thickness at the intrados compared to the extrados; see (b)

(b) FRP elbows are often manufactured such that the thickness varies uniformly around the circumference of the elbow from a minimum at the extrados to a maximum at the intrados. This additional thickness will reduce the maximum hoop pressure stress of the elbow compared to an elbow that has a uniform thickness around the entire circumference. The following values for α_3 may be used for Type I and Type II elbows:

(1)
$$\alpha_3 = 0.8$$
 if $t_{is}/t_{es} > 1.25$

(2) $\alpha_3 = [-0.8(t_{is}/t_{es}) + 1.8]$ if $1.0 < t_{is}/t_{es} < 1.25$ where

- t_{es} = thickness of the structural wall measured at the extrados, mm (in.)
- t_{is} = thickness of the structural wall measured at the intrados (not less than t_{es}), mm (in.)

TEES

III-3.3.1 Type I and Type II Tees

(a) For Type I and Type II tees and reducing tees for which the diameter does not exceed 600 mm (24 in.), the pressure stress multiplier, m, is a function of the pipe factor, λ_t . The pipe factor, λ_t is defined as follows:

(1) For equal tees, $D_B = D_R$

$$\lambda_t = \frac{2t_R}{D_R} \tag{III-2-14}$$

(2) For reducing tees,
$$D_B < D_R$$

$$\lambda_t = \left(\frac{2t_B}{D_B}\right)^2 \times \frac{D_R}{2t_R} \tag{III-2-15}$$

where

- D_B = inside diameter of the branch structural wall, mm (in.)
- D_R = inside diameter of the main run structural wall, mm (in.)
- t_B = thickness of the structural layer of the branch of the tee, mm (in.)
- t_R = thickness of the structural layer of the main run of the tee, mm (in.)

(b) The pressure stress multiplier, m, shall be determined by

$$m = 1.4(\lambda_t)^{-0.25}$$
 (III-2-16)

Reducers

III-4.3 Pressure Stress Multipliers for Concentric Reducers

The pressure stress multiplier, *m*, for concentric reducers shall be taken to be 1.0.

General

The Code Compliance requirements provided in this Section as per ASME NM.2 are valid for above ground installation of GRP/FRP Piping.

Section 2-6.3 of ASME NM 2 (2020) refers to AWWA Manual M45 (second edition) for Buried GRP/FRP Piping Analysis. AWWA Manual M45 is also referred by ISO 14692-3 for detailed analysis of Buried GRP/FRP Piping. Code Compliance as per ISO 14692-3 is built into CAEPIPE Version 12.00 or later. Hence, for Buried GRP/FRP Piping Analysis, ISO 14692-3 can be selected in CAEPIPE for Code Compliance checks.

Allowable Pressure

Straight Pipes and Bends

For straight pipes and bends, CAEPIPE calculates allowable pressure using Eq. (2-3-2) of para.2-3.2.2 and Eqs. (2-3-6) of para. 2-3.3.1 and Eqs. (2-3-9), (2-3-10) & (2-3-11) of para. 2-3.3.2 (a) & (b).

$$P_a = \frac{2.S.t_a}{K_1.D.m}$$

where

 P_a = allowable pressure

S = design hoop allowable stress at Design Temperature (can be obtained from applicable table in ASME NM.3.3)

 t_a = available thickness for pressure design = $t_n \times (1 - \text{mill tolerance}/100)$ - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE as per para. 2-3.2.1 (a))

 $t_n = nominal pipe/bend thickness$

D = outside diameter of pipe/bend, to be conservative

m = 1.0 for straight pipes and at the side wall on the bend / elbow centerline radius

 $K_1 = 1.0$ for Pipe with Type I and Type II laminates

 $K_1 = 1.2$ for Bends / Elbows with Type I and Type II laminates

Note:

Allowable pressure at the "intrados" of a bend can be manually computed by dividing the CAEPIPE computed allowable pressure for that bend by the factor "m" given by Eq. (2-3-7) in para. 2-3.3.1. Similarly, allowable pressure at the "Extrados" of a bend can be manually computed by diving the CAEPIPE computed allowable pressure for that bend by the factor "m" given by Eq. (2-3-8) in para. 2-3.3.1.

For closely spaced miter bends, the allowable pressure computed by CAEPIPE shall be the lesser of the two values calculated from Eqs. 2-3-9 and 2-3-10 with $\theta \le 22.5$ deg.

$$P_{a} = min\left[\frac{S.t_{a}(R-r)}{r(R-0.5r)}, \frac{S.t_{a}^{2}}{r(t_{a}+0.643tan\theta\sqrt{r.t_{a}})}\right]$$

For widely spaced miter bends with $\theta \leq 22.5$ deg, the allowable pressure is calculated in CAEPIPE by Eq. 2-3-9

$$P_a = \frac{S.t_a^2}{r(t_a + 0.643tan\theta\sqrt{r.t_a})}$$

For widely spaced miter bends and closely spaced miter bends with $\theta > 22.5$ deg, the allowable pressure is calculated in CAEPIPE by Eq. 2-3-11

$$P_a = \frac{S.t_a^2}{r(t_a + 1.25 \tan\theta\sqrt{r.t_a})}$$

where

 $r = mean radius of pipe = (D - t_n)/2$

R = equivalent bend radius of the miter (an input in CAEPIPE for Miter)

$$\theta = \text{miter half angle} = \tan^{-1} \left(\frac{1.0}{\left(\frac{2R}{r} - 1.0\right)} \right)$$

Integrally Molded Tee fittings

For <u>integrally molded Tee fittings</u>, CAEPIPE calculates allowable pressure for Run and Branch of a Tee using Eq. (2-3-18) of para.2-3.4.

For Tee Run

$$P_{aR} = \frac{2.S.t_{aR}}{D_R.m}$$

For Tee Branch

$$P_{aB} = \frac{2.S.t_{aB}}{D_B.m}$$

where

 P_{aR} = allowable pressure for Run

 P_{aB} = allowable pressure for Branch

S = design hoop allowable stress (can be obtained from applicable table in ASME NM.3.3) at Design Temperature input in CAEPIPE load dialog.

m = pressure stress multiplier for integral tees = $1.4\lambda_z^{0.25}$

 λ_z = geometry factor as given below

For equal tees (i.e., $D_B = D_R$)

$$\lambda_z = \frac{D_R}{2.\,t_{aR}}$$

For unequal or reducing tees (i.e., $D_B < D_R$)

$$\lambda_z = \left(\frac{D_B}{2.t_{aB}}\right)^2 \left(\frac{2t_{aR}}{D_R}\right)$$

where

 t_{aR} = available Run thickness for pressure design = $t_{nR} \times (1 - mill tolerance/100)$ - corrosion allowance

 $t_{aB}\text{=}$ available Branch thickness for pressure design = $t_{nB}\times(1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE as per para. 2-3.2.1 (a))

 t_{nR} = nominal thickness of Run

 t_{nB} = nominal thickness of Branch

 D_R = inside diameter of the main run pipe structural wall = Run OD - 2 * t_{aR}

 D_{B} = inside diameter of the tee branch pipe structural wall = Branch OD - 2 * t_{aB}

Sustained Load

(d) The Hoop Stress (S_{HL}) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eq. (2-4-1) of para. 2-4.4.4 (a) and compared against the limit given in para. 2-4.4.4 (c).

$$S_{HL} = \sqrt{\left[\frac{mPD_m}{2T_s} + \frac{\sqrt{(i_{ih}M_i)^2 + (i_{oh}M_o)^2}}{Z}\right]^2 + \left(\frac{i_tM_t}{Z}\right)^2} \le S_{H.max}$$

(e) The Longitudinal Stress (S_{AL}) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eqs. (2-4-2a) & (2-4-2b) of para. 2-4.4.4 (b) and compared against the limit given in para. 2-4.4.4 (c).

$$S_{AL1} = \sqrt{\left[\frac{PD_{is}^{2}}{D_{o}^{2} - D_{is}^{2}} + \frac{F_{A}}{A_{s}} - \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]^{2} + \left(\frac{i_{t}M_{t}}{Z}\right)^{2}}$$
$$S_{AL2} = \sqrt{\left[\frac{PD_{is}^{2}}{D_{o}^{2} - D_{is}^{2}} + \frac{F_{A}}{A_{s}} + \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}\right]^{2} + \left(\frac{i_{t}M_{t}}{Z}\right)^{2}}$$

Glass-Fiber-Reinforced Thermosetting-Resin Piping Systems ASME NM.2 (2020)

 $S_{AL.min} = minimum(S_{AL1}, S_{AL2}) \leq S_{A.max}$

 $S_{AL.max} = maximum(S_{AL1}, S_{AL2}) \leq S_{A.max}$

where

P = maximum of CAEPIPE input pressures P1 through P10

 $D_0 = outside diameter$

 $T_s = corroded$ wall thickness = t_n - corrosion allowance

 $t_n = nominal thickness$

 D_{is} = inside diameter = D_{o} - $2T_{S}$

m = pressure stress multiplier from Appendix III

 i_{ih} = stress intensification factor, hoop stress due to in-plane moment as per Appendix III

 i_{oh} = stress intensification factor, hoop stress due to out-of-plane moment as per Appendix III

 i_t = torsional stress intensification factor as per Appendix III

 i_i = stress intensification factor, axial stress due to in-plane moment as per Appendix III

 i_0 = stress intensification factor, axial stress due to out-of-plane moment as per Appendix III

 i_t = torsional stress intensification factor as per Appendix III

 M_i , M_o , M_t = in-plane, out-of-plane and torsional moment respectively due to weight and other sustained mechanical loads

 F_A = axial force due to weight and other sustained mechanical loads (excluding pressure)

 $Z = \text{section modulus} = \pi [D_o^4 - (D_o - 2T_s)^4]/32D_o$

 $A_s = \text{area of cross-section} = \pi [D_o^2 - D_{is}^2]/4$

S_{A.max} = axial allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 .. T10)]

 S_{ALmin} = minimum longitudinal stress due to pressure, weight and other sustained mechanical loads

 S_{ALmax} = maximum longitudinal stress due to pressure, weight and other sustained mechanical loads

Occasional Load (Sustained + Occasional)

(c) The Hoop stress (S_{HO}) due to sustained and occasional loads is calculated from Eq. (2-4-1) of para. 2-4.4.4 (a) as the combined stress due to (a) sustained loads such as pressure, weight and other sustained mechanical loads and (b) occasional loads such as earthquake or wind and compared against the limit given in para. 2-4.4.4 (d). Wind and earthquake are not considered to act concurrently as per para. 2-2.3.8 (a).

$$S_{HO} = S_{HL} + \sqrt{\left[\frac{m(P_{peak} - P)D_m}{2T_s} + \frac{\sqrt{(i_{ih}M_{io})^2 + (i_{oh}M_{oo})^2}}{Z}\right]^2 + \left(\frac{i_tM_{to}}{Z}\right)^2} \le k.S_{H.max}$$

(d) The Longitudinal stress (S_{AO}) due to sustained and occasional is calculated is calculated from Eqs. (2-4-2a) and (2-4-2b) of para. 2-4.4.4 (b) as the combined stress due to (a) sustained loads such as pressure, weight and other sustained mechanical loads and (b) occasional loads such as earthquake or wind and compared against the limit given in para. 2-4.4.4 (d). Wind and earthquake are not considered to act concurrently as per para. 2-2.3.8 (a).

$$S_{AO1} = \sqrt{\left[\frac{\left(P_{peak} - P\right)D_{is}^{2}}{D_{o}^{2} - D_{is}^{2}} + \frac{F_{AO}}{A_{s}} - \frac{\sqrt{(i_{i}M_{io})^{2} + (i_{o}M_{oo})^{2}}}{Z}\right]^{2} + \left(\frac{i_{t}M_{to}}{Z}\right)^{2} \le k.S_{A.max}$$
$$S_{AO2} = \sqrt{\left[\frac{\left(P_{peak} - P\right)D_{is}^{2}}{D_{o}^{2} - D_{is}^{2}} + \frac{F_{AO}}{A_{s}} + \frac{\sqrt{(i_{i}M_{io})^{2} + (i_{o}M_{oo})^{2}}}{Z}\right]^{2} + \left(\frac{i_{t}M_{to}}{Z}\right)^{2}} \le k.S_{A.max}$$

 $S_{A0.min} = S_{AL.min} + minimum(S_{A01}, S_{A02}) \le 1.33 S_{A.max}$

 $S_{AO.max} = S_{AL.max} + maximum(S_{AO1}, S_{AO2}) \le 1.33 S_{A.max}$

where

P = maximum of CAEPIPE pressures P1 through P10

 P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P

 $T_s = corroded$ wall thickness = t_n - corrosion allowance

 $t_n = nominal thickness$

 $D_0 =$ outside diameter of the component

 D_{is} = inside diameter = $D_o - 2T_S$

m = pressure stress multiplier from Appendix III

 i_{ib} = stress intensification factor, hoop stress due to in-plane moment as per Appendix III

- i_{oh} = stress intensification factor, hoop stress due to out-of-plane moment as per Appendix III
- i_t = torsional stress intensification factor as per Appendix III
- i_i = stress intensification factor, axial stress due to in-plane moment as per Appendix III

- i_0 = stress intensification factor, axial stress due to out-of-plane moment as per Appendix III
- i_t = torsional stress intensification factor as per Appendix III
- F_{AO} = axial force due to occasional loads such as wind or seismic, etc.

 M_{io} , M_{oo} , M_{to} = in-plane, out-of-plane and torsional moment respectively due to occasional loads such as wind or seismic, etc.

 $Z = \text{section modulus} = \pi [D_o^4 - (D_o - 2T_s)^4]/32D_o$

 $A_s = \text{area of cross-section} = \pi [D_o^2 - D_{is}^2]/4$

k = 1.33 corresponding to the occasional event duration occurring for not more than 1 hr at any one time and not more than 80 hr/yr

 $S_{H.max}$ = hoop allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 ... T10)]

S_{A.max} = axial allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 .. T10)]

 $S_{AO,min}$ = minimum longitudinal stress due to occasional loads such as wind or seismic, etc.

 $S_{AO.max}$ = maximum longitudinal stress due to occasional loads such as wind or seismic, etc.

Operating Load (Sustained + Expansion)

(f) The Hoop Stress (S_{HE}) due to operating loads (pressure, weight, other sustained mechanical loads and thermal displacement) is calculated from Eq. (2-4-1) of para. 2-4.4.4 (a) and compared against the limit given in para. 2-4.4.4 (c).

$$S_{HE} = \sqrt{\left[\frac{mP_n D_m}{2T_s} + \frac{\sqrt{(i_{ih}M_{iE})^2 + (i_{oh}M_{oE})^2}}{Z}\right]^2 + \left(\frac{i_t M_{tE}}{Z}\right)^2} \le 1.1S_{H.max}$$

(b) The Longitudinal stress (SAE) due to operating loads (pressure, weight, other sustained mechanical loads and thermal displacement) is calculated from Eqs. (2-4-2a) and (2-4-2b) of para. 2-4.4.4 (b) and compared against the limit given in para. 2-4.4.4 (c).

$$S_{AE1} = \sqrt{\left[\frac{P_n D_{is}^2}{D_o^2 - D_{is}^2} + \frac{F_{AE}}{A_s} - \frac{\sqrt{(i_i M_{iE})^2 + (i_o M_{oE})^2}}{Z}\right]^2 + \left(\frac{i_t M_{to}}{Z}\right)^2}$$
$$S_{AE2} = \sqrt{\left[\frac{P_n D_{is}^2}{D_o^2 - D_{is}^2} + \frac{F_{AE}}{A_s} + \frac{\sqrt{(i_i M_{iE})^2 + (i_o M_{oE})^2}}{Z}\right]^2 + \left(\frac{i_t M_{to}}{Z}\right)^2}$$
$$S_{AE.min} = minimum(S_{AE1}, S_{AE2}) \le 1.1 S_{A.max}$$

 $S_{AE,max} = maximum(S_{AE1}, S_{AE2}) \le 1.1 S_{A,max}$

where

 P_n = internal operating pressure P1 through P10. For example, for Operating Load 1, P_n = P1 T_s = corroded wall thickness = t_n - corrosion allowance

Glass-Fiber-Reinforced Thermosetting-Resin Piping Systems ASME NM.2 (2020)

 t_n = nominal component thickness

 D_0 = outside diameter of the component

 D_{is} = inside diameter = $D_o - 2T_S$

m = pressure stress multiplier from Appendix III

 i_{ih} = stress intensification factor, hoop stress due to in-plane moment as per Appendix III

 i_{oh} = stress intensification factor, hoop stress due to out-of-plane moment as per Appendix III

 i_t = torsional stress intensification factor as per Appendix III

 i_i = stress intensification factor, axial stress due to in-plane moment as per Appendix III

 i_0 = stress intensification factor, axial stress due to out-of-plane moment as per Appendix III

 i_t = torsional stress intensification factor as per Appendix III

 F_{AE} = axial force due to operating load such as weight, other sustained mechanical loads and thermal displacement

 M_{iE} , M_{oE} , M_{tE} = in-plane, out-of-plane and torsional moment respectively due to weight, other sustained mechanical loads and thermal displacement

 $Z = \text{section modulus} = \pi [D_o^4 - (D_o - 2T_s)^4]/32D_o$

 $A_s = \text{area of cross-section} = \pi [D_o^2 - D_{is}^2]/4$

 $S_{H.max}$ = hoop allowable stress at operating temperatures T1 through T10

 $S_{A.max}$ = axial allowable stress at operating temperature. For example, for Operating Load 1, Operating temperature is T1.

 $S_{AE,min}$ = minimum longitudinal stress due to weight, other sustained mechanical loads and thermal displacement

 $S_{AE,max}$ = maximum longitudinal stress due to weight, other sustained mechanical loads and thermal displacement

Flexibility Factors (FFs), Stress Intensification Factors (SIFs) and Pressure Stress Multipliers (PSMs)

The FFs, SIFs and PSMs as per ASME NM.2 code are given below (extracted from Appendix III of the code). How they are implemented in CAEPIPE is described below.

- Flexibility Factors, Stress Intensification Factors and Pressure Multipliers are calculated as per Appendix III of ASME NM.2 only for Type I and Type II components in CAEPIPE at this time. Type I and Type II components can be differentiated in CAEPIPE by selecting the Material Type as "FR – Fiber/Glass Reinforced Plastics (FRP)" OR "F1 – Fiber/Glass Reinforced Plastics (FRP) Type I" and "F2 – Fiber/Glass Reinforced Plastics (FRP) Type I" and "F2 – Fiber/Glass Reinforced Plastics (FRP) Type II"
- **2.** Flexibility factor (k) for all components except for Bends & Mitres is set as 1.0 internally in CAEPIPE.
- **3.** Flexibility factor (k) for Bend / Mitre is 1.0 when Radius is NOT equal to long radius (i.e., k = 1.00 when Radius is <= 1.35D or >= 1.65D, where D is Outside Diameter).
- 4. Flexibility factor (k) for long radius Bend and Mitre is 1.0 when the Diameter / Thickness ratio is greater than 140. i.e., k = 1.00 when D/t > 140.
- 5. Flexibility factor (k) for long radius Bend and Mitre is 1.0 when Pipe Diameter is greater than 48".
- 6. Since thicknesses at intrados and extrados are not input at this time, thickness input at Bend / Mitre dialog or Thickness of section (when thickness field at Bend / Mitre dialog is left blank) (= t_n = nominal thickness) is considered in computing "t_i", "t_e", "t_{is}" and "t_{es}" in the calculation, i.e.,

 $t_{is} = t_{es} = t_n - mill \text{ tolerance} - corrosion allowance}$ $t_i = t_e = t_n - mill \text{ tolerance}$ where, $t_n = nominal \text{ thickness} = \text{thickness input at Bend} / Mitre dialog or Thickness of section}$

- 7. Correction factor (α_2) is accounted as 1.00 in Stress Intensification Factor (SIF) calculation for the Bend / Mitre as intrados and extrados thicknesses cannot be input at this time in CAEPIPE.
- 8. Correction factor (α_3) is accounted as 1.00 in Pressure Stress Multiplier (m) calculation for the Bend / Mitre as intrados and extrados thicknesses cannot be input at this time in CAEPIPE.
- **9.** Minimum value of Longitudinal Stress SIF and Shear Stress SIF for all components is 1.00.
- **10.** Hoop SIF for all components (excepting Bend / Mitre) is 0.0. For Bend / Mitre, Minimum Hoop Stress SIF is 1.00.
- 11. Minimum Pressure Stress Multiplier is 1.00 for all components.
- **12.** Pressure Stress Multiplier is 1.0 for both Type I and Type II Tees when the Diameter is greater than 24".

Flexibility Factors (FFs)

Elbows

III-2.1.1 Type I and Type II Elbows. The equations below may be used to calculate the flexibility factor, *k*, for Type I and Type II long-radius elbows that comply with the following criteria:

(a) The diameter-to-total-thickness ratio is not greater than 140.

(b) The pipe size does not exceed 1200 mm (48 in.) diameter.

(c) The butt joint between the elbow and the pipe is a Type II laminate, and the connected pipe is Type II or filament-wound laminate.

For Type I elbows

$$k = 0.22\gamma \left(\frac{D}{t_e}\right) \left(\frac{t_i}{t_e}\right)^{-1.04}$$
(III-2-2)

For Type II elbows

$$k = \gamma \left[0.2 \left(\frac{D}{t_e} \right) - 0.7 \right] \left(\frac{t_i}{t_e} \right)^{-0.98}$$
(III-2-3)

where

=

- D = inside diameter of pipe, mm (in.)
- t_e = thickness of the total wall of the elbow measured at the extrados [including a corrosion-barrier thickness of at least 2.8 mm (0.11 in.)], mm (in.)
- t_i = thickness of the total wall of the elbow measured at the intrados [including a corrosion barrier thickness of at least 2.8 mm (0.11 in.)], mm (in.)
- γ = correction factor for reduction in flexibility due to internal pressure

$$\left(1 + 2.53 \frac{P_r}{E_h t_e} \times R_1^{0.333} \frac{r}{t_e^{1.333}}\right)^{-1}$$

$$E_h$$
 = hoop modulus of the elbow, MPa (psi)

P = pressure, MPa (psi) $R_1 =$ radius of the bend, mm (in.)

= 1.5D

r = inside radius of the elbow, mm (in.)

NOTE: k shall not be taken as less than 1.0.

III-3.1 Flexibility Factors for TeesIII-4.1 Flexibility Factors for Concentric ReducersThe flexibility factor, k, for tees shall be taken to be 1.0.The flexibility factor, k, for concentric reducers shall be taken to be 1.0.	TEES	Reducers
	,	The flexibility factor, <i>k</i> , for concentric reducers shall be

III-2.1.3 Flanged Elbows. The flexibility factor for flanged elbows shall be reduced by multiplying *k* by one of the following factors, *c*:

(a) For elbows with one flanged end

$$c = \left(\frac{t_e R_1}{\left(\frac{D}{2}\right)^2}\right)^{1/6} \tag{III-2-4}$$

(b) For elbows with two flanged ends

$$c = \left(\frac{t_e R_1}{\left(\frac{D}{2}\right)^2}\right)^{1/3} \tag{III-2-5}$$

where

D = inside diameter of pipe, mm (in.)

$$R_1$$
 = radius of bend, mm (in.)
= 1.5D

 t_e = thickness of the total wall of the elbow measured at the extrados, mm (in.)

NOTE: k shall not be taken as less than 1.0.

Stress Intensification Factors (SIFs)

Elbows

Correction factor α_2 is not included in the SIF calculation for Elbows as the Bend/Elbow in CAEPIPE can only have uniform thickness around its entire circumference.

III-2.2.1 Type I and Type II Elbows

(a) The following equation shall be used to calculate *i* for Type I and Type II long-radius elbows for which the diameter-to-structural-thickness ratio is not greater than 140, and for which the pipe size does not exceed 1 200 mm (48 in.) diameter:

$$i = \frac{\alpha_2 \gamma}{h^{0.667}}$$
 (III-2-7)

where

h = flexibility characteristic

$$t_{es}R_1$$

r = inside radius of the elbow, mm (in.)

- R_1 = radius of the bend, mm (in.)
 - = 1.5D where D is the inside diameter of the pipe
- t_{es} = thickness of the structural wall of the elbow measured at the extrados, mm (in.)
- α_2 = correction factor for reduction in SIF due to increased thickness at the intrados compared to the extrados; see (c) below
- γ = correction factor for reduction in SIF due to internal pressure

$$= \left(1 + 2.53 \frac{Pr}{E_{h}t_{e}} \times R_{1}^{0.333} \frac{r}{t_{e}^{1.333}}\right)^{-1}$$

 E_h = hoop modulus of the elbow, MPa (psi) P = pressure, MPa (psi)

t_e = thickness of the total wall of the elbow measured at the extrados [including a corrosion-barrier thickness of at least 2.8 mm (0.11 in.)], mm (in.)

TEES

III-3.2.1 Type I and Type II Tees

(*a*) For Type I and Type II tees and reducing tees for which the diameter does not exceed 600 mm (24 in.), the SIF, *i*, is a function of the pipe factor, λ_t . The pipe factor, λ_t , is defined as follows:

$$\lambda_t = \frac{2t_R}{D_R} \tag{III-2-12}$$

where

- D_R = inside diameter of the main run structural wall, mm (in.)
- t_R = thickness of the structural layer of the main run of the tee, mm (in.)
- (b) The longitudinal SIFs shall be determined by

$$i_{ix} = i_{ox} = 0.66(\lambda_t)^{-0.5}$$
 (III-2-13)

(c) The hoop SIFs, i_{ih} and i_{oh} , may be taken to be 0.0.

(d) The torsional SIF, i_t , may be taken to be 1.5.

(b) Five SIFs are required to quantify the stresses in an elbow.

- (1) longitudinal SIF due to in-plane moment, i_{ix}.
- (2) longitudinal SIF due to out-of-plane moment, iox.
- (3) hoop SIF due to in-plane moment, i_{ih} .
- (4) hoop SIF due to out-of-plane moment, ioh.
- (5) shear stress SIF due to torsional moment, i_t . For
- Type I and Type II elbows, i_t may be taken to be 1.0.

III-2.2.3 Flanged Elbows. The SIFs for flanged elbows may be reduced by multiplying *i* by one of the following factors, *c*:

(a) For elbows with one flanged end

$$c = \left(\frac{t_{cs}R_1}{\left(\frac{D}{2}\right)^2}\right)^{1/6} \quad (\text{III-2-8})$$

(b) For elbows with two flanged ends

$$c = \left(\frac{t_{es}R_1}{\left(\frac{D}{2}\right)^2}\right)^{1/3}$$
(III-2-9)

where

D = inside diameter of pipe, mm (in.)

$$R_1$$
 = radius of bend, mm (in.)
= 1.5D

 t_{es} = thickness of the structural wall of the elbow measured at the extrados, mm (in.)

Reducers

III-4.2 SIFs for Concentric Reducers

In the absence of more directly applicable data, the SIFs, *i*, for concentric reducers may be determined as described in paras. III-4.2.1 and III-4.2.2. In no case shall *i* be less than 1.0 except that the hoop SIFs, *i*_{ih} and *i*_{oh}, may be taken to be 0.0.

III-4.2.1 Type I and Type II Concentric Reducers. The following values for SIFs may be used for Type I and Type II concentric reducers for which the diameter-to-structural-thickness ratio is not greater than 120, and for which the pipe size does not exceed 1 200 mm (48 in.) diameter:

	51F		
Concentric Reducer Type	Large Diameter End	Small Diameter End	
Ι	2.5	1.3	
II	2.5	1.3	

CIT

Pressure Stress Multipliers

Elbows

III-2.3.1 Type I and Type II Elbows

(a) The following equation may be used to calculate m for Type I and Type II elbows:

$$m = \alpha_3 \left(\frac{4\frac{R_1}{D} - 1}{4\frac{R_1}{D} - 2} \right)$$
(III-2-11)

where

- D = inside diameter of elbow, mm (in.)
- R_1 = bend radius of the elbow, mm (in.); $R_1 > D$
- α_3 = correction factor for reduction in *m* due to increased thickness at the intrados compared to the extrados; see (b)

(b) FRP elbows are often manufactured such that the thickness varies uniformly around the circumference of the elbow from a minimum at the extrados to a maximum at the intrados. This additional thickness will reduce the maximum hoop pressure stress of the elbow compared to an elbow that has a uniform thickness around the entire circumference. The following values for α_3 may be used for Type I and Type II elbows:

(1)
$$\alpha_3 = 0.8$$
 if $t_{is}/t_{es} > 1.25$

(2)
$$\alpha_3 = [-0.8(t_{is}^{i}/t_{es}) + 1.8]$$
 if $1.0 < t_{is}/t_{es} < 1.25$ where

- t_{es} = thickness of the structural wall measured at the extrados, mm (in.)
- t_{is} = thickness of the structural wall measured at the intrados (not less than t_{es}), mm (in.)

TEES

III-3.3.1 Type I and Type II Tees

(a) For Type I and Type II tees and reducing tees for which the diameter does not exceed 600 mm (24 in.), the pressure stress multiplier, m, is a function of the pipe factor, λ_{t} . The pipe factor, λ_{b} is defined as follows:

(1) For equal tees, $D_B = D_R$

$$\lambda_t = \frac{2t_R}{D_R} \tag{III-2-14}$$

(2) For reducing tees, $D_B < D_R$

$$\lambda_t = \left(\frac{2t_B}{D_B}\right)^2 \times \frac{D_R}{2t_R} \tag{III-2-15}$$

where

- D_B = inside diameter of the branch structural wall, mm (in.)
- D_R = inside diameter of the main run structural wall, mm (in.)
- t_B = thickness of the structural layer of the branch of the tee, mm (in.)
- t_R = thickness of the structural layer of the main run of the tee, mm (in.)

 $(b) \ {\rm The \ pressure \ stress \ multiplier}, \ m, \ {\rm shall \ be \ determined \ by}$

$$m = 1.4(\lambda_t)^{-0.25}$$
 (III-2-16)

Reducers

III-4.3 Pressure Stress Multipliers for Concentric Reducers

The pressure stress multiplier, *m*, for concentric reducers shall be taken to be 1.0.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from 4.2(4).

$$P = \frac{2fet_f}{D - 2t_f}$$

where

P = allowable pressure

f = allowable stress

e = joint factor (input as material property)

- t_f = minimum required thickness, including mechanical and corrosion allowances
 - = nominal pipe thickness \times (1 mill tolerance/100) corrosion allowance
- D =outside diameter

$$P = \frac{fe}{X(1+0.6427\tan\alpha\sqrt{X})}$$

where

$$\begin{array}{ll} \alpha &= \text{ miter angle} \\ X &= (D - 2t_f)/2t_f \end{array}$$

Stresses

Stresses are calculated according to 4.11.

Sustained stresses are due to pressure, weight and other sustained mechanical loads. Maximum value is $0.8 \times$ proof stress value or rupture stress value in hot condition.

Expansion stresses are due to thermal (including specified displacements) and pressure loadings. Maximum value is lower of

1) 0.9 \times proof stress at room temperature plus 0.9 \times proof stress at design temperature.

2) 0.9 \times proof stress at room temperature plus rupture stress at design temperature.

Hot stresses are due to pressure, deadweight, other sustained mechanical loads, thermal and cold pull loadings. Maximum value is the rupture stress at design temperature.

Occasional stresses (which are due to seismic, dynamic or wind loadings) are not calculated. If these are to be evaluated, ASME B31.1 code should be used according to Inquiry Case 806/2 : November 1986 to BS 806 : 1986.

Stresses on Straight Pipes and Bends (4.11.4)

The combined stress fc on straight pipes and bends including miter bends is calculated from (28).

$$F_C = F^2 + 4f_S^2$$

where

 $F = \text{greater of } f_T \text{ or } f_L$

 f_T = transverse stress (4.11.4.2)

= transverse pressure stress + transverse bending stress

 f_L = longitudinal stress (4.11.4.3)

= longitudinal pressure stress + longitudinal bending stress

 f_S = torsional stress (4.11.4.4)

Transverse Stress f_T (4.11.4.2)

The transverse pressure stress on both straight pipes and bends excluding miter bends is calculated from (29).

$$\frac{pd}{2t} + 0.5p$$

The transverse pressure stress on miter bends is calculated from (30)

$$\left(\frac{pd}{2t} + 0.5p\right)\left(1 + 0.6427\tan\alpha\sqrt{\frac{d+t}{2t}}\right)$$

The transverse bending stress on straight pipe is zero.

The transverse bending stress on bends including miter bends is calculated from (31)

$$\frac{r}{l}(M_i F_{Ti})^2 + (M_o F_{To})^2$$

where

d = inside diameter

t = thickness

p = pressure

 M_i = in-plane bending moment

 M_o = out-of-plane bending moment

 F_{Ti} = in-plane transverse stress intensification factor

 F_{To} = out-of-plane transverse stress intensification factor

r = mean radius of pipe

- I = moment of inertia
- D =outside diameter

 α = miter angle

Longitudinal Stress f_L (4.11.4.3)

The longitudinal pressure stress on both straight pipes and bends including miter bends is calculated form (32)

$$\frac{pd^2}{4t(d+t)}$$

The longitudinal bending stress on straight pipe is calculated from (33).

$$\frac{d+2t}{2I}\sqrt{M_i^2+M_0^2}$$

The longitudinal bending stress on bends including miter bends is calculated from (34).

$$\frac{r}{I}\sqrt{(M_{i}F_{Li})^{2} + (M_{o}F_{Lo})^{2}}$$

where

 F_{Li} = in-plane longitudinal stress intensification factor F_{Lo} = out-of-plane longitudinal stress intensification factor

Torsional Stress f_s (4.11.4.4)

The torsional stress for both straight pipes and bends including miter bends is calculated from (35).

$$f_S = M_t \frac{d+2t}{4I}$$

where

 M_t = torsional moment

Stress at Branch Junction (4.11.5)

The combined stress at a branch junction is calculated from (36)

$$f_{CB} = f_B^2 + 4f_{SB}^2$$

where

 f_B = transverse pressure stress at the junction plus nondirectional bending stress

 f_{SB} = torsional stress at the junction

Transverse Pressure Stress at Branch Junction (4.11.5.2)

The transverse pressure stress at branch junction is calculated from (37)

$$pm\left(\frac{d_1+t_a}{2t_a}\right)$$

where

 d_1 = mean radius of main pipe

 t_a = minimum thickness of main pipe

p = design pressure

m = stress multiplier, or equal to:

(a) for branch junctions where both r2/r1 and t2/t1 are less than or equal to 0.3

$$m = 1.8 + \frac{2.8r_2}{r_1} \sqrt{\frac{r_1}{t_1}}$$

(b) for branch junctions where either r2/r1 and t2/t1 are greater than 0.3

$$m = 2.5Z_1^{0.2042}$$
 for $d_2/d_1 \le 0.7$

$$m = 2.5Z_1^{0.2415}$$
 for $d_2/d_1 > 0.7$

$$Z_1 = (r_2/t_2)^2 t_1/r_1$$

 r_1 = mean radius of main pipe

 r_2 = mean radius of branch pipe

 t_1 = thickness of main pipe

 t_2 = thickness of branch pipe

Non-directional Bending Stress at Branch Junction (4.11.5.3)

For the main pipe, the bending stress is calculated from (40)

$$\frac{r_1}{I}\sqrt{(M_iB_i)^2 + (M_oB_o)^2}$$

where

 r_1 = mean radius of pipe

I =moment of inertia of main pipe

 M_i = in-plane bending moment

 M_o = out-of-plane bending moment

 B_i = in-plane branch stress intensification factor (Fig. 4.11.1(6))

 B_o = out-of-plane branch stress intensification factor (Fig.4.11.1(6))

For the branch pipe, the bending stress is calculated from

$$\frac{r_2}{I}\sqrt{(M_iB_i)^2 + (M_oB_o)^2}$$

where

 r_2 = mean radius of branch pipe

 $I = \text{calculated from } \pi r_2^3 B_0 t_2 \text{ or } \pi r_2^3 t_1 \text{ whichever gives the lower value}$

Sustained Stress

The Allowable Stress Design (ASD) provisions as given in Section 5.6.2.2 of DNV-ST-F101 (2021) code are implemented in CAEPIPE as detailed below.

(a) The hoop stress is defined by the following formula as per Section 5.6.2.2

$$\sigma_{h(s)} = \frac{PD_{r,min}}{2.t_2}$$

(b) The longitudinal / axial stresses are defined by the following formulae as per Section 5.6.2.2

$$\sigma_{a(s)} = \frac{F_{a(s)}}{A_r} + \frac{PD_{r,min}}{4.t_2} = \frac{F_{a(s)}}{\frac{\pi}{4}(OD_{r,min}^2 - ID_r^2)} + \frac{PD_{r,min}}{4.t_2}$$
$$\sigma_{b(s)} = \frac{\sqrt{\left(SIF_{ai}.M_{i(s)}\right)^2 + \left(SIF_{ao}.M_{o(s)}\right)^2}}{Z_r}$$
$$Z_r = \frac{\pi}{32} \frac{(OD_{r,min}^4 - ID_r^4)}{OD_{r,min}}$$

(c) Torsional stress is defined by the following formula as per Section 5.6.2.2

Torsional Stress =
$$\sigma_{t(s)} = \frac{M_{t(s)}}{2Z_r}$$

where

P = maximum of CAEPIPE input pressures P1 through P10, where the maximum operating pressure Pi (with i between 1 & 10) = the difference between the corresponding internal pressure Pi and external pressure Pe = $(P_i - P_e)$

 t_2 = minimum pipe wall thickness

= nominal thickness x (1 - mill tolerance/100) – corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 $OD_{r,min}$ = minimum outside diameter of the pipe wall = Outer Diameter in CAEPIPE

 $D_{r,min}$ = mean diameter of the pipe wall = $OD_{r,min} - t_2$

 ID_r = inside diameter of the pipe wall = $OD_{r,min} - 2.t_2$

 A_r = inside metallic area of the pipe

 SIF_{ai} , SIF_{ao} = in-plane and out-of-plane stress longitudinal/axial intensification factors as per Appendix D of ASME B31.8 (2020).

 $M_{i(s)}, M_{o(s)}, M_{t(s)}$ = in-plane, out-of-plane bending moment and torsional moment respectively due to weight and other sustained mechanical loads (excluding pressure)

 Z_r = minimum pipe wall section modulus.

 $F_{a(s)}$ = axial force due to weight and other sustained mechanical loads (excluding pressure).

(d) Equivalent stress, Von Mises, is computed as given below.

Equivalent Stress, Von Mises at One Extreme Surface of Pipe

In CAEPIPE, Equivalent Stress, Von Mises, at One Extreme Surface of Pipe is computed as given below.

$$T1_{(s)} = \frac{\sigma_{h(s)} - \sigma_{a(s)} - \sigma_{b(s)}}{2}$$

$$U1_{(s)} = \sqrt{T1_{(s)}^{2} + (\sigma_{t(s)})^{2}}$$
Sigma 1 = $\sigma_{1(s)} = \frac{\sigma_{h(s)} + \sigma_{a(s)} + \sigma_{b(s)}}{2} + U1_{(s)}$
Sigma 2 = $\sigma_{2(s)} = \frac{\sigma_{h(s)} + \sigma_{a(s)} + \sigma_{b(s)}}{2} - U1_{(s)}$
VonMises_t_(s) = $\sqrt{(\sigma_{1(s)})^{2} - \sigma_{1(s)}\sigma_{2(s)} + (\sigma_{2(s)})^{2}}$

 $Max_{t(s)} = \sigma_{1(s)}; Min_{t(s)} = \sigma_{2(s)}$

Equivalent Stress, Von Mises at Other Extreme Surface of Pipe

In CAEPIPE, Equivalent Stress, Von Mises, at Other Extreme Surface of Pipe is computed as given below.

$$T2_{(s)} = \frac{\sigma_{h(s)} - \sigma_{a(s)} + \sigma_{b(s)}}{2}$$

$$U2_{(s)} = \sqrt{T2_{(s)}^{2} + (\sigma_{t(s)})^{2}}$$
Sigma $1 = \sigma_{1(s)} = \frac{\sigma_{h(s)} + \sigma_{a(s)} - \sigma_{b(s)}}{2} + U2_{(s)}$
Sigma $2 = \sigma_{2(s)} = \frac{\sigma_{h(s)} + \sigma_{a(s)} - \sigma_{b(s)}}{2} - U2_{(s)}$

$$VonMises_b_{(s)} = \sqrt{(\sigma_{1(s)})^{2} - \sigma_{1(s)}\sigma_{2(s)} + (\sigma_{2(s)})^{2}}$$

$$Max_b_{(s)} = \sigma_{1(s)}; Min_b_{(s)} = \sigma_{2(s)}$$
Based on the above (d), for the entire Pipe Cross-section at a Node
Equivalent Stress, VonMises_{(s)} = Max [VonMises_t_{(s)}, VonMises_b_{(s)}] \le \eta.f_{y} ... Eq. (5.51)
Max. Principal Stress_(s) = Max [Max_t_{(s)}, Max_b_{(s)}] \le \eta.f_{y} ... Eq. (5.52)

Min. Principal Stress_(s) = $Min[Min_t_{(s)}, Min_b_{(s)}] \le \eta. f_y \dots Eq. (5.52)$

where

 η = design factor for equivalent stress check as per Table 5-15 of DNV-ST-F101 code. This can be selected in CAEPIPE through Layout Window > Options > Analysis > Design factor.

 f_y = Yield strength at room temperature.

Operating Stress

(a) The hoop stress is defined by the following formula as per Section 5.6.2.2

$$\sigma_{h(op)} = \frac{PD_{r,min}}{2.t_2}$$

(b) The longitudinal / axial stresses are defined by the following formulae as per Section 5.6.2.2

$$\sigma_{a(op)} = \frac{F_{a(op)}}{A_r} + \frac{PD_{r,min}}{4.t_2} = \frac{F_{a(op)}}{\frac{\pi}{4}(OD_{r,min}^2 - ID_r^2)} + \frac{PD_{r,min}}{4.t_2}$$
$$\sigma_{b(op)} = \frac{\sqrt{\left(SIF_{ai}.M_{i(op)}\right)^2 + \left(SIF_{ao}.M_{o(op)}\right)^2}}{Z_r}$$
$$Z_r = \frac{\pi}{32} \frac{(OD_{r,min}^4 - ID_r^4)}{OD_{r,min}}$$

(c) Torsional stress is defined by the following formula as per Section 5.6.2.2

Torsional Stress =
$$\sigma_{t(s)} = \frac{M_{t(op)}}{2Z_r}$$

OD_{r.min}

where

P = CAEPIPE input pressures P1 through P10 (= P1 for Operating 1, P2 for Operating 2, ..., P10 for Operating 10, where the Operating pressure Pi with I between 1 & 10 = the difference between the corresponding internal pressure Pi and external pressure $Pe = (P_i - P_e)$.

 t_2 = minimum pipe wall thickness

= nominal thickness x (1 - mill tolerance/100) – corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 $OD_{r,min}$ = minimum outside diameter of the pipe wall = Outer Diameter in CAEPIPE

 $D_{r,min}$ = mean diameter of the pipe wall = $OD_{r,min} - t_2$

 ID_r = inside diameter of the pipe wall = $OD_{r,min} - 2.t_2$

 A_r = inside metallic area of the pipe

 SIF_{ai} , SIF_{ao} = in-plane and out-of-plane stress longitudinal/axial intensification factors as per Appendix D of ASME B31.8 (2020).

 $M_{i(op)}, M_{o(op)}, M_{t(op)} =$ in-plane, out-of-plane bending moment and torsional moment respectively due to weight, other sustained mechanical loads (excluding pressure) and thermal expansion including thermal movements at supports.

 Z_r = minimum pipe wall section modulus.

 $F_{a(op)}$ = axial force due to weight, other sustained mechanical loads and thermal displacement (excluding pressure).

(d) Equivalent stress, Von Mises, is computed as given below.

Equivalent Stress, Von Mises at One Extreme Surface of Pipe

In CAEPIPE, Equivalent Stress, Von Mises, at One Extreme Surface of Pipe is computed as given below.

$$T1_{(op)} = \frac{\sigma_{h(op)} - \sigma_{a(op)} - \sigma_{b(op)}}{2}$$

$$U1_{(op)} = \sqrt{T1_{(op)}^{2} + (\sigma_{t(op)})^{2}}$$
Sigma 1 = $\sigma_{1(op)} = \frac{\sigma_{h(op)} + \sigma_{a(op)} + \sigma_{b(op)}}{2} + U1_{(op)}$
Sigma 2 = $\sigma_{2(op)} = \frac{\sigma_{h(op)} + \sigma_{a(op)} + \sigma_{b(op)}}{2} - U1_{(op)}$

$$VonMises_{t(op)} = \sqrt{(\sigma_{1(op)})^{2} - \sigma_{1(op)}\sigma_{2(op)} + (\sigma_{2(op)})^{2}}$$

$$Max_{t(op)} = \sigma_{1(op)}; Min_{t(op)} = \sigma_{2(op)}$$

Equivalent Stress, Von Mises at Other Extreme Surface of Pipe

In CAEPIPE, Equivalent Stress, Von Mises, at Other Extreme Surface of Pipe is computed as given below.

$$T2_{(op)} = \frac{\sigma_{h(op)} - \sigma_{a(op)} + \sigma_{b(op)}}{2}$$

$$U2_{(op)} = \sqrt{T2_{(op)}^{2} + (\sigma_{t(op)})^{2}}$$
Sigma $1 = \sigma_{1(op)} = \frac{\sigma_{h(op)} + \sigma_{a(op)} - \sigma_{b(op)}}{2} + U2_{(op)}$
Sigma $2 = \sigma_{2(op)} = \frac{\sigma_{h(op)} + \sigma_{a(op)} - \sigma_{b(op)}}{2} - U2_{(op)}$

$$VonMises_b_{(op)} = \sqrt{(\sigma_{1(op)})^{2} - \sigma_{1(op)}\sigma_{2(op)} + (\sigma_{2(op)})^{2}}$$

$$Max_b_{(op)} = \sigma_{1(op)}; Min_b_{(op)} = \sigma_{2(op)}$$
Based on the above (d), for the entire Pipe Cross-section at a Node
Equivalent Stress, VonMises_{(op)} = Max [VonMises_t_{(op)}, VonMises_b_{(op)}]
$$\leq \eta.f_{y} ... Eq. (5.51)$$
Max. Principal Stress_{(op)} = Max [Max_t_{(op)}, Max_b_{(op)}] \leq \eta.f_{y} ... Eq. (5.52)
Min. Principal Stress_{(op)} = Min [Min_t_{(op)}, Min_b_{(op)}] \leq \eta.f_{y} ... Eq. (5.52)

where

 η = design factor for equivalent stress check as per Table 5-15 of DNV-ST-F101 code. This can be selected in CAEPIPE through Layout Window > Options > Analysis > Design factor.

 f_y = Yield strength at room temperature.

Sustained + Occasional Stress

(a) The hoop stress is defined by the following formula as per Section 5.6.2.2

$$\sigma_{h(o)} = \frac{(P_{peak} - P)D_{r,min}}{2.t_2}$$

(b) The longitudinal / axial stresses are defined by the following formulae as per Section 5.6.2.2

$$\sigma_{a(o)} = \frac{F_{a(o)}}{A_r} + \frac{PD_{r,min}}{4.t_2} = \frac{F_{a(o)}}{\frac{\pi}{4}(OD_{r,min}^2 - ID_r^2)} + \frac{PD_{r,min}}{4.t_2}$$
$$\sigma_{b(o)} = \frac{\sqrt{\left(SIF_{ai}.M_{i(o)}\right)^2 + \left(SIF_{ao}.M_{o(o)}\right)^2}}{Z_r}$$
$$Z_r = \frac{\pi}{32} \frac{(OD_{r,min}^4 - ID_r^4)}{OD_{r,min}}$$

(c) Torsional stress is defined by the following formulae as per Section 5.6.2.2

Torsional Stress = $\sigma_{t(o)} = \frac{M_{t(o)}}{2Z_r}$

where

P = maximum of CAEPIPE input pressures P1 through P10, where the maximum operating pressure Pi (with i between 1 & 10) = the difference between the corresponding internal pressure Pi and external pressure Pe = $(P_i - P_e)$

 $P_{peak} = peak pressure = peak pressure factor x P$

 t_2 = minimum pipe wall thickness

= nominal thickness x (1 - mill tolerance/100) – corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 $OD_{r,min}$ = minimum outside diameter of the pipe wall = Outer Diameter in CAEPIPE

 $D_{r,min}$ = mean diameter of the pipe wall = $OD_{r,min} - t_2$

 ID_r = inside diameter of the pipe wall = $OD_{r,min} - 2.t_2$

 A_r = inside metallic area of the pipe

 SIF_{ai} , SIF_{ao} = in-plane and out-of-plane stress longitudinal/axial intensification factors as per Appendix D of ASME B31.8 (2020).

 $M_{i(o)}, M_{o(o)}, M_{t(o)}$ = in-plane, out-of-plane bending moment and torsional moment respectively due to occasional loads such as flow transients, earthquake, wind, etc.

 Z_r = minimum reinforced pipe wall section modulus.

 $F_{a(o)}$ = axial force due to occasional loads such as flow transients, earthquake, wind, etc.

(d) Equivalent stress, Von Mises, is computed as given below.

Equivalent Stress, Von Mises at One Extreme Surface of Pipe

In CAEPIPE, Equivalent Stress, Von Mises, at One Extreme Surface of Pipe is computed as given below.

$$T1_{(o)} = \frac{\sigma_{h(o)} - \sigma_{a(o)} - \sigma_{b(o)}}{2}$$

$$U1_{(o)} = \sqrt{T1_{(o)}^{2} + (\sigma_{t(o)})^{2}}$$

Sigma 1 = $\sigma_{1(o)} = \frac{\sigma_{h(o)} + \sigma_{a(o)} + \sigma_{b(o)}}{2} + U1_{(o)}$
Sigma 2 = $\sigma_{2(o)} = \frac{\sigma_{h(o)} + \sigma_{a(o)} + \sigma_{b(o)}}{2} - U1_{(o)}$

$$VonMises_{t(o)} = \sqrt{(\sigma_{1(o)})^{2} - \sigma_{1(o)}\sigma_{2(o)} + (\sigma_{2(o)})^{2}}$$

$$Max_{t(o)} = \sigma_{1(o)}; Min_{t(o)} = \sigma_{2(o)}$$

Equivalent Stress, Von Mises at Other Extreme Surface of Pipe

In CAEPIPE, Equivalent Stress, Von Mises, at Other Extreme Surface of Pipe is computed as given below.

$$T2_{(o)} = \frac{\sigma_{h(o)} - \sigma_{a(o)} + \sigma_{b(o)}}{2}$$

$$U2_{(o)} = \sqrt{T2_{(o)}^{2} + (\sigma_{t(o)})^{2}}$$
Sigma $1 = \sigma_{1(o)} = \frac{\sigma_{h(o)} + \sigma_{a(o)} - \sigma_{b(o)}}{2} + U2_{(o)}$
Sigma $2 = \sigma_{2(o)} = \frac{\sigma_{h(o)} + \sigma_{a(o)} - \sigma_{b(o)}}{2} - U2_{(o)}$

$$VonMises_b_{(o)} = \sqrt{(\sigma_{1(o)})^{2} - \sigma_{1(o)}\sigma_{2(o)} + (\sigma_{2(o)})^{2}}$$

$$Max_b_{(o)} = \sigma_{1(o)}; Min_b_{(o)} = \sigma_{2(o)}$$
Based on the above (d), for the entire Pipe Cross-section at a Node
Equivalent Stress, VonMises_{(o)} = Max [VonMises_t_{(o)}, VonMises_b_{(o)}]
Max. Principal Stress_(o) = Max [Max_t_{(o)}, Max_b_{(o)}]
Min. Principal Stress_(o) = Min [Min_t_{(o)}, Min_b_{(o)}]
Sustained + Occasional Stress at a Node
Equivalent Stress, VonMises_{(so)} = VonMises_{(s)} + VonMises_{(o)} \leq \eta.f_y ... Eq. (5.51)
Max. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = Min. Principal Stress_(o) = $(f_{(o)}, f_{(o)}, f_{((o)}, f_{((o)})) = f_{((o)}, f_{((o)}, f_{((o)})) = f_{((o)}, f_{((o)}) = f_{((o)}, f_{((o)})) = f_{((o)}, f_{((o)}) = f_{((o)}, f_{((o)})) = f_{((o)}, f_{((o)}) = f_{((o)}, f_{((o)})) = f_{((o)}, f_{((o)}) = f_{((o)}, f_{((o)})) = f_{((o)}, f_{((o)}) = f_{((o)}, f_{((($

where

 η = design factor for equivalent stress check as per Table 5-15 of DNV-ST-F101 code. This can be selected in CAEPIPE through Layout Window > Options > Analysis > Design factor.

 f_y = Yield strength at room temperature.

Stress Intensification Factors (SIFs) and Flexibility Factors (FFs)

For structural design of components and bends, Table 5-14 of DNV-ST-F101 refers to ASME B31.4 or ASME B31.8. Hence, Stress Intensification Factors (SIFs) for DNV-ST-F101 code are computed as per SIF equations provided in Appendix D of ASME B31.8 (2020) as given below.

In addition, Section 5.6.2.2 of DNV-ST-F101 states the following "The moment and axial loads are calculated based on pipe type finite elements, not including the benefit of reduced stiffness in bends". In view of the above, flexibility factors for Bends and Miter Bends are set as 1.0 internally in CAEPIPE for this code. Also, the analysis options "Include Bourdon Effect" and "Use Pressure Correction for Bends" are not available for DNV-ST-F101 Code.

	Flexibility		ensification es (1) and (2)]	Flexibility		
Description	Factor,	Out-Plane, i _o	In-Plane, i _i	Characteristic, h	Illustration	
Welding elbow or pipe bend [Notes (1)-(5)]	$\frac{1.65}{h}$	$\frac{0.75}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{T} R_1}{r_2^2}$	$\frac{1}{r_2}$ $R_1 = bend radius$	
Closely spaced miter bend $s < r_2$ (1 + tan θ) [Notes (1), (2), (3), and (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\cot\theta}{2}\frac{\overline{Ts}}{r_2^2}$	$s = \frac{4\overline{7}}{R_1} r_2$	
Single miter bend or widely spaced miter bend $s \ge r_2$ (1 + tan θ) [Notes (1), (2), and (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{\overline{T}}{r_2}$	$ \begin{array}{c} \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} \\ \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & \overset{\bullet}{\overset{\bullet}} & \overset{\bullet}{\overset{\bullet} & $	
Welding tee per ASME B16.9 with $r_0 \ge d/8$ $T_c \ge 1.5T$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$4.4\frac{\overline{T}}{r_2}$	$-\frac{1}{r_{c}} + \frac{1}{r_{o}} + \frac{1}{r_{o}} + r_{2}$	
Reinforced fabricated tee with pad or saddle [Notes (1), (2), (7)-(9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_o + \frac{1}{4}$	$\frac{\left(\overline{T} + \frac{1}{2}t_{e}\right)^{5/2}}{\overline{T}^{3/2}r_{2}}$	$\frac{1}{\frac{1}{\frac{1}{t_e}}}$	
Unreinforced fabricated tee [Notes (1), (2), and (9)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4} i_o + \frac{1}{4}$	$\frac{\overline{T}}{r_2}$		
Extruded outlet $r_o \ge 0.05d$ $T_c < 1.5 T$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4i_o} + \frac{1}{4}$	$\left(1 + \frac{r_0}{r_2}\right) \frac{\overline{T}}{r_2}$	$\frac{1}{r_{o}}$	
Welded-in contour insert $r_o \ge d/8$ $T_c \ge 1.5\overline{T}$ [Notes (1), (2), and (10)]	1	$\frac{0.9}{h^{2/3}}$	³ / ₄ i _o + ¹ / ₄	$4.4\frac{\overline{T}}{r_2}$		

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i

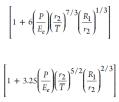

	Flexibility		ensification es (1) and (2)] Flexibility				
Description	Factor, <i>k</i>	Out-Plane, <i>i</i> o	In-Plane, <i>i_i</i>	Characteristic,	Illustration		
Branch welded-on fitting (inte- grally reinforced) in accordance with MSS SP-97 [Notes (1), (2), (9), and (11)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$3.3\frac{\overline{T}}{r_2}$			
		bility					
Description		:tor, k		ensification ctor, <i>i</i>	Illustration		
Butt weld [Notes (1) and (12)]		-		,.			
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{\max} \le \frac{1}{16}$ in. (1.59 mm), and $\delta_{avg}/\overline{T} \le 0.13$		1		1.0			
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{max} \le \frac{1}{8}$ in. (3.18 mm), and $\delta_{avg}/\overline{T} =$ any value $\overline{T} \le 0.237$ in. (6.02 mm), $\delta_{max} \le \frac{1}{4}$ in. (1.59 mm), $\sigma = \frac{1}{8} \le \frac{1}{2}$		1	[0.9 + 2. but not	nax. or 7(δ _{avg} / <u>T</u>)], less than 1.0	$\frac{\overline{\tau}}{1} \sum \frac{1}{t_{\delta}} \frac{1}{\overline{\tau}}$		
and $\delta_{avg}/\overline{T} \le 0.33$		1					
Tapered transition per ASME B16.25 [Note (1)]				max. or $6\frac{D_o}{\overline{T}} + 3.6\frac{\delta}{\overline{T}}$	$\begin{bmatrix} \overline{T} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		
Concentric reducer per ASME B16.9 [Notes (1) and (13)]		1	2.0 m 0.5 + 0.0	max. or $\ln \alpha \left(\frac{D_{o2}}{\overline{T}_2}\right)^{1/2}$	$ \begin{array}{c} \overline{\tau}_{1} \\ \uparrow \\ D_{o1} \end{array} $		
Double-welded slip-on flange [Note (14)]		1		1.2			
Socket welding flange or fitting [Notes (14) and (15)]		1		$\frac{1}{2.1} \overline{T} / C_x$ but s than 1.3			
Lap joint flange (with vASME B16.9 lap joint stub) [Note (14)]		1		1.6			
Threaded pipe joint or threaded flange [Note (14)]		1		2.3			
Corrugated straight pipe, or corrugated or creased bend [Note (16)]		5		2.5			

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

NOTES: (Cont'd)

- D_0 = outside diameter, in. (mm)
- d = outside diameter of branch, in. (mm) R_1 = bend radius of welding elbow or pipe bend, in. (mm)
- r_0 = radius of curvature of external contoured portion of outlet, measured in the plane containing the axes of the header and branch, in. (mm) r_2 = mean radius of matching pipe, in. (mm)
- s = miter spacing at centerline, in. (mm)
- \overline{T} = nominal wall thickness of piping component, in. (mm)
 - = for elbows and miter bends, the nominal wall thickness of the fitting, in. (mm)
 - = for welding tees, the nominal wall thickness of the matching pipe, in. (mm)
 - = for fabricated tees, the nominal wall thickness of the run or header (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diameter), in. (mm)
- T_c = the crotch thickness of tees, in. (mm)
- t_e = pad or saddle thickness, in. (mm) α = reducer cone angle, deg
- δ = mismatch, in. (mm)
- θ = one-half angle between adjacent miter axes, deg
- (2) The flexibility factor, k, applies to bending in any plane. The flexibility factors, k, and stress intensification factors, i, shall not be less than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends and to the intersection point for tees. The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the formulas given.
- Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factors, C_{uv} which can be read directly from (3) Chart B, entering with the computed h.
- (4)The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the table, (5)divide k bv

divide *i* by

where

 E_e = cold modulus of elasticity, psi (MPa)

- P = gage pressure, psi (MPa)
- If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and (6)thickness limits are not met and the number of design cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.12/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (7)When $t_e > 1\frac{1}{2}T$, use $h = 4.05T/r_2$.
- (8) The minimum value of the stress intensification factor shall be 1.2.
- When the branch-to-run diameter ratio exceeds 0.5, but is less than 1.0, and the number of design displacement cycles exceeds 200, the out-(9) plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively, unless the transition weld between the branch and run is blended to a smooth concave contour. If the transition weld is blended to a smooth concave contour, the stress intensification factors in the table still apply.
- (10) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design displacement cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between 0.875T and 1.10Tfor an axial distance of $\sqrt{D_0T}$. D_0 and \overline{T} are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.
- (13) The equation applies only if the following conditions are met:
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_{o1}/\overline{T} and D_{o2}/\overline{T} does not exceed 100.
 - (c) The wall thickness is not less than \overline{T}_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than \overline{T}_2 .
- (14) For some flanged joints, leakage may occur at expansion stresses otherwise permitted herein. The moment to produce leakage of a flanged joint with a gasket having no self-sealing characteristics can be estimated by the following equation:

$$A_L = (C/4) \left(S_b A_b - P A_p \right)$$

where A_b = total area of flange bolts, in.² (mm³)

- A_p = area to outside of gasket contact, in.² (mm²) C = bolt circle, in. (mm)
- M_L = moment to produce flange leakage, in.-lb (mm·N) P = internal pressure, psi (MPa)
- $S_b = \text{bolt stress, psi}$ (MPa)
- (15) C_x is the fillet weld length. For unequal lengths, use the smaller leg for C_x .
- (16) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Allowable Internal Pressure

For straight pipes and bends, the allowable pressure is calculated using the equation provided in para. 5.2.1 for straight pipes and bends.

$$P_a = \frac{2fS_{yt}t_a}{DX}$$

where

 P_a = allowable pressure

 S_{yt} = specified minimum yield strength

 t_a = available thickness for pressure design

= t_n × (1 - mill tolerance/100) - corrosion allowance "c" (as per para. 8.3.3)

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

 $t_n = nominal pipe thickness$

D = outside diameter

f = design factor from Table 2.

Stress from Normal Sustained Loads

The von Mises equivalent stress (S_L) due to Normal Sustained Loads (pressure, weight and other sustained loads inclusive of snow/ice loading) is calculated as per para. 6.3, para. 8.5.2 and Appendix 3 for <u>all components</u> in CAEPIPE and compared with the acceptance limit given in para. 8.5.3, as given below.

$$S_L = \sqrt{(S_h - S_a)^2 + (S_h S_a) + 3S_q^2} \le S_s$$

where

For Bends, Miter Bends and Welding Elbows

$$S_{a} = i_{t} \left[\frac{PD_{o}}{4t_{s}} + \frac{4F}{\pi [D_{o}^{2} - D_{i}^{2}]} \right] \pm \frac{i_{t} 32M_{b}D_{0}}{\pi [D_{o}^{4} - D_{i}^{4}]}$$

$$S_{h} = i_{p} \left[\frac{PD_{o}}{2t_{s}} \right] \pm \frac{i_{b} 32M_{b}D_{0}}{\pi [D_{o}^{4} - D_{i}^{4}]}$$

$$S_{q} = i_{q} \left[\frac{16D_{o}M_{q}}{\pi [D_{o}^{4} - D_{i}^{4}]} \right] + i_{s} \frac{4V_{T}}{\pi [D_{o}^{2} - D_{i}^{2}]}$$

For Other components such as Straight Pipes, Reducers, Branch Pipes, Header Pipes, etc.

$$S_a = i_t \left[\frac{PD_o}{4t_s} + \frac{4F}{\pi [D_o^2 - D_i^2]} \right] \pm \frac{i_b 32M_b D_0}{\pi [D_o^4 - D_i^4]}$$

$$S_h = i_p \left[\frac{PD_o}{2t_s} \right]$$

$$S_q = i_q \left[\frac{16D_o M_q}{\pi [D_o^4 - D_i^4]} \right] + i_s \frac{4V_T}{\pi [D_o^2 - D_i^2]}$$

P = maximum of CAEPIPE input pressures P1 through P10 (inclusive of any overpressure as per para. 5.2.3)

 D_o = outside diameter

 D_i = inside diameter

 t_s = nominal thickness – corrosion allowance in CAEPIPE, as per para. 8.3.3

 i_p, i_b, i_t, i_q, i_s = sustained stress concentration factor (SCF) for pressure, bending, thrust, torsion and shear computed as per Appendix 4.

 S_h = sustained hoop stress

 S_a = sustained axial stress

 S_a = sustained shear stress

F = axial force due to sustained loads

$$M_b$$
 = bending moment due to sustained loads = $\sqrt{M_i^2 + M_o^2}$

$$M_q$$
 = torsional moment due to sustained loads

$$V_T$$
 = shear force due to sustained loads = $\sqrt{V_i^2 + V_o^2}$

 M_i = in-plane bending moment due to sustained loads

 M_o = out-of-plane bending moment due to sustained loads

 V_i = in-plane shear force (local fy from CAEPIPE) due to sustained loads

 V_o = out-of-plane shear force (local fz from CAEPIPE) due to sustained loads

 S_s = allowable equivalent stress for Normal condition from Table 3 (given below).

Note:

In CAEPIPE, any wind load input is always considered as an "Abnormal" sustained load (and NOT as a Normal sustained load).

In addition, CAEPIPE always considers snow/ice loading as a "Normal" sustained load (and NOT as an Abnormal sustained load).

In CAEPIPE, the effect of cold-pull/cold spring is included only in support loads and not included in stress calculations as many piping codes do not allow credit for any reduction in stresses due to cold spring since the displacement range is unaffected. On the other hand, piping codes allow reduction in support loads due to cold spring (which can be helpful at the equipment).

Stress from Abnormal Sustained Loads

The von Mises equivalent stress (S_{Lo}) due to Abnormal Sustained Loads is calculated as per para. 6.4, para. 8.5.2 and Appendix 3 for <u>all components</u> as the Sum of stress (S_L) due to Normal Sustained Loads (pressure, weight and other sustained loads) and stress (S_o) due to Abnormal Sustained Loads (i.e., occasional loads) such as earthquake or wind. Wind and earthquake are not considered as acting concurrently. The resulting stress S_{Lo} is compared with the acceptance limit given in para. 8.5.3.

$$S_{Lo} \leq S_{sab}$$

where

 $S_{LO} = S_L + S_O$, where S_L is computed as above.

$$S_o = \sqrt{(S_{ho} - S_{ao})^2 + (S_{ho}S_{ao}) + 3S_{qo}^2}$$

For Bends, Miter Bends and Welding Elbows

$$S_{a0} = i_t \left[\frac{P_{peak} D_o}{4t_s} + \frac{4F_o}{\pi [D_o{}^2 - D_i{}^2]} \right] \pm \frac{i_t 32M_{b0} D_0}{\pi [D_o{}^4 - D_i{}^4]}$$
$$S_{ho} = i_p \left[\frac{P_{peak} D_o}{2t_s} \right] \pm \frac{i_b 32M_{b0} D_0}{\pi [D_o{}^4 - D_i{}^4]}$$
$$S_{qo} = i_q \left[\frac{16D_o M_{qo}}{\pi [D_o{}^4 - D_i{}^4]} \right] + i_s \frac{4V_{To}}{\pi [D_o{}^2 - D_i{}^2]}$$

For Other components such as Straight Pipes, Reducers, Branch Pipes, Header Pipes, etc.,

$$S_{a0} = i_t \left[\frac{P_{peak} D_o}{4t_s} + \frac{4F_o}{\pi [D_o{}^2 - D_i{}^2]} \right] \pm \frac{i_b 32M_{b0} D_0}{\pi [D_o{}^4 - D_i{}^4]}$$
$$S_{ho} = i_p \left[\frac{P_{peak} D_o}{2t_s} \right]$$
$$S_{qo} = i_q \left[\frac{16D_o M_{qo}}{\pi [D_o{}^4 - D_i{}^4]} \right] + i_s \frac{4V_{To}}{\pi [D_o{}^2 - D_i{}^2]}$$

 P_{peak} = peak pressure = (peak pressure factor in CAEPIPE - 1.0) x P

P = maximum of CAEPIPE input pressures P1 through P10

$$D_o$$
 = outside diameter

$$D_i$$
 = inside diameter

 t_s = nominal thickness – corrosion allowance in CAEPIPE, as per para. 8.3.3

 i_p, i_b, i_t, i_q, i_s = sustained stress concentration factor (SCF) for pressure, bending, thrust, torsion and shear computed as per Appendix 4.

 S_{ho} = occasional hoop stress

 $S_{ao} = \text{occasional axial stress}$

 S_{qo} = occasional shear stress

 F_o = axial force due to occasional loads

$$M_{bo}$$
 = bending moment due to occasional loads = $\sqrt{M_{io}^2 + M_{oo}^2}$

 M_{qo} = torsional moment due to occasional loads

 V_{To} = shear force due to occasional loads = $\sqrt{V_{io}^2 + V_{oo}^2}$

 M_{io} = in-plane bending moment due to occasional loads

 M_{oo} = out-of-plane bending moment due to occasional loads

 V_{io} = in-plane shear force (local fy from CAEPIPE) due to occasional loads

 V_{oo} = out-of-plane shear force (local fz from CAEPIPE) due to occasional loads

 S_{sab} = allowable equivalent stress for Abnormal condition from Table 3 (given below).

Note:

In CAEPIPE, any ground settlement input is considered in computing "Shakedown Stress" (which is covered next) and NOT as an Abnormal sustained load.

	NORMAL (S _s)		ABNORMAL (S _{sab1} , S _{sab2} ,, S _{sabi})
	$\frac{SMYS}{UTS} \le 0.74$	$\frac{SMYS}{SMYS} > 0.74$	$\frac{\text{SMYS}}{\text{SMYS}} \le 0.74$	$\frac{SMYS}{2} > 0.74$
f	UTS 20.74	UTS	UTS 50.74	UTS
0.67	0.80 SMYS	0.34 (SMYS +UTS)	0.90 SMYS	0.38 (SMYS +UTS)
0.50	0.60 SMYS	0.25 (SMYS +UTS)	0.67 SMYS	0.28 (SMYS +UTS)
0.30	0.36 SMYS	0.15 (SMYS +UTS)	0.40 SMYS	0.17 (SMYS +UTS)

Table 3: Allowable Stress for Normal and Abnormal Sustained Loads

Expansion Stress (Shakedown Stress)

The von Mises equivalent stress (S_E) range due to thermal expansion is calculated as per para. 8.5.4 and Appendix 3 for <u>all components</u> in CAEPIPE and compared with the acceptance limit given in para. 8.5.5, as given below.

$$S_E \le 0.5 K_{SD} \left(S_y + S_{YT} \right)$$

where

$$S_E = \sqrt{(S_{he} - S_{ae})^2 + (S_{he}S_{ae}) + 3S_{qe}^2}$$

For Bends, Miter Bends and Welding Elbows

$$S_{ae} = i_t \left[\frac{PD_o}{4t_s} + \frac{4F_e}{\pi [D_o{}^2 - D_i{}^2]} \right] \pm \frac{i_t 32M_{be}D_0}{\pi [D_o{}^4 - D_i{}^4]}$$
$$S_{he} = i_p \left[\frac{PD_o}{2t_s} \right] \pm \frac{i_b 32M_{be}D_0}{\pi [D_o{}^4 - D_i{}^4]}$$
$$S_{qe} = i_q \left[\frac{16D_oM_{qe}}{\pi [D_o{}^4 - D_i{}^4]} \right] + i_s \frac{4V_{Te}}{\pi [D_o{}^2 - D_i{}^2]}$$

For Other components such as Straight Pipes, Reducers, Branch Pipes, Header Pipes, etc.,

$$S_{ae} = i_t \left[\frac{PD_o}{4t_s} + \frac{4F_e}{\pi [D_o^2 - D_i^2]} \right] \pm \frac{i_b 32M_{be} D_0}{\pi [D_o^4 - D_i^4]}$$
$$S_{he} = i_p \left[\frac{PD_o}{2t_s} \right]$$

$$S_{qe} = i_q \left[\frac{16D_o M_{qe}}{\pi [D_o{}^4 - D_i{}^4]} \right] + i_s \frac{4V_{Te}}{\pi [D_o{}^2 - D_i{}^2]}$$

P = operating pressure corresponding to the temperature considered for displacement cycle under analysis. For example, P = P1 from CAEPIPE for Expansion T1.

- D_o = outside diameter
- D_i = inside diameter
- t_s = nominal thickness corrosion allowance in CAEPIPE, as per para. 8.3.3

 i_p , i_b , i_t , i_q , i_s = cyclic stress concentration factor (SCF) for pressure, bending, thrust, torsion and shear computed as per Appendix 4.

- S_{he} = thermal expansion hoop stress
- S_{ae} = thermal expansion axial stress
- S_{qe} = thermal expansion shear stress
- F_e = axial force due to thermal expansion

$$M_{be}$$
 = bending moment due to thermal expansion = $\sqrt{M_{ie}^2 + M_{oe}^2}$

$$M_{qe}$$
 = torsional moment due to thermal expansion

 V_{Te} = shear force due to thermal expansion = $\sqrt{V_{ie}^2 + V_{oe}^2}$

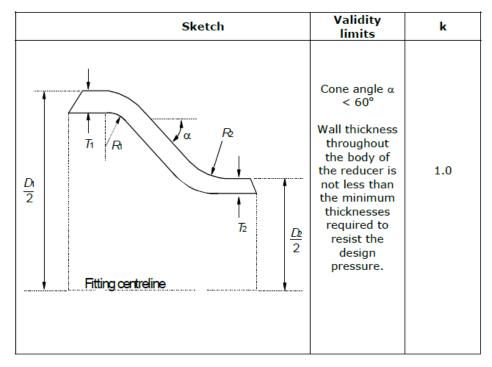
 M_{ie} = in-plane bending moment due to thermal expansion

 M_{oe} = out-of-plane bending moment due to thermal expansion

- V_{ie} = in-plane shear force (local fy from CAEPIPE) due to thermal expansion
- V_{oe} = out-of-plane shear force (local fz from CAEPIPE) due to thermal expansion
- K_{SD} = shakedown factor for the material from Table 4.

 K_{SD} = 1.8 for Carbon Steel (CS) and 2.0 for Austenitic Steel (AS). For other materials, it is assumed to be 1.8.

 S_{γ} = yield stress of material at room temperature (reference temperature in CAEPIPE).

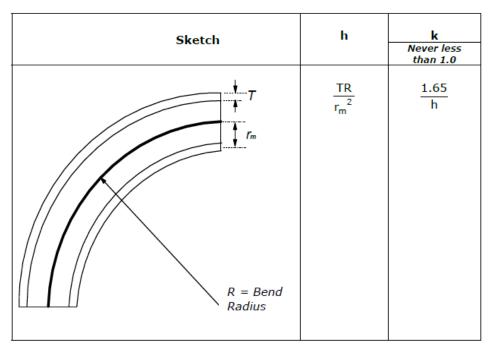

 S_{YT} = yield stress of material at maximum of CAEPIPE input temperatures T1 through T10.

Fatigue Analysis

Fatigue compliance checks as described in para. 6.7, para. 8.5.6, para. 8.5.7 and Appendix 5 are not included in CAEPIPE analysis.

Stress Concentration Factors (SCF)

CONCENTRIC AND ECCENTRIC REDUCERS



For reducers meeting the validity limits, take the sustained SCF for all loadings as 1.0 for cone angles < 30° , and 2.0 for cone angles from 30° to 60° .

Take the cyclic SCF for the pressure, bending, thrust, torsion and shear loadings as those given in Table 8.

ТҮРЕ	CYCLIC SCF						
	i _p Pressure	i₅ Bending	i _t Thrust	i _q Torsion	i₅ Shear		
Reducer with R₁ and R₂ ≥0.1 D₁	$1.0 + 0.0058 \alpha \sqrt{\frac{D_n}{T_n}}$	$1.0 + 0.36 \alpha^{0.4} \left(\frac{D_n}{T_n}\right)^{0.4(\frac{D_2}{D_1}-0.5)}$	1.0	1.0	2.0		

BEND & WELDING ELBOWS

ТҮРЕ		SUSTAINED SCF				CYCLIC SCF				
	i _p Pressure	i⊾ Bending	i _t Thrust	i _q Torsion	i₅ Shear	i _p Pressure	i⊾ Bending	i _t Thrust	i _q Torsion	i₅ Shear
		Never less than 1.0					Never less than 1.5			
Seam welded	1.0	$\frac{1.3}{h^{\frac{2}{3}}}$	1.0	1.0	1.0	2.0	$\frac{1.95}{h^{\frac{2}{3}}}$	1.3	1.0	2.0

Notes:

- For large diameter, thin walled elbows and bends pressure stiffening effects can significantly affect the magnitudes of k and ib. For the application of this effect, satisfy the following criteria;
 - a. No flanges at either end

b. R/r_m < 1.7</p>

c. $R\alpha > 2r_m$, where α is the arc angle of the bend in radians.

Where the above criteria are satisfied, to correct values from the above tables,

Divide k by
$$\left[1 + 6\left(\frac{P}{E}\right)\left(\frac{r_m}{T}\right)^{\frac{7}{3}}\left(\frac{R}{r_m}\right)^{\frac{1}{3}}\right]$$
 and divide i_b by $\left[1 + 3.25\left(\frac{P}{E}\right)\left(\frac{r_m}{T}\right)^{\frac{5}{2}}\left(\frac{R}{r_m}\right)^{\frac{2}{3}}\right]$

- Where flanges are attached to one or both ends, multiply the values of k and ib in by the factor C.
 - a. For one end flanged, $C = h^{\frac{1}{6}}$
 - b. For both ends flanged, $C = h^{\frac{1}{3}}$.

CLOSELY SPACED MITRE BEND

· · · · · · · · · · · · · · · · · · ·	S < r _m	тр	
β $R = \frac{S \cot}{2} \beta$	(1+tanβ)	TR rm ²	1.52 h ⁵ / ₆

ТҮРЕ	SUSTAINED SCF					CYCLIC SCF				
	i _p Pressure	i _b Bending Never less than 1.0	i _t Thrust	i _q Torsion	i₅ Shear	i _p Pressure	i _b Bending Never less than 1.5	i _t Thrust	i _q Torsion	i₅ Shear
Seam welded	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0	2.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.3	1.0	2.0

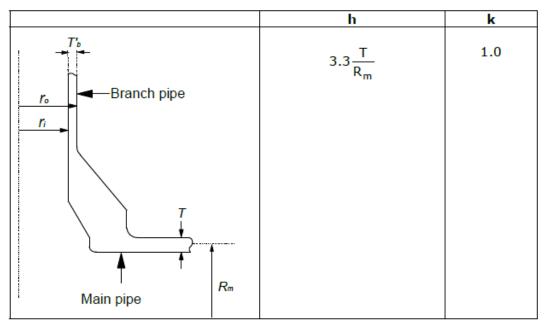
Note: Where flanges are attached to one or both ends, multiply the values of k and i_b by the factor C.

a. For one end flanged,
$$C = h^{\frac{1}{6}}$$

b. For both ends flanged, $C = h^{\frac{1}{3}}$.

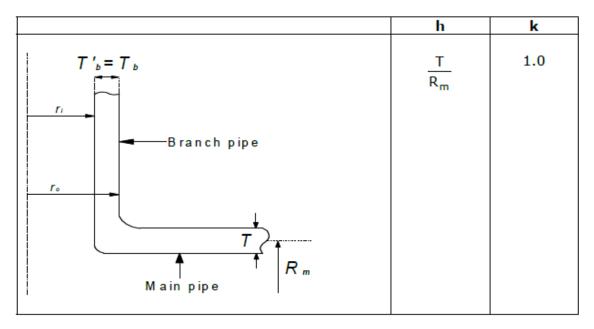
SINGLE OR WIDELY SPACED MITRE BEND

Sketch	Validity limits	h	k Never less than 1.0
β $R = \frac{r_m (1 + \cot \beta)}{-2}$	S ≥ r _m (1+tanβ)	$\frac{\text{TR}}{\text{r}_{m}^{2}}$	<u>1.52</u> h ⁵ /6

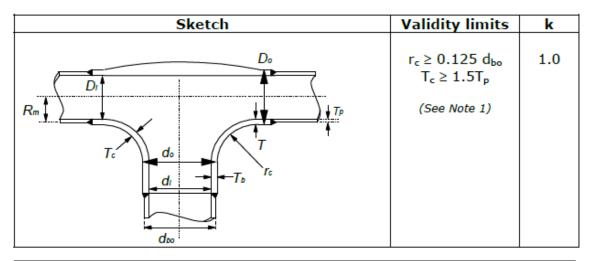

ТҮРЕ	SUSTAINED SCF					CYCLIC SCF				
		i _b Bending Never less than 1.0	1	i _q Torsion	i₅ Shear	i _p Pressure	i _b Bending Never less than 1.5	i _t Thrust	i _q Torsion	i₅ Shear
Seam welded	1.0	$\frac{1.8}{h^{2/3}}$	1.0	1.0	1.0	2.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.3	1.0	2.0

Notes: Where flanges are attached to one or both ends, multiply the values of k and i_b in by the factor C.

a. For one end flanged,
$$C = h^{\frac{1}{6}}$$


b. For both ends flanged, $C = h^{\frac{1}{3}}$.

WELDOLET

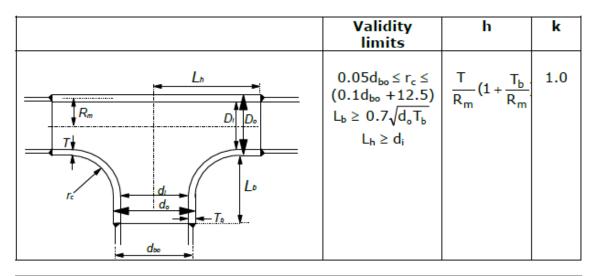

			NED SCF		
ТҮРЕ	i _p Pressure	i _b Bending Never less than 1.0 (See Notes)	i _t Thrust	i _q Torsion	i₅ Shear
Main pipe	1.0	$\frac{1.8}{h^{\frac{7}{3}}}$	1.0	1.0	1.0
Branch pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
		CYCLI			
	i _p Pressure	i₅ Bending Never less than 1.5	i _t Thrust	i _q Torsion	i₅ Shear
Main pipe	$\begin{split} & \text{For } d_i/D_i \leq 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.2042} \\ & \text{For } d_i/D_i > 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.241} \end{split}$	(See Notes) $\frac{1.8}{\frac{2}{3}}$	$1.29 \left[\frac{d_o T_b'}{D_o T} \left(\frac{D_o}{T} \right)^2 \right]^{0.1439}$	1.0	2.0
Branch pipe	$\begin{split} & \text{For } d_i / D_i \leq 0.7 \\ & 2.5 \!\! \left[\frac{2T}{D_o} \!\! \left[\frac{d_o}{2T_b} \right]^2 \right]^{0.2042} \\ & \text{For } d_i / D_i > 0.7 \\ & 2.5 \!\! \left[\frac{2T}{D_o} \!\! \left[\frac{d_o}{2T_b} \right]^2 \right]^{0.241} \end{split}$	$\frac{1.8}{h^{2/3}}$	$0.89 \left[\frac{d_0 T_b'}{D_0 T} \left(\frac{D_0}{T} \right)^2 \right]^{0.3437}$	1.0	2.0

FABRICATED TEE

		SUSTAIN		-	
ТҮРЕ	i _p Pressure	i _b Bending Never less than 1.0 (See Note 1)	i _t Thrust	i _q Torsion	i₅ Shear
Main pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
Branch pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
		CYCLI			
	i _p Pressure	i _b Bending Never less than 1.5 (See Note 1)	i _t Thrust	i _q Torsion	i₅ Shear
Main pipe	$\begin{split} & \text{For } d_i/D_i \leq 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.2042} \\ & \text{For } d_i/D_i > 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.241} \end{split}$		$1.29 \left[\frac{d_0 T_b}{D_0 T} \left(\frac{D_0}{T} \right)^2 \right]^{0.1439}$	1.0	2.0
Branch pipe	$\begin{split} & \text{For } d_i/D_i \leq 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.2042} \\ & \text{For } d_i/D_i > 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.241} \end{split}$	$\frac{1.8}{h^{2/3}}$	$0.89 \left[\frac{d_0 T_b'}{D_0 T} \left(\frac{D_0}{T} \right)^2 \right]^{0.3437}$	1.0	2.0

Welding TEE

		SUSTAIN						
ТҮРЕ	i _p Pressure	i _b Bending Never less than 1.0 (See Note 2)	i _t Thrust	i _q Torsion	i₅ Shear			
Main pipe	1.0	$0.5 \left(\frac{R_m}{T_p}\right)^{2/3}$	1.0	1.0	1.0			
Branch pipe	1.0	$0.4 \left(\frac{R_m}{T_p}\right)^{2/3}$	1.0	1.0	1.0			
	CYCLIC SCF							
	i _p Pressure	i _b Bending Never less than 2.0 (See Note 2)	i _t Thrust	i _q Torsion	i₅ Shear			
Main pipe	$\begin{split} & \text{For } d_i/D_i \leq 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.2042} \\ & \text{For } d_i/D_i > 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.241} \end{split}$		$1.29 \left[\frac{d_o T_b}{D_o T} \left(\frac{D_o}{T} \right)^2 \right]^{0.1439}$	1.0	2.0			
Branch pipe	$\begin{array}{l} \mbox{For } d_i/D_i \leq 0.7 \\ 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.2042} \\ \mbox{For } d_i/D_i > 0.7 \\ 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.241} \end{array}$	$0.67 \left(\frac{R_m}{T_p}\right)^{2/3}$	$0.89 \left[\frac{d_o T_b}{D_o T} \left(\frac{D_o}{T} \right)^2 \right]^{0.3437}$	1.0	2.0			

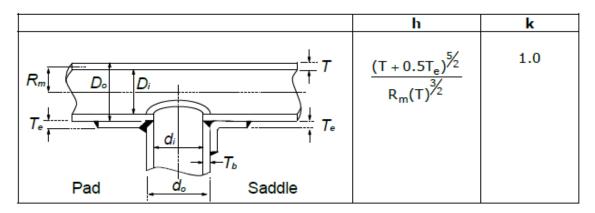

Notes: 1.

2.

T_p is the pipe wall thickness not the tee thickness.

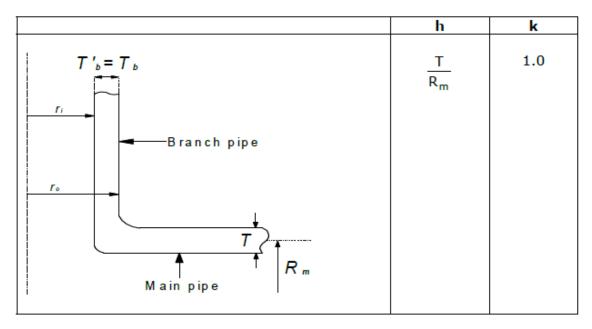
The product i_b,w (see Appendix 3) is never less than 1.0 for sustained or 2.0 for cyclic assessments.

Extruded TEE


		SUSTAINE	D SCF		
ТҮРЕ	i _p Pressure	i _b Bending Never less than 1.0 (See Note)	i _t Thrust	i _q Torsion	i₅ Shear
Main pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
Branch pipe	1.0	$\frac{1.8}{h^{2/3}}$	1.0	1.0	1.0
		CYCLIC			
	i _p Pressure	i _b Bending Never less than 1.5	i _t Thrust	i _q Torsion	i₅ Shear
		(See Note)			
Main pipe	$\begin{split} & \text{For } d_i/D_i \leq 0.7 \\ & 2.5 \bigg[\frac{2T}{D_0} \bigg[\frac{d_0}{2T_b} \bigg]^2 \bigg]^{0.2042} \\ & \text{For } d_i/D_i > 0.7 \\ & 2.5 \bigg[\frac{2T}{D_0} \bigg[\frac{d_0}{2T_b} \bigg]^2 \bigg]^{0.241} \end{split}$	$\frac{1.8}{h^{2/3}}$	$1.29 \left[\frac{d_o T_b}{D_o T} \left(\frac{D_o}{T} \right)^2 \right]^{0.1439}$	1.0	2.0
Branch pipe	$\begin{split} & \text{For } d_i/D_i \leq 0.7 \\ & 2.5 \!\! \left[\frac{2T}{D_o} \! \left[\frac{d_o}{2T_b} \right]^2 \right]^{0.2042} \\ & \text{For } d_i/D_i > 0.7 \\ & 2.5 \! \left[\frac{2T}{D_o} \! \left[\frac{d_o}{2T_b} \right]^2 \right]^{0.241} \end{split}$	$\frac{1.8}{h^{2/3}}$	$0.89 \left[\frac{d_o T_b}{D_o T} \left(\frac{D_o}{T} \right)^2 \right]^{0.3437}$	1.0	2.0

SWEEPOLET & WELDED-IN CONTOUR INSERT

	Validity limits	h	k
T_c R_m	r _c ≥ 0.125 d₀ T _c ≥ 1.5T	$4.4 \frac{T}{R_m}$	1.0


		SUSTAIN			
ТҮРЕ	i _p Pressure	i _b Bending Never less than 1.0 (See Notes)	i _t Thrust	i _q Torsion	i₅ Shear
Main pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
Branch pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
		CYCLIC			
	i _p	i _b	it	_ i _q	i,
	Pressure	Bending Never less than 1.5 (See Notes)	Thrust	Torsion	Shear
Main pipe	For $d_i/D_i \le 0.7$ $2.5 \left[\frac{2T}{D_0} \left[\frac{d_0}{2T_b}\right]^2\right]^{0.2042}$ For $d_i/D_i > 0.7$ $2.5 \left[\frac{2T}{D_0} \left[\frac{d_0}{2T_b}\right]^2\right]^{0.241}$	$\frac{1.8}{h^{\frac{2}{3}}}$	$1.29 \left[\frac{d_o T_b}{D_o T} \left(\frac{D_o}{T} \right)^2 \right]^{0.1439}$	1.0	2.0
Branch pipe	$\begin{array}{l} \mbox{For } d_i/D_i \leq 0.7 \\ 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.2942} \\ \mbox{For } d_i/D_i > 0.7 \\ 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.241} \end{array}$	$\frac{1.8}{h^{\frac{2}{3}}}$	$0.89 \left[\frac{d_o T_b}{D_o T} \left(\frac{D_o}{T} \right)^2 \right]^{0.3437}$	1.0	2.0

Reinforced Fabricated TEE

		SUSTAIN			
ТҮРЕ	i _p Pressure	i _b Bending Never less than 1.0 (See Note 1)	i _t Thrust	i _q Torsion	i₅ Shear
Main pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
Branch pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
		CYCLIC			
	i _p Pressure	i₅ Bending	i _t Thrust	i _q Torsion	i₅ Shear
		Never less than 1.5 (See Note 1)			
Main pipe	$\begin{split} & \text{For } d_i/D_i \leq 0.7 \\ & 2.s \!\! \left[\frac{2T}{D_o} \!\! \left[\frac{d_o}{2T_b} \right]^2 \!\! \right]^{0.2042} \\ & \text{For } d_i/D_i > 0.7 \\ & 2.s \!\! \left[\frac{2T}{D_o} \!\! \left[\frac{d_o}{2T_b} \right]^2 \!\! \right]^{0.241} \end{split}$		$1.29 \left[\frac{d_0 T_b}{D_0 T} \left(\frac{D_0}{T} \right)^2 \right]^{0.1439}$	1.0	2.0
Branch pipe	$\begin{split} & \text{For } d_i/D_i \leq 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.2042} \\ & \text{For } d_i/D_i > 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.241} \end{split}$	$\frac{1.8}{h^{\frac{2}{3}}}$	$0.89 \left[\frac{d_o T_b}{D_o T} \left(\frac{D_o}{T} \right)^2 \right]^{0.3437}$	1.0	2.0

Unreinforced Fabricated TEE

		SUSTAIN			
ТҮРЕ	i _p Pressure	i _b Bending Never less than 1.0 (See Note 1)	i _t Thrust	i _q Torsion	i₅ Shear
Main pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
Branch pipe	1.0	$\frac{1.8}{h^{\frac{2}{3}}}$	1.0	1.0	1.0
		CYCLI			
	i _p Pressure	i _b Bending Never less than 1.5 (See Note 1)	i _t Thrust	i _q Torsion	i₅ Shear
Main pipe	$\begin{array}{l} \mbox{For } d_i/D_i \leq 0.7 \\ 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.2042} \\ \mbox{For } d_i/D_i > 0.7 \\ 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.241} \end{array}$		$1.29 \left[\frac{d_0 T_b}{D_0 T} \left(\frac{D_0}{T} \right)^2 \right]^{0.1439}$	1.0	2.0
Branch pipe	$\begin{split} & \text{For } d_i/D_i \leq 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.2042} \\ & \text{For } d_i/D_i > 0.7 \\ & 2.5 \bigg[\frac{2T}{D_o} \bigg[\frac{d_o}{2T_b} \bigg]^2 \bigg]^{0.241} \end{split}$	$\frac{1.8}{h^{2/3}}$	$0.89 \left[\frac{d_0 T_b^*}{D_0 T} \left(\frac{D_0}{T} \right)^2 \right]^{0.3437}$	1.0	2.0

Туре	lp Pressure	lb Bending	lt Thrust Sustained SCF	lq Torsion	ls Shear
Buttweld	1.00	1.00	1.00 Cyclic SCF	1.00	1.00
	2.00	1.30	1.30 Sustained SCF	1.00	2.00
Tapered Transition	1.00	1.00	1.00 Cyclic SCF	1.00	1.00
ranonori	1.80	2.10	2.00 Sustained SCF	1.00	2.00
Filletweld	1.00	1.00	1.00 Cyclic SCF	1.00	1.00
	2.00	1.30	1.30 Sustained SCF	1.00	2.00
Concave Filletweld	1.00	1.00	1.00 Cyclic SCF	1.00	1.00
1 metweid	2.00	1.30	1.30 Sustained SCF	1.00	2.00
Threaded Joint	1.00	1.00	1.00 Cyclic SCF	1.00	1.00
JUIII	1.00	2.30	2.30	1.00	1.00

Sustained and Cyclic SCF for Welds and Threaded Joints in CAEPIPE

Sustained and Cyclic SCF for Flanges in CAEPIPE

Туре	lp Pressure	lb Bending	lt Thrust Sustained SCF	lq Torsion	ls Shear
Weldneck	1.00	1.00	1.00 Cyclic SCF	1.00	1.00
	1.00	1.00	1.00 Sustained SCF	1.00	1.00
Double Welded	1.00	1.00	1.00 Cyclic SCF	1.00	1.00
Single,	1.00	1.20	1.20 Sustained SCF	1.00	1.00
Fillet & Socket	1.00	1.00	1.00 Cyclic SCF	1.00	1.00
Welded	2.00	1.30	1.30 Sustained SCF	1.00	1.00
Lap Joint	1.00	1.00	1.00	1.00	1.00
·	2.00	1.60	Cyclic SCF 1.60	1.00	1.00
Threaded	1.00	1.00	Sustained SCF 1.00	1.00	1.00
	2.00	2.30	Cyclic SCF 2.30	1.00	1.00

Petroleum and natural gas industries Glass Reinforced Plastics (GRP) Piping ISO 14692-3 (2017)

Vertical deflection in Buried Piping Systems

The predicted vertical pipe deflection, Δy as a fraction of $D_{r,min}$ shall be less than 5% as per para. 7.7.2. This predicted vertical deflection as a fraction of $D_{r,min}$ shall be calculated as per Formula (9) of para. 7.7.2. The same Formula in English units is given below, which is Eq. (5-8) as per Section 5.7.3 of AWWA Manual M45 (second edition).

$$\frac{\Delta y}{D_{r.min}} = \frac{(D_L W_C + W_L) K_x}{0.149 PS + 0.061 M_s}$$

where

 D_L = deflection lag factor to compensate for the time-consolidation rate of the soil as per Section. 5.7.3 and Section. 5.7.3.3 of AWWA Manual M45 (second edition) = 1.05 (assumed)

 $W_{\rm C}$ = vertical soil load on pipe = $\frac{\gamma_s H}{144}$

 W_{L} = live load on the pipe from surface traffic = $\frac{M_{P}PI_{f}}{L_{1}L_{2}}$

 K_x = bedding coefficient, dimensionless as per Section. 5.7.3.4 of AWWA Manual M45 (second edition) = 0.083 (for uniform-shaped bottom support)

 γ s = unit weight of overburden, lb/ft³

H = burial depth to top of pipe, ft

 $I_f = \text{Impact factor} = 1 + 0.33 [(96 - b)/96] \ge 1.0$

In order to be conservative, formulae for calculations of L_1 and L_2 given below are for Single Axle Truck travelling perpendicular to the pipe on an unpaved surface or a road with flexible pavement, as per Section 5.7.3.6 of AWWA Manual M45 (second edition).

 $L_1 = load$ width parallel to direction of travel (in) = $t_l + LLDF$ (h)

h = depth of cover (in)

 h_{int} = depth at which load from wheels interact (in) = $(72 - t_w)/LLDF$

LLDF = factor to account for live load distribution with depth of fill . See Section 5.7.3.6 of AWWA Manual M45 (second edition)] = 1.15 for backfill SC1 and SC2 or 1.0 for other backfills

 t_1 = length of tire foot print = 10 inch as per Section 5.7.3.6 of AWWA Manual M45 (second edition)

 t_w = width of tire foot print = 20 inch as per Section 5.7.3.6 of AWWA Manual M45 (second edition)

When $h \leq h_{int}$, then

 L_2 = load width perpendicular to direction of travel (in) = $t_w + LLDF$ (h)

When $h > h_{int}$, then

 $L_2 = \text{load width perpendicular to direction of travel (in)} = [t_w + 72 + LLDF (h)]/2$

P = wheel load magnitude = 20,000 lb for AASHTO HS-25 truck or 16000 lb for AASHTO HS-20 truck as per Section 5.7.3.6 of AWWA Manual M45 (second edition)

 M_P = multiple presence factor = 1.2

PS = pipe stiffness (psi). Determined by conducting parallel-plate loading tests in accordance with ASTM D2412 with a vertical diameter reduction of 5% = $EI/(0.149r^3)$ as per Chapter 4, AWWA Manual M23 (second edition)

where

E = ring flexural (i.e., bending) modulus, psi

I = moment of inertia of unit length (in³) = $(1/12) t^3$

r = mean pipe radius = (OD - t)/2, where t = thickness of buried pipe

 M_s = composite constrained soil modulus = $S_c. M_{sb}$ as per Section 5.7.3.8 of AWWA Manual M45 (second edition). Values of S_c and M_{sb} are provided in Tables 5.5 and 5.4 of AWWA Manual M45 (second edition).

Sustained Load

(a) The sum of the hoop stresses is defined by the following formulae as per para. 7.8 of ISO 14692-3 code.

$$\sigma_{hps} = \frac{PD_{r,min}}{2t_{r,min}}$$

 $\sigma_{hus} = r_c. D_f. E_{hb}. \frac{\Delta y}{D_{r,min}}, \frac{t_{r,min}}{D_{r,min}}$ (applicable only when the piping is buried and the value of σ_{hus} is Tensile)

 $\sigma_{hs,sum} = (\sigma_{hps} + \sigma_{hus}) \le f_2 \cdot A_0 \cdot A_2 \cdot A_3 \cdot \sigma_{h,LT}$ as per para. 6.4

(b) The sum of the axial stresses is defined by the following formulae as per para. 7.8 of ISO 14692-3 code.

 $\sigma_{as,sum} = (\sigma_{aps} \pm \sigma_{abs} + \sigma_{afs}) \le f_2. A_0. A_2. A_3. \sigma_{a,LT} \text{ as per para. 6.4}$

 $\sigma_{aps} = \frac{PD_{r,min}}{4t_{r,min}}$ for Unrestrained piping (i.e., for all above ground piping in CAEPIPE)

 $\sigma_{aps} = \nu \frac{PD_{r,min}}{2t_{r,min}}$ for Restrained piping (i.e., only for buried piping in CAEPIPE)

$$\sigma_{abs} = axial \ stress = \frac{\sqrt{(SIF_{ai}.M_{is})^2 + (SIF_{ao}.M_{os})^2}}{Z_r}$$

$$Z_r = \frac{\pi}{32} \frac{(OD_{r,min}^4 - ID_r^4)}{OD_{r,min}}$$
$$\sigma_{afs} = \frac{F_{as}}{A_r} = \frac{F_{as}}{\frac{\pi}{4}(OD_{r,min}^2 - ID_r^2)}$$

 $\sigma_{as,sum(\min)} = (\sigma_{aps} - \sigma_{abs} + \sigma_{afs}) \le f_2 \cdot A_0 \cdot A_2 \cdot A_3 \cdot \sigma_{a,LT} \text{ as per para. 6.4}$ $\sigma_{as,sum(\max)} = (\sigma_{aps} + \sigma_{abs} + \sigma_{afs}) \le f_2 \cdot A_0 \cdot A_2 \cdot A_3 \cdot \sigma_{a,LT} \text{ as per para. 6.4}$ where

P = maximum of CAEPIPE pressures P1 through P10

 $t_{r,min}$ = minimum reinforced pipe wall thickness (in)

 $D_{r,min}$ = mean diameter of the minimum reinforced pipe wall (in)

 r_c = rerounding coefficient

 $r_c = 0$ when P > 3 MPa (145 psi) and

 $r_c = 1 - P/3$ when P <= 3 MPa (145 psi)

 D_f = shape factor from Table 5.1 of AWWA Manual M45 (second edition)

 $\frac{\Delta y}{D_{rmin}}$ = predicted vertical pipe deflection as given above

 E_{hb} = hoop bending (flexural) modulus (psi)

 ID_r = inside diameter of the reinforced pipe wall

 $OD_{r,min}$ = minimum outside diameter of the reinforced pipe wall

 SIF_{ai} = axial in-plane stress intensification factor

 SIF_{ao} = axial out-of-plane stress intensification factor

 M_{is} , M_{os} = in-plane and out-of-plane bending moment respectively due to weight and other sustained mechanical loads (excluding pressure)

 Z_r = minimum reinforced pipe wall section modulus

 F_{as} = axial force due to weight and other sustained mechanical loads (excluding pressure)

 A_r = minimum reinforced pipe wall cross section

 $f_2 = \text{part factor for loading}$

 $f_2 = 0.67$ for Sustained load case from para. 6.2 and Table 1 of ISO 14692-3 code

 A_0 = partial factor for design life = 1.00 (default) (see Note below)

 A_2 = partial factor for chemical resistance = 1.00 (default) (see Note below)

 A_3 = partial factor for cyclic service = 1.00 (default) (see Note below)

 $\sigma_{h,LT}$ = long term envelope hoop allowable stress

 $\sigma_{a,LT}$ = long term envelope axial allowable stress

Note:

Values of $A_0, A_2 \& A_3$ can be input into CAEPIPE through Layout Window > Options > Analysis.

Operating Load (Sustained + Expansion)

(a) The sum of the hoop stresses is defined by the following formulae as per para. 7.8 of ISO 14692-3 code.

$$\sigma_{hpo} = \frac{P_i D_{r,min}}{2t_{r,min}}$$

 $\sigma_{huo} = r_c. D_f. E_{hb}. \frac{\Delta y}{D_{r,min}} \cdot \frac{t_{r,min}}{D_{r,min}}$ (applicable only when the piping is buried and the value of σ_{huo} is Tensile)

 $\sigma_{ho,sum} = (\sigma_{hpo} + \sigma_{huo}) \le f_2 \cdot A_0 \cdot A_2 \cdot A_3 \cdot \sigma_{h,LT}$ as per para. 6.4

(b) The sum of the axial stresses is defined by the following formulae as per para. 7.8 of ISO 14692-3 code.

$$\sigma_{ao,sum} = (\sigma_{apo} \pm \sigma_{abo} + \sigma_{afo}) \le f_2 \cdot A_0 \cdot A_2 \cdot A_3 \cdot \sigma_{a,LT} \text{ as per para. 6.4}$$

$$\sigma_{apo} = \frac{P_i D_{r,min}}{4t_{r,min}}$$
 for Unrestrained piping (i.e., for all above ground piping in CAEPIPE)

 $\sigma_{apo} = \nu \frac{P_i D_{r,min}}{2t_{r,min}}$ for Restrained piping (i.e., only for buried piping in CAEPIPE)

$$\sigma_{abo} = axial \ stress = \frac{\sqrt{(SIF_{ai}.M_{io})^2 + (SIF_{ao}.M_{oo})^2}}{Z_r}$$

$$Z_r = \frac{\pi}{32} \frac{(OD_{r,min}^4 - ID_r^4)}{OD_{r,min}}$$

$$\sigma_{afo} = \frac{F_{ao}}{A_r} = \frac{F_{ao}}{\frac{\pi}{4}(OD_{r,min}^2 - ID_r^2)}$$

$$\sigma_{ao,sum(min)} = (\sigma_{apo} - \sigma_{abo} + \sigma_{afo}) \le f_2 \cdot A_0 \cdot A_2 \cdot A_3 \cdot \sigma_{a,LT} \text{ as per para. 6.4}$$

$$\sigma_{ao,sum(max)} = (\sigma_{apo} + \sigma_{abo} + \sigma_{afo}) \le f_2 \cdot A_0 \cdot A_2 \cdot A_3 \cdot \sigma_{a,LT} \text{ as per para. 6.4}$$

where

 P_i = internal design pressure P1 through P10. For example, for operating load case 1, $P_i = P1$

 M_{io}, M_{oo} = in-plane and out-of-plane moment respectively due to weight, other sustained mechanical loads (excluding pressure) and self-limiting displacements (Thermal load T1 through T10).

 F_{ao} = axial force due to weight, other sustained mechanical loads (excluding pressure) and self-limiting displacement load

 f_2 = part factor for loading

 $f_2 = 0.83$ for Operating load case from para. 6.2 and Table 1 of ISO 14692-3 code

All other parameters are defined under Sustained Load.

Occasional Load (Sustained + Occasional)

(a) The sum of the hoop stresses is defined by the following formulae as per para. 7.8 of ISO 14692-3 code.

$$\sigma_{hpc} = \frac{P_o D_{r,min}}{2t_{r,min}}$$

 $\sigma_{huc} = r_c. D_f. E_{hb}. \frac{\Delta y}{D_{r,min}}, \frac{t_{r,min}}{D_{r,min}}$ (applicable only when the piping is buried and the value of σ_{huc} is Tensile)

 $\sigma_{hc,sum} = (\sigma_{hpc} + \sigma_{huc}) \leq f_2 \cdot A_0 \cdot A_2 \cdot A_3 \cdot \sigma_{h,LT}$ as per para. 6.4

(b) The sum of the axial stresses is defined by the following formulae as per para. 7.8 of ISO 14692-3 code.

 $\sigma_{ac,sum} = (\sigma_{apc} \pm \sigma_{abc} + \sigma_{afc}) \le f_2. A_0. A_2. A_3. \sigma_{a,LT} \text{ as per para. 6.4}$

 $\sigma_{apc} = \frac{P_o D_{r,min}}{4t_{r,min}}$ for Unrestrained piping (i.e., for all above ground piping in CAEPIPE)

 $\sigma_{apc} = \nu \frac{P_o D_{r,min}}{2t_{r,min}}$ for Restrained piping (i.e., only for buried piping in CAEPIPE)

$$\sigma_{abc} = axial \ stress = \ \sigma_{abs} + \frac{\sqrt{(SIF_{ai}.M_{ic})^2 + (SIF_{ao}.M_{oc})^2}}{Z_r}$$

$$Z_r = \frac{\pi}{32} \frac{(OD_{r,min}^4 - ID_r^4)}{OD_{r,min}}$$

$$\sigma_{afc} = \frac{F_{ac}}{A_r} = \sigma_{afs} + \frac{F_{ac}}{\frac{\pi}{4}(OD_{r,min}^2 - ID_r^2)}$$

$$\sigma_{a,sum(min)} = (\sigma_{apc} - \sigma_{abc} + \sigma_{afc}) \le f_2.A_0.A_2.A_3.\sigma_{a,LT} \text{ as per para. 6.4}$$

$$\sigma_{a,sum(max)} = (\sigma_{apc} + \sigma_{abc} + \sigma_{afc}) \le f_2.A_0.A_2.A_3.\sigma_{a,LT} \text{ as per para. 6.4}$$

where

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

P = maximum of CAEPIPE pressures P1 through P10

 M_{ic}, M_{oc} = in-plane and out-of-plane moment respectively due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 F_{ac} = axial force due to weight, other sustained mechanical loads (excluding pressure), and occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake, wind, etc.

 f_2 = part factor for loading

 $f_2 = 0.89$ for Occasional load case from para. 6.2 and Table 1 of ISO 14692-3 code

Petroleum and natural gas industries Glass Reinforced Plastics (GRP) Piping ISO 14692-3 (2017)

Flexibility Factors and Stress Intensification Factors [Refer to Annex B of ISO 14692-3 (2017)]

Flexibility Factor for Bend and Miter Bend

The flexibility factor, κ_b , for GRP bends is based on the pipe factor, λ_b , and the axial pressure correction factor, δ_a , due to the effect of internal pressure.

 λ_b is given by Formula (B.1):

$$\lambda_{\rm b} = \frac{4t_{\rm b}R_{\rm b}}{D_{\rm i}^2} \tag{B.1}$$

where

- *t*_b is the average wall thickness of the reference laminate of the bend, in mm;
- *D*_i is the internal diameter of the reinforced body of the bend, in mm;
- $R_{\rm b}$ is the mean pipe bend radius, in mm.

The "axial pressure correction factor δa " is given by formula (B.3):

$$\delta_{a} = \frac{1}{\left[1 + \left(2,53p / (E_{h,bend}) \cdot \left(R_{b} / t_{b}\right)^{1/3} \cdot (D_{i} / 2t_{b})^{2}\right)\right]}$$
(B.3)

where

р

is the applied pressure, in MPa;

 $E_{\rm h,bend}$ is the hoop modulus of the bend, in MPa.

The flexibility factor for smooth bends is given as a function of λ_b :

$$\kappa_{\rm b} = \delta_{\rm a} \cdot \frac{0.7}{\lambda_{\rm b}} \cdot \frac{E_{\rm a,pipe} \cdot t_{\rm pipe}}{E_{\rm a,bend} \cdot t_{\rm b}} \tag{B.4}$$

The flexibility factor for mitred bends is given as a function of λ_b :

$$\kappa_{\rm b} = \delta_{\rm a} \cdot \frac{0.64}{(\lambda_{\rm b})^{0.83}} \cdot \frac{E_{\rm a,pipe} \cdot t_{\rm pipe}}{E_{\rm a,bend} \cdot t_{\rm b}}$$
(B.5)

where

 $E_{a,pipe}$ is the axial modulus of the attached pipe, in MPa;

 $E_{a,bend}$ is the axial modulus of the bend, in MPa.

Note:

If thickness field is input in the Bend / Miter dialog then that thickness will be used as " t_b " in the above calculation. On the other hand, if the thickness field is left blank then CAEPIPE will use the pipe thickness as " t_b " in the above calculation.

Flexibility Factor for TEE

Flexibility factor for TEE is 1.0

Petroleum and natural gas industries Glass Reinforced Plastics (GRP) Piping ISO 14692-3 (2017)

Stress Intensification Factors (SIF)

Sl. No.	Designation	In-plane Stress intensification factor (SIF _{ai})	Out-of-plane Stress intensification factor (SIF _{ao})
1	Bends	2.3	2.3
2	Miters – Closely Spaced	2.3	2.3
3	Miters – Widely Spaced	2.3	2.3

Bends and Miters (in line with Section B.3 of Annex B of ISO 14692-3)

TEES (in line with Section B.3 of Annex B of ISO 14692-3)

S1.	Designation	In-plane Stress	Out-of-plane Stress
No.		intensification factor	intensification factor
		(SIF _{ai})	(SIF _{ao})
1	Integral TEE	2.3	2.3

Reducers

ISO 14692-3 does not provide SIFs for Reducers. Hence, in CAEPIPE, SIFs for the Reducer Types will be assigned internally as listed below when used in the Stress model.

Sl. No.	Designation	In-plane Stress intensification factor (SIF _{ai})	Out-of-plane Stress intensification factor (SIF _{ao})
1	Concentric Reducer	1.0	1.0
2	Eccentric Reducer	1.0	1.0

Threaded Joint

ISO 14692-3 does not provide SIFs for Threaded Joint. Hence, in CAEPIPE, SIF for the Threaded Joint be assigned internally as listed below when used in the Stress model.

S1.	Designation	In-plane Stress	Out-of-plane Stress
No.		intensification factor	intensification factor
		(SIF _{ai})	(SIF _{ao})
1	Threaded Joints	2.3	2.3

Flanges

ISO 14692-3 does not provide SIFs for Flanges. Hence, in CAEPIPE, SIFs for the Flange Types will be assigned internally as listed below when used in the Stress model.

Sl. No.	Designation	In-plane Stress intensification factor (SIF _{ai})	Out-of-plane Stress intensification factor (SIF _{ao})
1	Weld Neck Flange	1.0	1.0
2	Double Welded Slip on Flange	1.0	1.0
3	Single Welded Slip on Flange	1.0	1.0
4	Fillet Welded Flange	1.0	1.0
5	Socket Welded Flange	1.0	1.0
6	Lap Joint Flange	1.0	1.0
7	Threaded Flange	1.0	1.0
8	Threaded Joint	1.0	1.0

In case the user wants to input at a node a different value for any of the SIFs listed above, the user can input the desired value using the data type "User SIF" at that node. Any value input in the "User SIF" field will always replace any internally calculated or internally set value.

Allowable Pressure

A.2.1 Straight pipes: For straight pipes, the allowable internal pressure is calculated from Equations (A.1) and (A.2):

$$P_a = \frac{2\sigma_d z t_{min}}{\gamma_a d_o} \tag{A.1}$$

where,

 P_a = allowable pressure d_o = outside diameter of the pipe z = joint efficiency factor $t_{min} = t_n - (c_1 + c_2)$ t_n = nominal wall thickness of the pipe c_1 = mill/fabrication tolerance (input as a % of thickness)

 $c_2 = \text{corrosion allowance}$

 σ_d = allowable stress (i.e., design stress) = $R_e(T)/\gamma_m$, where $R_e(T)$ is the specified minimum yield strength at design temperature (sec 5.2.3.1), where design temperature is a CAEPIPE input, and γ_m = 1.1, the partial safety factor for strength of material per sec. 7.2.2.1 γ_a = 1.25 = partial load factor for LC2 and LC3 cases from Table 9 in sec.6.4.2.

A.2.2 Bends: The allowable internal pressure for bends is calculated as

$$P_{a} = \frac{2\sigma_{d} z t_{min}}{\gamma_{a} d_{o} I}$$

$$I = \frac{R - 0.25d_{i}}{R - 0.5d_{m}}$$
(A.3)

 d_i = inside diameter of the pipe

 d_m = mean diameter of the pipe

R = bend radius

A.4 Reducers and extensions: shall withstand the same internal pressure as the connecting pipes where the half angle α , at the apex of the component does not exceed 30 degrees,

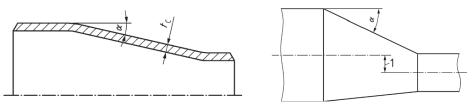


Figure A.2 — Reducer

Figure A.3 — Offset reducer

(A.2)

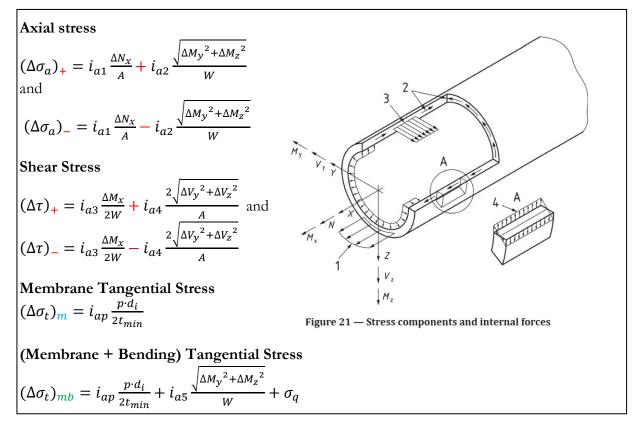
The allowable internal pressure is calculated from

$$P_{a} = min\left\{\frac{2\sigma_{d}z\,\cos\alpha\,t_{n1,min}}{\gamma_{a}.\,d_{o1}}, \frac{2\sigma_{d}z\,\cos\alpha\,t_{n2,min}}{\gamma_{a}.\,d_{o2}}\right\}$$

where:

 $t_{n1,min} = t_{n1} - (c_1 + c_2)$

 $t_{n2,min} = t_{n2} - (c_1 + c_2)$ t_{n1} , and t_{n2} is nominal wall thickness of pipe at inlet and outlet of reducer. d_{o1} , and d_{o2} is nominal outer diameter at inlet and outlet of reducer.


Note 1: CAEPIPE permits to model the reducers with $\alpha \leq 30^{\circ}$. Reducers with $\alpha > 30^{\circ}$ cannot be modeled, because the stress concetration factors are not explicitly given in C.3.5 for reducers with $\alpha > 30^{\circ}$.

Note 2: The above allowable pressures calculated by CAEPIPE are valid only for pipes and components delivered with the required certificate as per sec. 5.2.2.

For pipes and components delivered without the required certificate as per sec. 5.2.2, the allowable pressures P_a computed by CAEPIPE as given above should be <u>manually</u> divided by an extra safety coefficient $\gamma_{m,yield} = 1.2$ (sec. 5.2.3.1) to arrive at lower allowable pressures for such uncertified pipes and components.

Evaluation of Stresses

Stress components and internal forces as per sec. 6.6.2 of the code are defined as:

The equivalent stress as per sec. 6.6.3 is calculated from the axial and tangential stress components (calculated with sign) by von Mises for either membrane stress or membrane + bending stress (m|mb)

$$\boldsymbol{S}_{\boldsymbol{m}|\boldsymbol{m}\boldsymbol{b}} = \boldsymbol{m}\boldsymbol{a}\boldsymbol{x}\left\{\mathrm{S1}_{\boldsymbol{m}|\boldsymbol{m}\boldsymbol{b}}, \mathrm{S2}_{\boldsymbol{m}|\boldsymbol{m}\boldsymbol{b}}, \mathrm{S3}_{\boldsymbol{m}|\boldsymbol{m}\boldsymbol{b}}, \mathrm{S4}_{\boldsymbol{m}|\boldsymbol{m}\boldsymbol{b}}, |(\Delta\sigma_{a})_{+}|, |(\Delta\sigma_{a})_{-}|\right\}$$

where,

$$S1_{m|mb} = \sqrt{(\Delta\sigma_a)_+^2 - (\Delta\sigma_a)_+ \cdot (\Delta\sigma_t)_{m|mb} + (\Delta\sigma_t)_{m|mb}^2 + 3(\Delta\tau)_+^2}$$

$$S2_{m|mb} = \sqrt{(\Delta\sigma_a)_-^2 - (\Delta\sigma_a)_- \cdot (\Delta\sigma_t)_{m|mb} + (\Delta\sigma_t)_{m|mb}^2 + 3(\Delta\tau)_+^2}$$

$$S3_{m|mb} = \sqrt{(\Delta\sigma_a)_+^2 - (\Delta\sigma_a)_+ \cdot (\Delta\sigma_t)_{m|mb} + (\Delta\sigma_t)_{m|mb}^2 + 3(\Delta\tau)_-^2}$$

$$S4_{m|mb} = \sqrt{(\Delta\sigma_a)_-^2 - (\Delta\sigma_a)_- \cdot (\Delta\sigma_t)_{m|mb} + (\Delta\sigma_t)_{m|mb}^2 + 3(\Delta\tau)_-^2}$$

$$N_x = \text{Axial force (positive for tension), (pressure, temperature and soil reaction)}$$

$$M_x = \text{Torsional moment}$$

 M_{γ} and M_{z} = Bending moment

A = Metal area of pipe

W = Section modulus

 V_y and V_z = Shear force

p = Internal pressure

 d_i = Inside diameter of the steel service pipe.

 t_{min} = Minimum pipe wall thickness = $t_n - (c_1 + c_2)$

 i_{a1} = Stress concentration factor for axial stresses from normal force

 i_{a2} = Stress concentration factor for axial stresses from bending moments

 i_{a3} = Stress concentration factor for shear stresses from torsion

 i_{a4} = Stress concentration factor for shear stresses from shear forces

 i_{ap} = Stress concentration factor for hoop stresses from pressure

Area and section modulus are calculated, as per 6.6.2, as follows:

$$A = \pi \times (d_o - t_n) \times t_n \tag{45}$$

$$W = \frac{\pi}{32 \times d_o} \left[d_o^4 - (d_o - 2t_n)^4 \right]$$
(46)

 d_o = Outer diameter of the steel service pipe

 t_n = nominal pipe wall thickness

 c_1 = Correction to wall thickness for fabrication tolerance

 c_2 = Correction to wall thickness for corrosion allowance

 S_m = Membrane stress

 S_{mb} = Resulting stress of membrane stress and bending stress

 σ_a = Axial (normal) stress

 σ_t = Tangential stress

 $\tau =$ Shear stress

 σ_p = Hoop stress from internal pressure

 σ_q = Ovalisation stress from soil pressure, traffic, lateral soil reactions, etc. (see sec. 6.6.4) to be manually computed by the user and input into soil model dialog of CAEPIPE at this time.

Forced Control Action LC2 (sec. 7.2.2.2)

In CAEPIPE, the LC2 case (both S_m and S_{res}) is evaluated for sustained loads (W+P) which include weight (of pipe, fluid, and insulation) at maximum operating pressure. The displacements specified as settlement at anchor and nozzle locations are also included in force-controlled action.

1) $\underline{S_m} = \underline{Membrane stress A1:}$

$$S_m \le S_{ma} \ (= R_e(T) / \gamma_m)$$

 S_m = is the equilibrium membrane stress

 S_{ma} = is the allowable membrane stress (= $R_e(T)/\gamma_m$)

 $R_e(T)$ = Specified minimum yield strength *at maximum operating temperature*

 $\gamma_m = 1.1$ is the partial safety factor for the base material, as per sec. 7.2.2.2.

2) <u>Sres = Membrane + Bending stress A1:</u>

$$S_{res}(=S_{mb}) \leq S_{resa}$$

 S_{res} (= S_{mb}) is the resulting stress of equilibrium membrane stress and equilibrium bending stress

 S_{resa} = is the allowable resulting stress (including membrane + bending)

$$S_{resa} = \begin{cases} 1.5 \frac{R_e(T)}{\gamma_m} & \text{for} \quad S_m \le 0.67 \frac{R_e(T)}{\gamma_m} \\ 2.5 \frac{R_e(T)}{\gamma_m} - 1.5 S_m & \text{for} \quad 0.67 \frac{R_e(T)}{\gamma_m} < S_m \le \frac{R_e(T)}{\gamma_m} \end{cases}$$

Note: The above stresses calculated by CAEPIPE is valid only for pipes and components delivered with the required certificate as per sec. 5.2.2, where $\gamma_m = 1.1$ as per sec. 7.2.2.2.

For pipes and components delivered without the required certificate as per sec. 5.2.2, the allowable stresses S_{ma} and S_{resa} computed by CAEPIPE as given above should be <u>manually</u> divided by an extra safety coefficient $\gamma_{m,yield} = 1.2$ (sec. 5.2.3.1) to arrive at the corresponding lower allowable stresses for such uncertified pipes and components.

Stepwise plastic deformation LC3 (sec. 7.2.2.3)

In CAEPIPE, the LC3 case is evaluated for each operating load case (Weight of pipe, fluid & insulation + Pressure + Temperature) and *at each set of operating pressure and temperature*.

 $S_{pd} = Force + Deformation stress A2$

Limit state A2 concerns incremental collapse and stress ratcheting. The limit state for stress ratcheting for fully restrained sections is obtained from:

$$S_{pd} \leq S_{pda}$$

 S_{pd} is the maximum of axial stress due to plastic deformation.

 $S_{pd} = max\{(\Delta \sigma_a)_+, (\Delta \sigma_a)_-\}$

The allowable/limit state for stress ratcheting for fully restrained sections is obtained from:

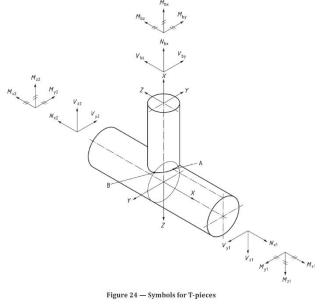
$$S_{pda} = R_e(T) \left[\sqrt{1 - \frac{3}{4} \left(\frac{\sigma_p}{R_e(T)}\right)^2} + \sqrt{\gamma^2 - \frac{3}{4} \left(\frac{\sigma_p}{R_e(T)}\right)^2} \right]$$
(79)

 $R_e(T)$ = Specific minimum yield strength *at operating temperature*

$$\sigma_p (= Pd_o/2zt_{min}) = \text{hoop stress } at operating pressure.$$
 (78)

 $\gamma = 0.7$, is a safety factor

Note: EN13941-1:2019 does not specify stress concentration factors for calculating S_{pd} . In CAEPIPE, the stress concentration factors for S_{pd} calculations are considered the same as those for resulting stresses for each component given in Tables C1, C3, C4, and C6.


TEES

 In CAEPIPE, σ and τ are calculated separately for run pipe and branch pipe with sectional forces chosen as follows:

For stresses in the run pipe, the forces and moments determined in the run at the intersection between the centerlines of the pipes are used.

For stresses in the branch pipe, the forces and moments determined in the branch at a distance of $0.5 d_{ro}$ from the centreline of the run pipe are used.

Note: CAEPIPE automatically refines the elements connected to the node point with a defined tee. Two (2) nodes on Run Pipe (one on either side of the Branch SIF node) at a distance equal to Run Pipe OD and one (1) node on Branch Pipe at a distance equal to Run pipe OD/2 from the Branch SIF node are internally added with appropriate node numbers.

• As per sec. 6.6.7, the stresses at the intersection of run pipe are calculated after combining the axial and shear stresses from the run pipe and branch element as follows.

 $(\Delta \sigma_a)_{\pm}(run \ intersection) = (\Delta \sigma_a)_{\pm}(run) + \Delta \sigma_a \ (branch)$ (63)

$$(\Delta \tau)_{+}(run \ intersection) = (\Delta \tau)_{+}(run) + \Delta \tau \ (branch)$$
(64)

In CAEPIPE,

$$\Delta \sigma_a (branch) = \begin{cases} (\Delta \sigma_a)_+ (branch) & if \quad |(\Delta \sigma_a)_+| > |(\Delta \sigma_a)_-| \\ (\Delta \sigma_a)_- (branch) & if \quad |(\Delta \sigma_a)_-| \ge |(\Delta \sigma_a)_+| \end{cases}$$
$$\Delta \tau (branch) = \begin{cases} (\Delta \tau)_+ (branch) & if \quad |(\Delta \tau)_+| > |(\Delta \tau)_-| \\ (\Delta \tau)_- (branch) & if \quad |(\Delta \tau)_-| \ge |(\Delta \tau)_+| \\ 466 \end{cases}$$

Modeling buried pipe bilinear restraints

Longitudinal/Axial soil stiffness (sec. 6.5.3.1)

Cohesionless Soil	Cohesive Soil
For sandy soils, the ultimate axial load per unit length $F_u = \mu \left(\frac{1+K_o}{2}\pi D_c \sigma_v + G - \gamma_s \cdot \pi \left(\frac{D_c}{2}\right)^2\right) \qquad (8)$ where, K_o = coefficient of horizontal soil pressure at rest $K_o = 1 - \sin \varphi'$ φ' - the effective angle of Internal friction of soil σ_v - Effective (normal) intergranular soil stress at pipe center level. $\mu = \tan \delta$ (12) is the friction coefficient, sec.6.5.3.2 δ = Angle of interface friction between soil and (casing) pipe.	The ultimate axial/longitudinal load per unit length $F_u = \pi D_c C_f \cdot C_s$ where F_u - Ultimate axial soil load C_s – Cohesion strength. C_f - Cohesion factor

For granular soils

$$\sigma_{\nu} = \gamma_{s}H_{w} + \gamma_{sw}(Z - H_{w}) \text{ for } H_{w} < Z \quad (9)$$

$$\sigma_{\nu} = \gamma_{s}Z \text{ for } H_{w} \ge Z \quad (10)$$

$$\gamma_{sw} = \gamma'_{sw} - \gamma_{w} \quad (11)$$

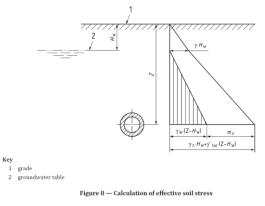
 D_c = Outer diameter of the casing

G = Effective self-weight of the factory-made pipe assembly (including pipe fill) per meter of pipe length

 γ_s = Effective weight of soil above ground water table

 γ_{sw} = Effective weight of soil below ground water table = $\gamma'_{sw} - \gamma_w$

 γ'_{sw} = Effective weight of saturated soil below ground water table


 $\gamma_w = \text{Effective weight of water}$

Z = Depth of buried pipe (measured to pipe centerline)

 H_w = Depth of ground water table below grade

For sandy soils, the relative displacement u_u between the pipe and surrounding soil required to reach the maximum friction resistance f_u is approx. $u_u = 3 \text{ mm} = 0.003 \text{m}$.

Axial soil stiffness = F_u/u_u

Horizontal/Lateral soil stiffness (sec. 6.5.4.1)

The coefficient of horizontal/lateral soil reaction or horizontal/lateral bedding constant is defined as the ratio between horizontal/lateral soil pressure and horizontal/lateral movement of the pipe system.

The ultimate horizontal/lateral soil resistance P_u is assessed using the equivalent equation for side support:

Cohesionless Soil	Cohesive Soil
For sandy soils, the ultimate horizontal/lateral load per unit length	The ultimate horizontal/lateral load per unit length
$P_u = \gamma \cdot Z \cdot K_q \cdot D_c \tag{16}$	$P_{u} = \left(K_{q} \cdot \gamma \cdot Z + 0.7 \; \alpha \cdot K_{c} \cdot c'\right) \cdot D_{c} $ (17)
γ = Soil density Z = depth of buried pipe (measured to pipe centerline) K_q = soil pressure coefficient for sand (Fig 10)	$\alpha = 0.6$, in case of open excavation; and $\alpha = 1.0$, in case of jacking methods; $c' = C_f \cdot C_s$ Effective cohesion of the soil K_c = soil pressure coefficient for clay (Fig 10)
K _q A	<i>K</i> ₀
45° 40° 35° 30°	$100 \\ 100 \\ 100 \\ 10 \\ 10 \\ 10 \\ 0 \\ 5 \\ 10 \\ 10$
(H + D/2) / D	(H + D/2) / D
Figure 10 — Soil pressure coefficient K	$T_{\rm q}$ (and $K_{\rm c}$) for sandy (and clay) soils

In Figure 10 the values on the right side (45°, 30°, etc.) represent the effective internal angle of friction of the soil φ' , H is soil cover above pipe (see Figure 5 in EN13941-1) and D is considered as outer diameter of casing Dc (see Figure 13 in EN13941-1).

The ultimate horizontal/lateral displacement v_u is not defined precisely. The results of a number of tests with small diameter pipes are summarized in Table 12.

v _u /Z %					
Casing Diameter Dc	Loose sand	Dense sand			
75 mm ^a	4.5	2.7			
120 mm	3	2			
≥ 300 mm 2 1.5					
Values obtained by interpolation.					

Table 12 – Ultimate horizontal/lateral displacement v_u

For buried pipes without expansion cushions, a fair relationship between horizontal pipe movement and corresponding soil restraint is given by

$$\frac{p}{p_u} = \frac{v/v_u}{0.15 + 0.85 \, v/v_u} \tag{15}$$

At 70% of ultimate horizontal load i.e., $p/p_u = 0.7$, the horizontal displacement is calculated as

$$0.7(0.15 + 0.85 v/v_u) = v/v_u$$
$$v_{70\%} = 0.2593 v_u$$

Vertical soil stiffnesses

To compute vertically upward and downward stiffnesses, the ultimate loads in vertical direction are considered as the same as those for other piping codes in CAEPIPE. For details, refer to the Section titled "Buried Piping" in the Technical Reference Manual. The vertical yield displacement for the soil is assumed to be D/25, where D is the outside diameter of the pipe.

Combined lateral stiffness of PUR, expansion cushions and soil (sec. 6.5.5)

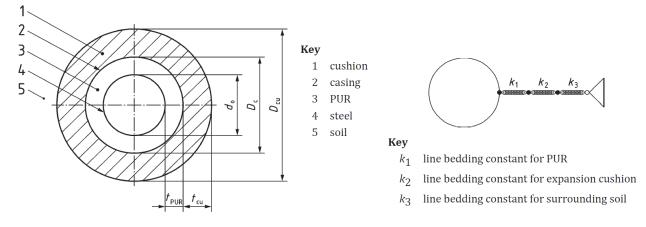


Figure 13 — Symbols for bedding constants

Figure 14 — Combined soil spring constant

PUR	Cushion	Soil	Combined
$k_{h,1} = \frac{E_{pur}}{t_{pur}} $ (19a)	$k_{h,2} = \frac{E_{cu}}{t_{cu}} $ (20a)	$k_{h,3} = \frac{0.7 p_u}{v_{70\%}}$ (21a)	$\frac{1}{k} = \sum \frac{1}{k_i} $ (22)
$k_1 = k_{h,1}d_o$ (19b)	$k_2 = k_{h,2}D_c $ (20b)	$k_3 = k_{h,3} D_{cu}$ (21b)	

where,

 d_o = Outside diameter of steel service pipe

 D_c = Outer diameter of casing

 D_{cu} = Equivalent outside diameter of expansion cushion.

Polyurethane foam thermal insulation (sec. 5.3)

In CAEPIPE, for EN13941-1 code, the insulation for pipe is considered as PUR, and the elastic modulus for PUR is internally set as $E_{PUR} = 10.0 MPa$.

The elastic modulus E_{cu} for expansion cushion shall be input in soil dialog as per section 5.6.3.

NOTE 1: The above methodology of combining stiffnesses of PUR, expansion cushions and soil is also applied in the vertically downward and upward directions.

NOTE 2: Expansion Cushion is very flexible, whereas PUR is stiffer. Surrounding soil is much stiffer than PUR. So, the line bedding constant 'k₂' for Expansion Cushion is much less than the line bedding constant 'k₁' for PUR, which, in turn, is much less than the line bedding constant 'k₃' for the surrounding soil, where the line bedding constant is the same as stiffness. In short, $k_2 << k_1 <<< k_3$.

The combined stiffness 'k' computed using Equation (22) will be less than the Expansion Cushion stiffness, ' k_2 '. Due to this low value of combined stiffness 'k', sometimes non-linear iterative solution may not converge. In such case of non-convergence, re-perform the analysis without including Expansion Cushion. If the solution still not converges, then re-perform with just surrounding soil (i.e., without including stiffnesses of both PUR and Expansion Cushion). In this case, the weight per unit length of insulation PUR shall be input as "Additional weight" in CAEPIPE's Loads dialog.

C.2 Flexibility factors for pipe components (see Annex C)

C.2.1 Bends

Flexibility Factor for bending (in-plane & out-of-plane)	Bend Radius	Equation
$k_b = \frac{1.24 \cdot d_m^2}{4 \cdot t_n \cdot R} \ge 1$	$R \leq 1.5 d_o$	(C.1)
$\frac{1.24 \cdot d_m^2}{4 \cdot t_n \cdot R} < k_b < \frac{1.65 \cdot d_m^2}{4 \cdot t_n \cdot R}$	$1.5 d_o < R < 2.5 d_o$	(C.2)
$k_b = \frac{1.65 \cdot d_m^2}{4 \cdot t_n \cdot R}$	$R \ge 2.5d_o$	(C.3)

The stiffening effect of adjacent straight pipes is included in the factor k_b given by Eq. (C.1). Such stiffening effect by adjacent straight pipes is less for larger radii bends for which Eq. (C.2) and Eq. (C.3) apply.

Intervening values are obtained by interpolation. For bend angles between 90° and 0°, the flexibility factor k_b for bending is linearly interpolated between flexibility factors for 90° bend and for straight pipe (*i.e.*, $k_b = 1$). The flexibility factors for normal forces, shear forces and torque are equal to 1.0.

For pipe bends, the internal pressure will counteract ovalization. This is considered by dividing k_b with

$$1 + 6\frac{p}{E} \left(\frac{d_m}{2t}\right)^{7/3} \left(\frac{d_m}{2R}\right)^{-1/3} \tag{C.4}$$

For miter bends, the flexibility factors are not provided in EN 13941-1 (2021). Hence, the flexibility factor as given in ASME B31J (2017) is used for all types of miter bends.

$$k_b = 1.52 \left(\frac{d_m^2}{4 \cdot t_n \cdot R}\right)^{5/6}$$

C.2.2 T-pieces

The flexibility factor for T pieces equals 1.

For $d_{bo}/d_{ro} \leq 0.8$ the flexibility of the connection between the branch pipe and run pipe may be taken into account by applying the following spring factor to the branch pipe at the point where the axis of the branch intersects the outside of the run pipe.

For in-plane bending, M_{by} ,

$$c_{y} = \frac{E \cdot I_{b}}{k_{y} \cdot d_{ro}} \tag{C.5}$$

$$k_{y} = 0.2 \left(\frac{d_{ro}}{t_{r}}\right) \cdot \left(\frac{t_{r}}{t_{b}} \cdot \frac{d_{bo}}{d_{ro}}\right)^{0.5} \cdot \frac{t_{b}}{t_{r}}$$
(C.6)

For out-of-plane bending, M_{bz} ,

$$c_z = \frac{E \cdot I_b}{k_z \cdot d_{ro}} \tag{C.7}$$

$$k_z = 0.1 \left(\frac{d_{ro}}{t_r}\right)^{1.5} \cdot \left(\frac{t_r}{t_b} \cdot \frac{d_{bo}}{d_{ro}}\right)^{0.5} \cdot \frac{t_b}{t_r}$$
(C.8)

Note: CAEPIPE automatically refines the elements connected to the node point with a defined tee, by adding two (2) nodes on Run Pipe (one on either side of the Branch SIF node) at a distance equal to Run Pipe OD and one (1) node on Branch Pipe at a distance equal to Run pipe OD/2 from the Branch SIF node. Flexibility Factors for Branch Pipe (Leg 3), as stated above in equations (C.5) – (C-8), are applied to the branch pipe. For Equal TEEs, the Run and Branch should be differentiated in the CAEPIPE model by defining the Branch OD as slightly less than the Run OD through CAEPIPE Sections input.

C.3 Stress concentration factors in pipe elements

Note: The stress concentration factors i_{a1} to i_{a5} and i_{ap} are either = 0 or >= 1 for all types of stress evaluation. Stress concentration factors = 0, meaning "no contribution of the term in computing stresses".

C.3.2.1 Stress concentration factors for bends and miter bends: Simplified method

	i _{a1}	<i>i</i> _{a2}	i _{a3}	i _{a4}	<i>i</i> _{a5}	i _{ap}
S _m	1	$0.9 \cdot \left(\frac{d_m^2}{4t_n R}\right)^{2/3}$	1	1	0	$\frac{R - 0.25d_i}{R - 0.5d_m}$
S _{res}	1	$0.9 \cdot \left(\frac{d_m^2}{4t_n R}\right)^{2/3}$	1	1	$1.8 \cdot \left(\frac{d_m^2}{4t_n R}\right)^{2/3}$	$\frac{R - 0.25d_i}{R - 0.5d_m}$

Table C.1 Stress concentration factors for bends

If the bracing effect of over pressure has been considered when calculating the flexibility of the pipe bend,

 i_{a2} and i_{a5} shall be divided by *f*, where

$$f = 1 + 3.25 \frac{p}{E} \left(\frac{d_m}{2t}\right)^{5/2} \left(\frac{d_m}{2R}\right)^{-2/3}$$
(C.9)

with i_{a2} and i_{a5} valued at a minimum of 1.0 after the above division.

C.3.3 T-pieces

Table C.3 Stress concentration factors for membrane stresses in point B of T-pieces (all types)

Membrane stresses S _m	i _{a1}	<i>i</i> _{a2}	<i>i</i> _{a3}	i _{a4}
Run pipe	$r_r \cdot k_2$	$r_r \cdot k_1$	$2r_r \cdot k_1$	$r_r \cdot k_1$
Branch pipe	$r_b \cdot k$	$r_b \cdot k$	$r_b \cdot k$	$r_b \cdot k$

Table C.4 - T-pieces: Stress concentration factors for resulting stresses in point B

	Resulting stresses <i>S_{res}</i>	<i>i</i> _{a1}	<i>i</i> _{a2}	<i>i</i> _{a3}	<i>i</i> _{a4}			
	Directly welded T-piece	CAEPIPE: Ur	nreinforced fab	ricated Tee				
	Run pipe	$1.2k_2$	k_1	$2k_1$	<i>k</i> ₁			
	Branch pipe	k	k	k	k			
	Forged T-piece	CAEPIPE: W	elding Tee		1			
	Run pipe	0.7k ₂	$0.6k_1$	$1.2k_1$	0.6k ₁			
	Branch pipe	0.4k	0.4k	0.4k	0.4 <i>k</i>			
	T-piece with drawn collar	CAEPIPE: Ex	truded Tee					
	Run pipe	$0.8k_{2}$	$0.7k_1$	$1.4k_1$	0.7 <i>k</i> ₁			
	Branch pipe	0.7k	0.7k	0.7 <i>k</i>	0.7 <i>k</i>			
k	$k_{1} = 0.523 \left(\frac{1}{d_{rm}}\right)^{1/3} \left(\frac{1}{t_{r}}\right)^{2/3} d_{bm} + 2.5 \left(1 - \frac{d_{bm}}{d_{rm}}\right)^{3/2} $ (C.17)							
k	$k_{2} = 0.65 \left(\frac{1}{d_{rm}}\right)^{5/6} \left(\frac{1}{t_{r}}\right)^{2/3} (d_{bm})^{3/2} + 2.5 \left(1 - \frac{d_{bm}}{d_{rm}} \frac{t_{b}}{t_{r}}\right)^{9/5}$							
	472							

$$k = 0.567 \left(\frac{d_{rm}}{t_r}\right)^{2/3}$$

Reduction factors for membrane stresses:

$$r_r = 0.56 \frac{t_b}{t_r} \left(2 - \frac{d_{bm}}{d_{rm}}\right)^{5/3} \tag{C.18}$$

$$r_{b} = 0.83 \sqrt{\frac{d_{bm}}{d_{rm}}} \text{ for } N_{b} \le \frac{1}{d_{bm}} \left(\sqrt{M_{by}^{2} + M_{bz}^{2}} \right)$$
(C.19)
$$r_{b} = 0.83 \text{ for } N_{b} > \frac{1}{d_{bm}} \left(\sqrt{M_{by}^{2} + M_{bz}^{2}} \right)$$

Reducers

Reducers with defined radius of curvature r

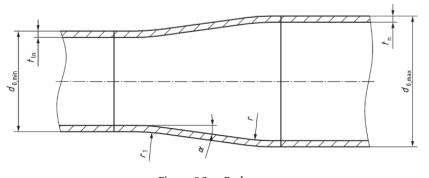


Figure C.2 — Reducer

Table C.6. Stress concentration factors for reducers

	<i>i</i> _{a1}	<i>i</i> _{a2}	<i>i</i> _{a3}	<i>i</i> _{a4}	<i>i</i> _{a5}	<i>i</i> _{ap}
S _m	1	1	1	0	0	1/cos α
Sres	k	k	1	0	0	$1/\cos \alpha$

$$k = 0.5 + 0.01 \cdot \alpha \sqrt{\frac{d_{o,min}}{t_{1n}}}$$
(C.21)

 α is inserted in degrees. The expression for k is only valid if the following requirements are met:

the transitional part is concentric; $\alpha \leq 30^{\circ}$ and $d_{o,min}/t_{l,n}$ and $d_{o,max}/t_n$ are both smaller than 100.

Allowable Pressure

A.2.1 Straight pipes: For straight pipes, the allowable internal pressure is calculated from Equations (A.1) and (A.2):

$$P_a = \frac{2\sigma_d z t_{min}}{d_o} \tag{A.1}$$

where,

$$t_{min} = t_n - (c_1 + c_2) \tag{A.2}$$

 P_a = allowable pressure

 d_o = outside diameter of the pipe

z =joint efficiency factor

 t_n = nominal wall thickness of the pipe.

 $c_1 = \text{mill/fabrication tolerance (input as a % of thickness)}$

 $c_2 = \text{corrosion allowance}$

 σ_d = allowable stress (i.e., design stress) = $R_e(T)$, yield stress at design temperature (sec 5.2.3.1), where design temperature is a CAEPIPE input

Note: The above allowable pressure calculated by CAEPIPE is valid only for pipes and components delivered with the required certificate as per sec. 5.2.2.

For pipes and components delivered without the required certificate, the allowable pressure P_a computed by CAEPIPE should be manually divided by $\gamma_{m,vield} = 1.2$. (sec. 5.2.3.1)

A.2.2 Bends: The allowable internal pressure for bends is calculated as

$$P_a = \frac{2\sigma_d z t_{min}}{d_o I}$$

$$I = \frac{R - 0.25d_i}{R - 0.5d_m}$$
(A.3)

 d_i = inside diameter of the pipe

 d_m = mean diameter of the pipe

A.4 Reducers and extensions: shall withstand the same internal pressure as the connecting pipes where the half angle α , at the apex of the component does not exceed 30 degrees,

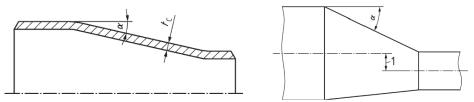
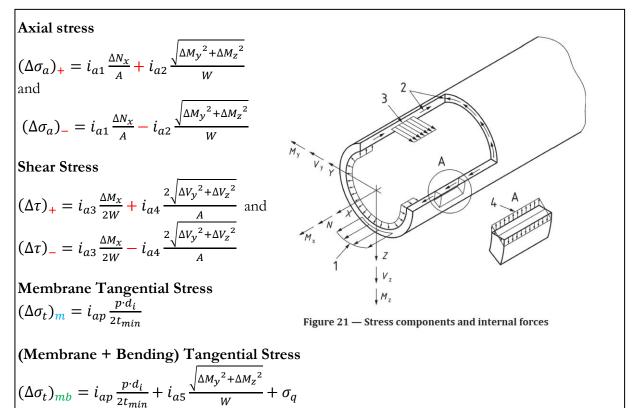


Figure A.2 — Reducer

Figure A.3 — Offset reducer

The allowable internal pressure is calculated from

$$P_a = min\left\{\frac{2\sigma_d z \, \cos\alpha \, t_{n1,min}}{d_{o1}}, \frac{2\sigma_d z \, \cos\alpha \, t_{n2,min}}{d_{o2}}\right\}$$


where:

 $t_{n1,min} = t_{n1} - (c_1 + c_2)$ $t_{n2,min} = t_{n2} - (c_1 + c_2)$ t_{n1} , and t_{n2} is nominal wall thickness of pipe at inlet and outlet of reducer. d_{o1} , and d_{o2} is nominal outer diameter at inlet and outlet of reducer.

Note: CAEPIPE permits to model the reducers with $\alpha \leq 30^{\circ}$. Reducers with $\alpha > 30^{\circ}$ cannot be modeled, because the stress concetration factors are not explicitly given in C.3.5 for reducers with $\alpha > 30^{\circ}$.

Evaluation of Stresses

Stress components and internal forces as per sec. 6.6.2 of the code are defined as:

The equivalent stress as per sec. 6.6.3 is calculated from the axial and tangential stress components (calculated with sign) by von Mises for either membrane stress or membrane + bending stress (m|mb)

$$S_{m|mb} = max \left\{ S1_{m|mb}, S2_{m|mb}, S3_{m|mb}, S4_{m|mb}, |(\Delta\sigma_a)_+|, |(\Delta\sigma_a)_-| \right\}$$

where,
$$S1_{m|mb} = \sqrt{(\Delta\sigma_a)_+^2 - (\Delta\sigma_a)_+ \cdot (\Delta\sigma_t)_{m|mb} + (\Delta\sigma_t)_{m|mb}^2 + 3(\Delta\tau)_+^2}$$

$$S2_{m|mb} = \sqrt{(\Delta\sigma_a)_-^2 - (\Delta\sigma_a)_- \cdot (\Delta\sigma_t)_{m|mb} + (\Delta\sigma_t)_{m|mb}^2 + 3(\Delta\tau)_+^2}$$

$$S3_{m|mb} = \sqrt{(\Delta\sigma_a)_+^2 - (\Delta\sigma_a)_+ \cdot (\Delta\sigma_t)_{m|mb} + (\Delta\sigma_t)_{m|mb}^2 + 3(\Delta\tau)_-^2}$$

$$\begin{split} & S4_{m|mb} = \sqrt{(\Delta\sigma_a)_-^2 - (\Delta\sigma_a)_- \cdot (\Delta\sigma_t)_{m|mb} + (\Delta\sigma_t)_{m|mb}^2 + 3(\Delta\tau)_-^2} \\ & N_x = \text{Axial force (positive for tension), (pressure, temperature and soil reaction)} \\ & M_x = \text{Torsional moment} \\ & M_y \text{ and } M_z = \text{Bending moment} \\ & A = \text{Metal area of pipe} \\ & W = \text{Section modulus} \\ & V_y \text{ and } V_z = \text{Shear force} \\ & p = \text{Internal pressure} \\ & d_i = \text{Inside diameter of the steel service pipe.} \\ & t_{min} = \text{Minimum pipe wall thickness} = t_n - (c_1 + c_2) \\ & i_{a1} = \text{Stress concentration factor for axial stresses from normal force} \\ & i_{a2} = \text{Stress concentration factor for shear stresses from torsion} \\ & i_{a4} = \text{Stress concentration factor for shear stresses from shear force} \\ & i_{ap} = \text{Stress concentration factor for hoop stresses from pressure} \end{split}$$

Area and section modulus are calculated, as per 6.6.2, as follows:

$$A = \pi \times (d_o - t_n) \times t_n \tag{45}$$

$$W = \frac{\pi}{32 \times d_o} [d_o^4 - (d_o - 2t_n)^4]$$
(46)

 d_o = Outer diameter of the steel service pipe

 t_n = nominal pipe wall thickness

 c_1 = Correction to wall thickness for fabrication tolerance

 c_2 = Correction to wall thickness for corrosion allowance

 S_m = Membrane stress S_{mb} = Resulting stress of membrane stress and bending stress

 σ_a = Axial (normal) stress

 σ_t = Tangential stress

 $\tau =$ Shear stress

 σ_p = Hoop stress from internal pressure

 σ_q = Ovalisation stress from soil pressure, traffic, etc. to be manually computed by the user and input into soil model dialog of CAEPIPE at this time.

Forced Control Action LC2 (sec. 7.2.2.2);

In CAEPIPE, the LC2 case (both S_m and S_{res}) is evaluated for sustained loads (W+P) which include weight (of pipe, fluid, and insulation) *at maximum operating pressure*. The displacements specified as settlement at anchor and nozzle locations are also included in force-controlled action.

3) $S_m = Membrane stress A1:$

$$S_m \leq S_{ma} (= R_e(T)/\gamma_m)$$

 S_m = is the equilibrium membrane stress

 S_{ma} = is the allowable membrane stress (= $R_e(T)/\gamma_m$)

 $R_e(T)$ = Specific minimum yield strength *at maximum operating temperature*

 $\gamma_m = 1.25$ is the partial safety factor for the base material, as per sec. 7.2.2.2.

4) $S_{res} = Membrane + Bending stress A1:$

$$S_{res}(=S_{mb}) \leq S_{resa}$$

 S_{res} (= S_{mb}) is the resulting stress of equilibrium membrane stress and equilibrium bending stress

 S_{resa} = is the allowable resulting stress (including membrane + bending)

$$S_{resa} = \begin{cases} 1.5 \frac{R_e(T)}{\gamma_m} & \text{for} \quad S_m \le 0.67 \frac{R_e(T)}{\gamma_m} \\ 2.5 \frac{R_e(T)}{\gamma_m} - 1.5 S_m & \text{for} \quad 0.67 \frac{R_e(T)}{\gamma_m} \le S_m \le \frac{R_e(T)}{\gamma_m} \end{cases}$$

Note: The above stresses calculated by CAEPIPE is valid only for pipes and components delivered with the required certificate as per sec. 5.2.2, where $\gamma_m = 1.25$.

For pipes and components delivered without the required certificate, the allowable stresses should be calculated manually by the user with $\gamma_m = (1.2 * 1.25)$ as per sec.5.2.3.1

Stepwise plastic deformation LC3 (sec. 7.2.2.3);

In CAEPIPE, the LC3 case is evaluated for each operating load case (Weight of pipe, fluid & insulation + Pressure + Temperature) and *at each set of operating pressure and temperature*.

 $S_{pd} = Force + Deformation stress A2$

Limit state A2 concerns incremental collapse and stress ratcheting. The limit state for stress ratcheting for fully restrained sections is obtained from:

$$S_{pd} \leq S_{pda}$$

 S_{pd} is the maximum of axial stress due to plastic deformation.

$$S_{pd} = max\{(\Delta\sigma_a)_+, (\Delta\sigma_a)_-\}$$

The allowable/limit state for stress ratcheting for fully restrained sections is obtained from:

$$S_{pda} = R_{e}(T) \left[\sqrt{1 - \frac{3}{4} \left(\frac{\sigma_{p}}{R_{e}(T)}\right)^{2}} + \sqrt{\gamma^{2} - \frac{3}{4} \left(\frac{\sigma_{p}}{R_{e}(T)}\right)^{2}} \right]$$

 $R_e(T)$ = Specific minimum yield strength *at operating temperature*

 σ_p (= $Pd_o/2zt_{min}$) = hoop stress *at operating pressure*. (eqn. 78)

$\gamma = 0.7$, is a safety factor

Note: EN13941-1:2019 does not specify stress concentration factors for calculating S_{pd} . In CAEPIPE, the stress concentration factors for S_{pd} calculations are considered the same as those for resulting stresses for each component given in Tables C1, C3, C4, and C6.

TEES

 In CAEPIPE, σ and τ are calculated separately for run pipe and branch pipe with sectional forces chosen as follows:

For stresses in the run pipe, the forces and moments determined in the run at the intersection between the centerlines of the pipes are used.

For stresses in the branch pipe, the forces and moments determined in the branch at a distance of $0.5 d_{ro}$ from the centreline of the run pipe are used.

Note: CAEPIPE automatically refines the elements connected to the node point with a defined tee. Two (2) nodes on Run Pipe (one on either side of the Branch SIF node) at a distance equal to Run Pipe OD and one (1) node on



Figure 24 — Symbols for T-pieces

Branch Pipe at a distance equal to Run pipe OD/2 from the Branch SIF node are internally added with appropriate node numbers.

• As per sec. 6.6.7, the stresses at the intersection of run pipe are calculated after combining the axial and shear stresses from the run pipe and branch element as follows.

 $(\Delta \sigma_a)_{\pm}(run \ intersection) = (\Delta \sigma_a)_{\pm}(run) + \Delta \sigma_a \ (branch)$ (63) $(\Delta \tau)_{+}(run \ intersection) = (\Delta \tau)_{+}(run) + \Delta \tau \ (branch)$ (64)

In CAEPIPE,

$$\Delta \sigma_a (branch) = \begin{cases} (\Delta \sigma_a)_+ (branch) & if \quad |(\Delta \sigma_a)_+| > |(\Delta \sigma_a)_-| \\ (\Delta \sigma_a)_- (branch) & if \quad |(\Delta \sigma_a)_-| \ge |(\Delta \sigma_a)_+| \end{cases}$$
$$\Delta \tau (branch) = \begin{cases} (\Delta \tau)_+ (branch) & if \quad |(\Delta \tau)_+| > |(\Delta \tau)_-| \\ (\Delta \tau)_- (branch) & if \quad |(\Delta \tau)_-| \ge |(\Delta \tau)_+| \end{cases}$$

Modeling buried pipe bilinear restraints

Longitudinal/Axial soil stiffness (sec. 6.5.3.1)

Cohesionless Soil	Cohesive Soil
For sandy soils, the ultimate axial load per unit	The ultimate axial/longitudinal load per unit length
length	$F_u = \pi D_c C_f \cdot C_s$
$F_{u} = \mu \left(\frac{1+\kappa_{o}}{2}\pi D_{c}\sigma_{v} + G - \gamma_{s} \cdot \pi \left(\frac{D_{c}}{2}\right)^{2}\right) $ (8) where, $K_{o} = \text{coefficient of horizontal soil pressure at rest}$ $K_{o} = 1 - \sin \varphi'$ $\varphi' - \text{the effective angle of Internal friction of soil}$ $\sigma_{v} - \text{Effective (normal) integranular soil stress at}$ pipe center level. $\mu = \tan \delta $ (12) is the friction coefficient, sec.6.5.3.2 $\delta = \text{Angle of interface friction between soil and}$ (casing) pipe.	where F_u - Ultimate axial soil load C_s - Cohesion strength. C_f - Cohesion factor

For granular soils

$$\sigma_{v} = \gamma_{s}H_{w} + \gamma_{sw}(Z - H_{w}) \text{ for } H_{w} < Z \quad (9)$$

$$\sigma_{v} = \gamma_{s}Z \text{ for } H_{w} \ge Z \quad (10)$$

$$\gamma_{sw} = \gamma'_{sw} - \gamma_{w} \quad (11)$$

 D_c = Outer diameter of the casing

G = Effective self-weight of the factory-made pipe assembly (including pipe fill) per meter of pipe length

 γ_s = Effective weight of soil above ground water table

 γ_{sw} = Effective weight of soil below ground water table = $\gamma'_{sw} - \gamma_w$

 γ'_{sw} = Effective weight of saturated soil below ground water table

 γ_w = Effective weight of water

Z = Depth of burial (measured to centerline of pipe assembly)

 H_w = Depth of ground water table below grade

For sandy soils, the relative displacement u_u between the pipe and surrounding soil required to reach the maximum friction resistance f_u is approx. $u_u = 3 \text{ mm} = 0.003 \text{m}$.

Axial soil stiffness = F_u/u_u

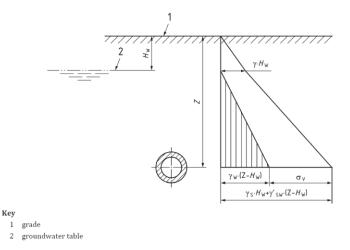
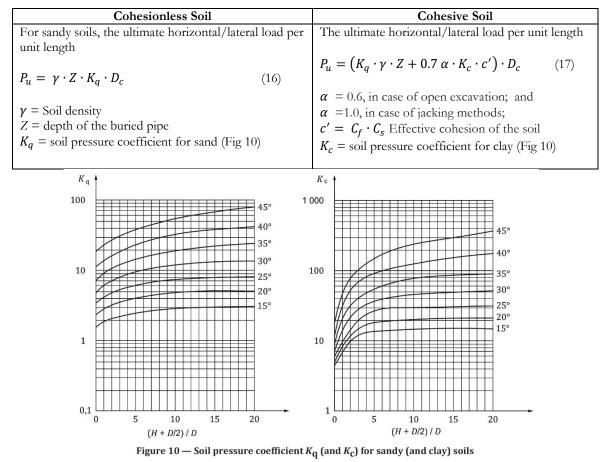



Figure 8 — Calculation of effective soil stress

Horizontal/Lateral soil stiffness (sec. 6.5.4.1)

The coefficient of horizontal/lateral soil reaction or horizontal/lateral bedding constant is defined as the ratio between horizontal/lateral soil pressure and horizontal/lateral movement of the pipe system.

The ultimate horizontal/lateral soil resistance P_u is assessed using the equivalent equation for side support:

In Figure 10 the values on the right side (45°, 30°, etc.) represent the effective internal angle of friction of the soil φ' , H is soil cover above pipe (see Figure 5 in EN13941-1) and D is considered as outer diameter of casing Dc (see Figure 13 in EN13941-1).

The ultimate horizontal/lateral displacement v_u is not defined precisely. The results of a number of tests with small diameter pipes are summarized in Table 12.

${m v_u}/{ m Z}$ %					
Casing Diameter Dc	Loose sand	Dense sand			
75 mm ^a	4.5	2.7			
120 mm	3	2			
\geq 300 mm 2 1.5					
Values obtained by interpolation.					

Table 12 – Ultimate horizontal/lateral displacement v_u

For buried pipes without expansion cushions, a fair relationship between horizontal pipe movement and corresponding soil restraint is given by

$$\frac{p}{p_u} = \frac{v/v_u}{0.15 + 0.85 \, v/v_u} \tag{15}$$

At 70% of ultimate horizontal load i.e., $p/p_u = 0.7$, the horizontal displacement is calculated as

$$0.7(0.15 + 0.85 v/v_u) = v/v_u$$
$$v_{70\%} = 0.2593 v_u$$

Vertical soil stiffnesses

To compute vertically upward and downward stiffnesses, the ultimate loads in vertical direction are considered as the same as those for other piping codes in CAEPIPE. For details, refer to the Section titled "Buried Piping" in the Technical Reference Manual. The vertical yield displacement for the soil is assumed to be D/25, where D is the outside diameter of the pipe.

Combined lateral stiffness of PUR, expansion cushions and soil (sec. 6.5.5)

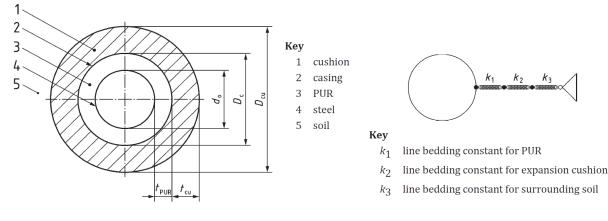


Figure 13 — Symbols for bedding constants

Figure 14 — Combined soil spring constant

PUR	Cushion	Soil	Combined
	$k_{h,2} = \frac{E_{cu}}{t_{cu}} $ (20a) $k_2 = k_{h,2}D_c$ (20b)	$k_{h,3} = \frac{0.7 p_u}{v_{70\%}} \qquad (21a)$ $k_3 = k_{h,3} D_{cu} \qquad (21b)$	$\frac{1}{k} = \sum \frac{1}{k_i} \tag{22}$

where,

 d_o = Outside diameter of steel service pipe

 D_c = Outer diameter of casing

 D_{cu} = Equivalent outside diameter of expansion cushion.

Polyurethane foam thermal insulation (sec. 5.3)

In CAEPIPE, for EN13941-1 code, the insulation for pipe is considered as PUR, and the elastic modulus for PUR is internally set as $E_{PUR} = 10.0 MPa$.

The elastic modulus E_{cu} for expansion cushion shall be input in soil dialog as per section 5.6.3.

NOTE 1: The above methodology of combining stiffnesses of PUR, expansion cushions and soil is also applied in the vertically downward and upward directions.

NOTE 2: Expansion Cushion is very flexible, whereas PUR is stiffer. Surrounding soil is much stiffer than PUR. So, the line bedding constant 'k₂' for Expansion Cushion is much less than the line bedding constant 'k₁' for PUR, which, in turn, is much less than the line bedding constant 'k₃' for the surrounding soil, where the line bedding constant is the same as stiffness. In short, $k_2 << k_1 <<< k_3$.

The combined stiffness 'k' computed using Equation (22) will be less than the Expansion Cushion stiffness, ' k_2 '. Due to this low value of combined stiffness 'k', sometimes non-linear iterative solution may not converge. In such case of non-convergence, re-perform the analysis without including Expansion Cushion. If the solution still not converges, then re-perform with just surrounding soil (i.e., without including stiffnesses of both PUR and Expansion Cushion). In this case, the weight per unit length of insulation PUR shall be input as "Additional weight" in CAEPIPE's Loads dialog.

C.2 Flexibility factors for pipe components (see Annex C)

C.2.1 Bends

Flexibility Factor for bending	Bend Radius	Equation
$k_b = \frac{1.24 \cdot d_m^2}{4 \cdot t_n \cdot R} \ge 1$	$R \leq 1.5 d_o$	(C.1)
$\frac{1.24 \cdot d_m^2}{4 \cdot t_n \cdot R} < k_b < \frac{1.65 \cdot d_m^2}{4 \cdot t_n \cdot R}$	$1.5 d_o < R < 2.5 d_o$	(C.2)
$k_b = \frac{1.65 \cdot d_m^2}{4 \cdot t_n \cdot R}$	$R \ge 2.5 d_o$	(C.3)

Intervening values are obtained by interpolation. For bend angles between 90° and 0°, the flexibility factor k_b for bending is linearly interpolated between flexibility factor at 90° and for straight pipe (*i.e.*, $k_b = 1$). The flexibility factor for normal forces, shear forces and torque equals 1.

For pipe bends, the internal pressure will counteract ovalization. This is considered by dividing k_b with

$$1 + 6\frac{p}{E} \left(\frac{d_m}{2t}\right)^{7/3} \left(\frac{d_m}{2R}\right)^{-1/3} \tag{C.4}$$

For miter bends, the flexibility factors are not provided in EN 13941-1 (2019). Hence, the flexibility factor as given in ASME B31J (2017) is used for all types of miter bends.

$$k_b = 1.52 \left(\frac{d_m^2}{4 \cdot t_n \cdot R}\right)^{5/6}$$

C.2.2 T-pieces

The flexibility factor for T pieces equals 1.

For $d_{bo}/d_{ro} \leq 0.8$ the flexibility of the connection between the branch pipe and run pipe may be taken into account by applying the following spring factor to the branch pipe at the point where the axis of the branch intersects the outside of the run pipe.

For in-plane bending, M_{by} ,

$$c_y = \frac{E \cdot I_b}{k_y \cdot d_{ro}} \tag{C.5}$$

$$k_{y} = 0.2 \left(\frac{d_{ro}}{t_{r}}\right) \cdot \left(\frac{t_{r}}{t_{b}} \cdot \frac{d_{bo}}{d_{ro}}\right)^{0.5} \cdot \frac{t_{b}}{t_{r}}$$
(C.6)

For out-of-plane bending, M_{bz} ,

$$c_z = \frac{E \cdot I_b}{k_z \cdot d_{ro}} \tag{C.7}$$

$$k_z = 0.1 \left(\frac{d_{ro}}{t_r}\right)^{1.5} \cdot \left(\frac{t_r}{t_b} \cdot \frac{d_{bo}}{d_{ro}}\right)^{0.5} \cdot \frac{t_b}{t_r}$$
(C.8)

Note: CAEPIPE automatically refines the elements connected to the node point with a defined tee, by adding two (2) nodes on Run Pipe (one on either side of the Branch SIF node) at a distance equal to Run Pipe OD and one (1) node on Branch Pipe at a distance equal to Run pipe OD/2 from the Branch SIF node. Flexibility Factors for Branch Pipe (Leg 3), as stated above in equations (C.5) – (C-8), are applied to the branch pipe. For Equal TEEs, the Run and Branch should be differentiated in the CAEPIPE model by defining the Branch OD as slightly less than the Run OD through CAEPIPE Sections input.

C.3 Stress concentration factors in pipe elements

Note: The stress concentration factors i_{a1} to i_{a5} and i_{ap} are either = 0 or >= 1 for all types of stress evaluation. Stress concentration factors = 0, meaning "no contribution of the term in computing stresses".

C.3.2.1 Stress concentration factors for bends and miter bends: Simplified method

	i _{a1}	<i>i</i> _{a2}	i _{a3}	i _{a4}	i _{a5}	i _{ap}
S _m	1	$0.9 \cdot \left(\frac{d_m^2}{4t_n R}\right)^{2/3}$	1	1	0	$\frac{R - 0.25d_i}{R - 0.5d_m}$
S _{res}	1	$0.9 \cdot \left(\frac{d_m^2}{4t_n R}\right)^{2/3}$	1	1	$1.8 \cdot \left(\frac{d_m^2}{4t_n R}\right)^{2/3}$	$\frac{R - 0.25d_i}{R - 0.5d_m}$

Table C.1 Stress concentration factors for bends

If the bracing effect of over pressure has been considered when calculating the flexibility of the pipe bend,

 i_{a2} and i_{a5} shall be divided by f

$$f = 1 + 3.25 \frac{p}{E} \left(\frac{d_m}{2t}\right)^{5/2} \left(\frac{d_m}{2R}\right)^{-2/3}$$
(C.9)

With i_{a2} and i_{a5} valued at a minimum of 1.0 after the above division.

C.3.3 T-pieces

Table C.3 Stress concentration factors for membrane stresses in point B of T-pieces (all types)

Membrane stresses S _m	i _{a1}	<i>i</i> _{a2}	<i>i</i> _{a3}	i _{a4}
Run pipe Branch pipe	$r_r \cdot k_2 \\ r_b \cdot k$	$r_r \cdot k_1 \\ r_b \cdot k$	$2r_r \cdot k_1$ $r_b \cdot k$	$r_r \cdot k_1$ $r_b \cdot k$

Table C.4 - T-pieces: Stress concentration factors for resulting stresses in point B

Resulting stresses	<i>i</i> _{a1}	<i>i</i> _{a2}	<i>i</i> _{a3}	<i>i</i> _{a4}	
Sres					
Directly welded T-piece	CAEPIPE:	Unreinforced f	abricated Tee		
Run pipe	$1.2k_2$	k_1	$2k_1$	k_1	
Branch pipe	k	k	k	k	
Forged T-piece	CAEPIPE:	Welding Tee			
Run pipe	0.7k ₂	$0.6k_1$	$1.2k_1$	$0.6k_1$	
Branch pipe	0.4k	0.4k	0.4k	0.4k	
T-piece with drawn collar	CAEPIPE: Extruded Tee				
Run pipe	0.8k ₂	$0.7k_1$	$1.4k_1$	$0.7k_1$	
Branch pipe	0.7 <i>k</i>	0.7k	0.7 <i>k</i>	0.7k	

$$k_{1} = 0.523 \left(\frac{1}{d_{rm}}\right)^{1/3} \left(\frac{1}{t_{r}}\right)^{2/3} d_{bm} + 2.5 \left(1 - \frac{d_{bm}}{d_{rm}}\right)^{3/2}$$

$$k_{2} = 0.65 \left(\frac{1}{d_{rm}}\right)^{5/6} \left(\frac{1}{t_{r}}\right)^{2/3} (d_{bm})^{3/2} + 2.5 \left(1 - \frac{d_{bm}}{d_{rm}} \frac{t_{b}}{t_{r}}\right)^{9/5}$$

$$k = 0.567 \left(\frac{d_{rm}}{t_{r}}\right)^{2/3}$$

$$k = 0.567 \left(\frac{d_{rm}}{t_{r}}\right)^{2/3}$$

$$k = 0.567 \left(\frac{d_{rm}}{t_{r}}\right)^{2/3}$$

Reduction factors for membrane stresses:

$$r_{r} = 0.56 \frac{t_{b}}{t_{r}} \left(2 - \frac{d_{bm}}{d_{rm}}\right)^{5/3}$$
(C.18)
$$r_{b} = 0.83 \sqrt{\frac{d_{bm}}{d_{rm}}}$$
(C.19)

Reducers

Reducers with defined radius of curvature r

Table C.6. Stress concentration factors for reducers *i*_{a3} *i*_{a4} *i*_{ap} i_{a5} *i*_{*a*1} i_{a2} S_m 1 1 1 0 0 $1/\cos \alpha$ k k 1 0 0 Sres $1/\cos \alpha$

$$k = 0.5 + 0.01 \cdot \alpha \sqrt{\frac{d_{o,min}}{t_{1n}}}$$
(C.21)

 α is inserted in degrees. The expression for k is only valid if the following requirements are met:

the transitional part is concentric; $\alpha \leq 30^{\circ}$ and $d_{o,min}/t_{l,n}$ and $d_{o,max}/t_n$ are both smaller than 100.

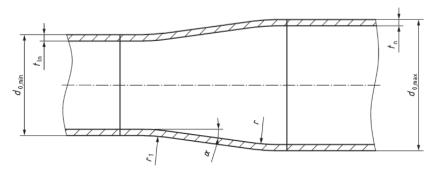


Figure C.2 — Reducer

Allowable Pressure

The allowable pressure for <u>straight pipes</u> is calculated from equation (6.1-1) or (6.1-3) depending on the ratio between outer and inner diameters.

For $D_o/D_i \leq 1.7$

$$P = \frac{2fze}{D_o - e}$$

For $D_o/D_i > 1.7$

$$P = fz \frac{(1-a^2)}{(1+a^2)}$$

where

- P = allowable pressure
- f = allowable stress at Design Temperature as input into CAEPIPE Material properties

z = joint factor (input as material property in CAEPIPE)

e = pipe wall thickness without allowances and tolerances
 = nominal pipe thickness × (1 – mill tolerance/100 – corrosion allowance "c")

(In the pipe section where higher nominal thickness is ordered in order to accommodate either threading or grooving or erosion or any other thinning allowance, then such additional thickness required for threading/grooving/erosion/thinning etc. should be included in corrosion allowance "c" in CAEPIPE to compute allowable pressure for that pipe section.)

$$D_o = \text{outer diameter}$$

$$D_i = \text{un-corroded inner diameter}$$

$$a = 1 - \frac{2e}{D_o}$$

For pipe bends

Clause 6.2.1 of the code explicitly states "These calculation rules take into account that upon applying internal pressure to a pipe bend, higher stresses occur on the intrados of the bend (and lower stresses on the extrados of the bend) than on a straight pipe with identical wall thickness."

So, for pipe bends the maximum allowable pressure is calculated using the equivalent pipe wall thickness e_{equi}

$$e_{equi} = \frac{e}{t_f}$$

where

$$t_f = \left[\frac{R/D_o - 0.25}{R/D_o - 0.50}\right]$$

R = radius of bend

For closely spaced miter bends, the allowable pressure is calculated from equations (6.3.4-1) and (6.3.4-2).

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s-r)}{r(R_s-r/2)}\right] \text{ with } \theta \le 22.5^{\circ}$$

For widely spaced miter bends, the allowable pressure is calculated from equations (6.3.4-1), (6.3.4-2) and (6.3.5-1)

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s-r)}{r(R_s-r/2)}\right] \text{ with } \theta \le 22.5^{\circ}$$

$$P = \frac{f z e^2}{r(e+1.25 \tan \theta \sqrt{re})} \text{ with } \theta > 22.5^{\circ}$$

where

 $r = \text{mean radius of pipe} = (D_o - e)/2$ $R_S = \text{effective bend radius of the miter}$ $\theta = \text{miter half angle}$

Sustained Stress

The primary stress (σ_1) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from equation (12.3.2-2)

$$\sigma_1 = \sqrt{\left[\frac{i_{QA}Q_{xA}}{A_c} + \frac{\sqrt{(0.75i_iM_{iA})^2 + (0.75i_oM_{oA})^2}}{Z_c}\right]^2 + \left[\frac{i_tM_{tA}}{Z_c}\right]^2} \le f_f$$

where

 $\mathbf{Q}_{xA} = \max\left[|Q_{xS}|, \left|\frac{P_c \pi d_{ic}^2}{4} + Q_{xS}\right|\right]$

 $\frac{P_c \pi d_{ic}^2}{4} = \text{internal pressure forces due to unrelieved axial expansion joints etc.}$

 Q_{xs} = axial force from other sustained mechanical loads (such as pipe weight, fluid weight etc.) [excluding that from pressure]

 P_c = maximum of CAEPIPE input pressures [i.e., max(P1 through P10)]

 d_{ic} = corroded inside diameter = $d_o - (2.e_c)$

 $d_o = outside diameter$

 $e_c = corroded thickness = e_n - corrosion allowance$

 $e_n = nominal pipe thickness$

 $A_c = \text{area of cross section of the corroded pipe} = \frac{\pi}{4} (d_o^2 - d_{ic}^2)$

 M_{iA} = in-plane bending moment from the sustained mechanical loads [excluding that from pressure]

 M_{oA} = out-of-plane bending moment from the sustained mechanical loads [excluding that from pressure]

 M_{tA} = torsional moment from the sustained mechanical loads [excluding that from pressure]

 i_{OA} = stress intensification factor for axial forces for sustained mechanical loads = 1.0

 i_i = In-plane stress intensification factor from the Tables given at the end of this section

 i_0 = Out-of-plane stress intensification factor from the Tables given at the end of this section

 i_t = stress intensification factor for torsional moments = 1.0

 $Z_c = \text{corroded section modulus for pipe} = \frac{\pi}{32d_o} (d_o^4 - d_{ic}^4);$

for branch connections/reduced outlets, as per Table H.3 of EN 13480-3:2017/A2:2020,

$$Z_{c} = min\left[i\frac{\pi\left(\left(d_{m,b}+e_{n,b}\right)^{4}-\left(d_{m,b}+e_{n,b}-2e_{c,b}\right)^{4}\right)}{32\left(d_{m,b}+e_{n,b}\right)}, \frac{\pi}{4}\left(d_{m,b}+e_{n,b}\right)^{2}e_{c}\right]$$

where i is taken as In-plane SIF i_i

 $f_f = min(f; f_{cr}) = design stress for flexibility analysis at the maximum operating temperature under consideration [i.e., max(T1 through T10)], where$

f = min(Rp0.2t/1.5; Rm/2.4) at max(T1 through T10); f is input into CAEPIPE material properties

 f_{cr} = design stress in creep range at max(T1 through T10); f_{cr} is input into CAEPIPE material properties

Rp0.2t = minimum 0.2% proof strength at max(T1 through T10)

Rm = Tensile Strength (= Tensile as shown in CAEPIPE material input)

Note: Starting Version 7.50 of CAEPIPE, the value of "ff" is no longer input in the material properties table. Instead, the value of "f" which is calculated as min(Rp0.2t/1.5; Rm/2.4) is input for each temperature.

If a stress model created using CAEPIPE version earlier than 7.50 is read into CAEPIPE Version 7.50 or later version, the material properties should be updated appropriately by the CAEPIPE User.

Sustained plus Occasional Stress

The primary stress (σ_2) due to sustained and occasional loads is calculated from equation (12.3.3-4) as the combined stress due to (a) sustained loads such as pressure, weight and other sustained mechanical loads and (b) occasional loads such as earthquake or wind. Wind and earthquake are not considered to act concurrently.

$$\sigma_2 = \sqrt{\left|\frac{i_{QA}Q_x}{A_c} + \frac{\sqrt{[0.75i_i(M_{iA} + M_{iB})]^2 + [0.75i_o(M_{oA} + M_{oB})]^2}}{Z_c}\right|^2 + \left[\frac{i_tM_{tA} + i_tM_{tB}}{Z_c}\right]^2 \le kf_f$$

where

 $M_{_{iB}}$ = in-plane bending moment from occasional or exceptional loads

 M_{oB} = out-of-plane bending moment from occasional or exceptional loads

 M_{tB} = torsional moment from occasional or exceptional loads

For reversing loads (unsigned occasional load cases, e.g. earthquake)

$$Q_{x} = \max\left[|Q_{xA}| + |Q_{xB}|, \left|\frac{P_{b}\pi d_{ic}^{2}}{4} + Q_{xA}\right| + |Q_{xB}|\right] \text{ as per equation (12.3.3-2)}$$

Both signs of M_{iB} and M_{oB} are considered

For non-reversing loads (signed occasional load cases, e.g. wind)

$$Q_{x} = \max\left[|Q_{xA}|, |Q_{xA} + Q_{xB}|, \left|\frac{P_{b}\pi d_{ic}^{2}}{4} + Q_{xA}\right|, \left|\frac{P_{b}\pi d_{ic}^{2}}{4} + Q_{xA} + Q_{xB}\right|\right] \text{ as per equation}$$
(12.3.3-3)

 P_{b} = Peak pressure during occasional loading = Peak Pressure Factor x P_{c}

 P_c = maximum of CAEPIPE input pressures [i.e., max(P1 through P10)]

 Q_{xA} = axial force due to sustained mechanical loads [excluding that from pressure]

 Q_{xB} = axial force due to occasional loads [excluding that from pressure]

$$A_c = \text{area of cross section of the corroded pipe} = \frac{\pi}{4} (d_o^2 - d_{ic}^2)$$

$$Z_c = \text{corroded section modulus} = \frac{\pi}{32d_o} (d_o^4 - d_{ic}^4);$$

for branch connections/reduced outlets, as per Table H.3 of EN 13480-3:2017/A2:2020,

$$Z_{c} = min\left[i\frac{\pi\left(\left(d_{m,b}+e_{n,b}\right)^{4}-\left(d_{m,b}+e_{n,b}-2e_{c,b}\right)^{4}\right)}{32\left(d_{m,b}+e_{n,b}\right)}, \frac{\pi}{4}\left(d_{m,b}+e_{n,b}\right)^{2}e_{c}\right]$$

where i is taken as In-plane SIF i_i

 $f_f = min(f; fcr) = design stress for flexibility analysis at the maximum operating temperature under consideration [i.e., max(T1 through T10)], where$

f = min(Rp0.2t/1.5; Rm/2.4) at max(T1 through T10); f is input into CAEPIPE material properties

 f_{cr} = design stress in creep range at max(T1 through T10); f_{cr} is input into CAEPIPE material properties

Rp0.2t = minimum 0.2% proof strength at max(T1 through T10)

Rm = Tensile Strength (= Tensile as shown in CAEPIPE material input)

k=1.2 if the occasional load is acting less than 1% in any 24 hour operating period. In CAEPIPE, the default value for k=1.2; user can change this default value through Layout window > Options > Analysis > Code > EN13480.

Note: Starting Version 7.50 of CAEPIPE, the value of "ff" is no longer input in the material properties table. Instead, the value of "f" which is calculated as min(Rp0.2t/1.5; Rm/2.4) is input for each temperature.

If a stress model created using CAEPIPE version earlier than 7.50 is read into CAEPIPE Version 7.50 or later version, the material properties should be updated appropriately by the CAEPIPE User.

Expansion Stress

The secondary stress (σ_3) due to thermal expansion is calculated from equation (12.3.4-3)

$$\sigma_{3} = \sqrt{\left[\frac{i_{QC}Q_{xC}}{A} + \frac{\sqrt{(i_{i}M_{iC})^{2} + (i_{o}M_{oC})^{2}}}{Z}\right]^{2} + \left[\frac{i_{t}M_{tC}}{Z}\right]^{2}} \le f_{a}$$

where

 M_{iC} = in-plane moment <u>range</u> due to thermal expansion and alternating loads M_{oC} = out-of-plane moment <u>range</u> due to thermal expansion and alternating loads M_{tC} = torsional moment <u>range</u> due to thermal expansion and alternating loads i_{QC} = stress intensification factor for axial forces due to thermal expansion and alternating loads = 1.0

 $Q_{xC} = \underline{range}$ of axial force due to thermal expansion and alternating loads

 $e_n = nominal pipe thickness$

 $d_0 = outside diameter$

 $d_i = inside diameter = d_o - 2 e_n$

A = un-corroded nominal area of cross-section = $\frac{\pi}{4}(d_o^2 - d_i^2)$ Z = un-corroded section modulus for pipe = $\frac{\pi}{32d_o}(d_o^4 - d_i^4)$;

for branch connections/reduced outlets, as per Table H.3 of EN 13480-3:2017/A2:2020,

$$Z = min\left[i\frac{\pi\left((d_{m,b}+e_{n,b})^4 - (d_{m,b}-e_{n,b})^4\right)}{32(d_{m,b}+e_{n,b})}, \frac{\pi}{4}\left(d_{m,b}+e_{n,b}\right)^2 e_n\right]$$

where i is taken as In-plane SIF ii

 $f_a = U(1.25f_c + 0.25f_h)\frac{E_h}{E_c}$ as per equation (12.1.3-1)

U = cyclic stress range reduction factor taken from Table 12.1.3-1

 E_c = modulus of elasticity at the minimum metal temperature consistent with the loading under consideration

- E_h = modulus of elasticity at the maximum metal temperature consistent with the loading under consideration
- $f_c = \min(R_m/3; f)$, where $f = \min(R_{p0.2t}/1.5; R_m/2.4)$ at room temperature (T_{ref}) as per equation (12.1.3-2)
- f_h = basic allowable stress at maximum metal temperature consistent with the loading under consideration = min(f_c; f; f_{cr}) as per equation (12.1.3-3), with f_c determined at minimum metal temperature consistent with the loading under consideration and f determined at maximum metal temperature consistent with the loading under consideration.

 \mathbf{f}_{cr} = design stress in creep range at max(T1 through T10); \mathbf{f}_{cr} is input into CAEPIPE material properties

For example, for the thermal range (T1-T2), with T1 = 300° C, T2 = 100° C and T_{ref} = 21° C, E_c is determined at T2 = 100° C and E_h is determined at T1 = 300° C.

 f_c as per Equation (12.1.3-2) listed above is determined at $T_{ref} = 21^{\circ}C$.

The value of f_c used in calculating f_h is determined at T2 = 100^oC [= min(100, 300)]; the value of f used in calculating f_h is determined at T1 = 300^oC [= max(100, 300)] and the value of f_{cr} is taken at T1 = 300^oC (if available)

If the above condition in equation (12.3.4-3) is not met, equation (12.3.4-2) as listed below may be used.

$$\sigma_4 = \sigma_1 + \sigma_3 \le f_f + f_a$$

Additional Conditions for the Creep Range

For piping operating within the creep range, the stress, (σ_5) , due to sustained, thermal and alternating loadings shall satisfy the equation (12.3.5-2) below.

$$\sigma_{5} = \sigma_{1} + \sqrt{\left[\frac{i_{QC}Q_{xC}}{3A} + \frac{\sqrt{(0.75i_{i}M_{iC})^{2} + (0.75i_{o}M_{oC})^{2}}}{3Z}\right]^{2} + \left[\frac{i_{t}M_{tC}}{3Z}\right]^{2}} \le f_{cr}$$

where

 f_{cr} = design stress in creep range at max(T1 through T10); f_{cr} is input into material properties.

Stresses due to a single non-repeated Support Movement (settlement)

The stress (σ_6) due to a single non-repeated support movement (settlement) is calculated from equation (12.3.6-2)

$$\sigma_{6} = \sqrt{\left[\frac{i_{QD}Q_{xD}}{A} + \frac{\sqrt{(i_{i}M_{iD})^{2} + (i_{o}M_{oD})^{2}}}{Z}\right]^{2} + \left[\frac{i_{t}M_{tD}}{Z}\right]^{2}} \le f_{D}$$

where

 M_{iD} = in-plane moment due to non-repeated anchor/restraint movement

 M_{oD} = out-of-plane moment due to non-repeated anchor/restraint movement

 M_{tD} = torsional moment due to non-repeated anchor/restraint movement

 i_{QD} = stress intensification factor for axial forces due to non-repeated anchor/restraint movement = 1.0

 Q_{xD} = axial force due to non-repeated anchor/restraint movement

A and Z are the same as defined under Expansion Stress given above

 f_D = allowable stress = min(2R_{p0.2t}; R_m)

Since only f and R_m are input into CAEPIPE, the above allowable stress criterion can be rewritten as follows.

 $f_D = 3f$, if [f < (R_m/2.4)]; otherwise

 $f_D = R_m$, if $[f = (R_m/2.4)]$

where f = allowable stress @ Reference Temperature (T_{ref}) entered in CAEPIPE.

Stresses on Buried Piping as per EN 13480-6 (2017)

The axial stress (S_L) due to combined pressure and temperature change effects is calculated from equation 1 of Clause 5.2.4 of EN 13480-6 (2017).

$$S_L = \eta S_P - \mathrm{Ea}(\Delta_T) \le 0.9 S_y$$

where

 S_P = circumferential stress due to maximum of CAEPIPE input pressures [i.e., max(P1 through P10)]

 η = Poisson's ratio

 Δ_T = maximum temperature range

 S_{y} = Yield Strength = 1.5 x f (when not input in CAEPIPE Material property)

N°	Component	Sketch	Flexibility	Stress intensi	fication factor
	designation		characteristic h	Out-of-plane	In-plane
1	Welding elbow or pipe bend		$\frac{e_n R}{r^2}$	$\frac{0,75}{h^{2/3}}$ a b c j	$\frac{0,9}{h^{2/3}}$ a b c j
2	Closely spaced mitre bend <i>l < r</i> (1 + tanθ) (<i>l</i> = 2 <i>R</i> tanθ)	e e	$\frac{\cot\theta}{2}\frac{e_n l}{r^2}$	$\frac{0,9}{h^{2/3}}$ a b c j	$\frac{0,9}{h^{2/3}}$ a b c j
3	Single mitre bend or widely spaced mitre bend l≥r(1 + tanθ)		$\frac{e_n}{r} \left(\frac{1 + \cot \theta}{2} \right)$	$\frac{0,9}{h^{2/3}}$ a b c j	$\frac{0,9}{h^{2/3}}$ a b c j
4	Forged tee to be welded, designed with a burst pressure greater than or equal to the burst pressure of the connected pipes		$\frac{4,4e_n}{r}$	$\frac{0,9}{h^{2/3}}$ a e fgi k	0,75 i _o + 0,25 a e f g i k
5	Reinforced fabricated tee with pad or saddle	\tilde{v}	$\frac{\left(e_n+0,5e_r\right)^{5/2}}{r\left(e_n^{-3/2}\right)}$	$\frac{0,9}{h^{2/3}}$ a d e i k	0,75 <i>i</i> ₀ + 0,25 a d e i k

Table H.3 — Flexibility characteristics and stress intensification factors for out-of-plane and inplane bending

N°	Component	Sketch	Flexibility	Stress intensi	fication factor
	designation		characteristic <i>h</i>	Out-of-plane	In-plane
				I ₀	i _i
6	Unreinforced fabricated tee		e _n r	$\frac{0,9}{h^{2/3}}$ a d e i k	0,75 i _o + 0,25 a d e i k
7	Extruded welding tee	r_1 $d_{m,b}$ c	$\left(1+\frac{r_1}{r}\right)\frac{e_n}{r}$	$\frac{0,9}{h^{2/3}}$ a e i k	0,75 i _o + 0,25 a e i k
8	Welded in contour insert		$\frac{4,4e_n}{r}$	$\frac{0,9}{h^{2/3}}$ a efgik	0,75 <i>i</i> ₀ + 0,25 a e f g i k
9	Branch welded on fitting (integrally reinforced)		<u>3,3e_n</u> r	$\frac{0,9}{h^{2/3}}$ a d f h k	$\frac{0,9}{h^{2/3}}$ a d f h k
					(to be continued)

Table H.3 (continued)

Table H.3 (concluded)

- а The factors i_0 and i_1 apply over the whole effective length of the elbows and bends and at the intersection of the axes in case of tees and nozzles.
- b If these components are fitted with:
- flange at one extremity, $i_{\rm O}$ and $i_{\rm i}$ are multiplied by $\,h^{1/6}$;
- flange at each of the extremities, i_0 and i_i are multiplied by $h^{1/3}$.
- С If the pressure is likely to correct ovality (large diameter, small thickness), the factors i_0 and i_1 shall be divided by:

1 + 3,25
$$\left(\frac{p_o}{E_c}\right) \left(\frac{r}{e_n}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}$$
, where p_o is the operating pressure and E_c the modulus of elasticity at room

temperature (20°C).

- d For a nozzle with a ratio of branch diameter to pipe diameter exceeding 0,5, the out-of-plane stress intensification factor may be non-conservative. In addition a smooth transition by a concave shaped weld is proved to reduce the value of this factor. Consequently the selection of an appropriate value for this factor remains the responsibility of the designer.
- e The stress intensification factors regarding the branch connections are based on tests carried out with at least two diameters of straight pipe on either side of the branch axis. The case of closer branches requires a particular attention.
- f The forgings shall be suitable with regard to the operating conditions.
- g When the limitations with respect to radius (r $_x \ge r_{mb}/4$) and thickness (e_e $\ge 1,5$ e_n) are not met and reliable

data are not available, the flexibility characteristic is taken as $h = \frac{3.1 e_n}{r}$

- h The designer shall check that the design against pressure is at least equivalent to that for a straight pipe.
- i The factors only apply to nozzles with convergent axes, and is not applicable for instance for configurations according to Figure 8.4.3-5.

The relevant wall thickness of bends should be taken at the crown (neutral axis). If unspecified, the average wall thickness of intrados and extrados may be used. For elbows, the wall thickness series from EN 10253 may be used. If the pressure is likely to reduce ovality (large diameter, small thickness), the factor k shall be divided by:

1 +
$$6\left(\frac{p_o}{E_c}\right)\left(\frac{r}{e_n}\right)^{7/3}\left(\frac{R}{r}\right)^{1/3}$$
, where p_o is the operating pressure and E_c the modulus of elasticity at room

temperature (20°C).

k The sectional modulus for the branch shall be calculated as:

4 10

$$Z = \min\left(i\frac{\pi((d_{m,b} + e_{n,b})^4 - (d_{m,b} - e_{n,b})^4)}{32(d_{m,b} + e_{n,b})}, \frac{\pi}{4}(d_{m,b} + e_{n,b})^2 e_n\right) \text{ or for corrosion}$$
$$Z_c = \min\left(i\frac{\pi((d_{m,b} + e_{n,b})^4 - (d_{m,b} + e_{n,b} - 2e_{c,b})^4)}{32(d_{m,b} + e_{n,b})}, \frac{\pi}{4}(d_{m,b} + e_{n,b})^2 e_c\right)$$

5	forged welded-in reducer	Shape conditions: $\alpha \le 60^{\circ}$ $e_n \ge d_0/100$ $e_2 \ge e_1$	1	$0,5 + \frac{\alpha}{100} \left(\frac{d_{o}}{e_{n}}\right)^{1/2}$ max. 2,0 (\alpha in deg.) d
9	butt weld	$e_n \ge 5 \text{ mm}$ and $\delta \le 0,1 e_n$ $e_n < 5 \text{ mm}$ or $\delta > 0,1 e_n$	1 1	1,0 f 1,8 f

SIFs for Reducer and Welds are computed as per Table H.1 as given below.

Table H.1 (concluded)

N°	Component designation	Sketch	Flexibility characteristic h	Flexibility factor $k_{ m B}{}^{ m a}$	Stress intensification factor <i>i</i>
10	wall thickness transitions	R R R R R R R R R R R R R R R R R R R	$\begin{array}{l} \alpha \leq 30^{\circ} \\ \beta \leq 15^{\circ} \\ (\text{without} \\ \text{circumferential weld} \\ \text{at transitions } \delta = 0) \end{array}$	1	$1,3 + 0,0036 \frac{d_o}{e_n} + 3,6 \frac{\delta}{e_n}$ max 1,9 f
11	fillet welds at set- in connections		concave shape with continuous transition to pipe	1	1,3 ^k
12				1	2,1 ^k

See Notes given at the end of this Section

Sl. No.	Designation	Flexibility factor	Stress intensification factor i
1	Weld Neck Flange	1	1.0
2	Double Welded Slip on Flange	1	1.2
3	Single Welded Slip on Flange	1	1.3
4	Fillet Welded Flange	1	1.3
5	Socket Welded Flange	1	1.3
6	Lap Joint Flange	1	1.6
7	Threaded Flange	1	2.3
8	Threaded Joint	1	2.3

SIFs for Flanges and Threaded Joints are computed as given below.

Note:

In-plane and out-of-plane SIF values are the same for Reducers, Welds, Flanges and Threaded Joints (computed as per Table H.1 as well as the Table provided above).

CAEPIPE internally incorporates the SIF values and Flexibility factors as given by the above three (3) Tables for any stress model.

Allowable Pressure

The allowable pressure for straight pipes is calculated from equation 6.1-1 or 6.1-3 depending on the ratio between inner and outer diameter.

For $D_o/D_i \leq 1.7$

$$P = \frac{2fze}{D_o - e}$$

For $D_o/D_i > 1.7$

$$P = fz \frac{(1-a^2)}{(1+a^2)}$$

where

P = allowable pressure

f = allowable stress

- Z = joint factor (input as material property in CAEPIPE)
- e = nominal pipe thickness × (1 mill tolerance $\frac{0}{100}$ corrosion allowance)"c"

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

$$D_o$$
 = outer diameter
 D_i = inner diameter
 a = $1 - \frac{2e}{D_o}$

For pipe bends the maximum allowable pressure is calculated using the equivalent pipe wall thickness e_{equi-}

$$e_{equi} = \frac{e}{t_f}$$

where

$$t_{\rm f} = \left(\frac{R/D - 0.25}{R/D - 0.50}\right)$$

R = radius on bend

For closely spaced miter bends, the allowable pressure is calculated from equations 6.3.4-1 and 6.3.4-2.

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s-r)}{r(R_s-r/2)}\right] \text{ with } \theta \le 22.5$$

For widely spaced miter bends, the allowable pressure is calculated from equations 6.3.4-1, 6.3.4-2 and 6.3.5-1

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s-r)}{r(R_s-r/2)}\right] \text{ with } \theta \le 22.5$$
$$P = \frac{fze^2}{r(e+1.25\tan\theta\sqrt{re})} \text{ with } \theta \le 22.5$$

where

r = mean radius of pipe = (D - t)/2

 R_S = effective bend radius of the miter

 θ = miter half angle

Sustained Stress

The stress (σ_1) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation (12.3.2-1)

$$\sigma_1 = \frac{PD_o}{4e_n} + \frac{0.75iM_A}{Z} \le f_j$$

where

P = maximum of CAEPIPE input pressures [i.e., max(P1 through P10)]

Do = outside diameter

 $e_n = nominal pipe thickness$

i = stress intensification factor; the product of 0.75 ishall not be less than 1.0

 M_{A} = resulting bending moment due to sustained loads

Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus

 $f_f = min(f; fcr) = design stress for flexibility analysis at the maximum operating temperature under consideration [i.e., max(T1 through T10)], where$

f = min(Rp0.2t/1.5; Rm/2.4)

 f_{cr} = design stress in creep range at max(T1 through T10)

Rp0.2t = minimum 0.2% proof strength at max(T1 through T10)

Rm = Tensile Strength (= Tensile as shown in CAEPIPE material input)

Note: Starting Version 7.50 of CAEPIPE, the value of "ff" is no longer input in the material properties table. Instead, the value of "f" which is calculated as min(Rp0.2t/1.5; Rm/2.4) is input for each temperature.

If a stress model created using an earlier version of CAEPIPE is read into Version 7.50 of CAEPIPE, then in the 7.50 model file, the material properties should be updated appropriately.

Sustained plus Occasional Stress

The stress (σ_2) due to sustained and occasional loads is calculated from equation (12.3.3-1) as the sum of stress due to sustained loads such as due to pressure, weight and other sustained mechanical loads and stress due to occasional loads such as earthquake or wind. Wind and earthquake are not considered concurrently

$$\sigma_2 = \frac{PD_o}{4e_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le kf_f$$

where

 M_B = resultant bending moment due to occasional load

k=1.2 if the occasional load is acting less than 1% in any 24 hour operating period. In CAEPIPE k=1.2; user can change this input in Layout window > Options > Analysis > Code > EN13480.

Expansion Stress

The stress (σ_3) due to thermal expansion is calculated from equation (12.3.4-1)

$$\sigma_3 = \frac{iM_C}{Z} \le f_a$$

where

 M_C = resultant moment due to thermal expansion and alternating loads

Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus

$$f_a = U(1.25f_c + 0.25f_h) \frac{E_h}{E_c}$$
 as per Equation (12.1.3-1)

U = cyclic stress range reduction factor taken from Table 12.1.3-1

- E_c = modulus of elasticity at the minimum metal temperature consistent with the loading under consideration
- E_h = modulus of elasticity at the maximum metal temperature consistent with the loading under consideration
- $f_c = \min(R_m/3; f)$, where $f = \min(R_{p0.2t}/1.5; R_m/2.4)$ at room temperature (T_{ref}) as per Equation (12.1.3-2)
- f_h = basic allowable stress at maximum metal temperature consistent with the loading under consideration = min(f_c; f; f_{cr}) as per Equation 12.1.3-3, with fc determined at minimum metal temperature consistent with the loading under consideration and f determined at maximum metal temperature consistent with the loading under consideration.

For example, for the thermal range (T1-T2), with T1 = 300° C, T2 = 100° C and Tref = 21° C, E_c is determined at T2 = 100° C and E_h is determined at T1 = 300° C

 f_c as per Equation (12.1.3-2) listed above is determined at Tref = 21°C, the value of fc used in calculating f_h is determined at T2 = 100°C the value of f used in calculating f_h is determined at T1 = 300 0C and the value of f_{cr} is taken at T1 = 300°C (if available)

If the above condition in equation (12.3.4-1) is not met, equation (12.3.4-2) may be used.

$$\sigma_4 = \frac{PD_o}{4e_n} + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le f_f + f_a$$

Additional Conditions for the Creep Range

For piping operating within the creep range, the stress, (σ_3) , due to sustained, thermal and alternating loadings shall satisfy the equation (12.3.5-1) below.

$$\sigma_{5} = \frac{PD_{o}}{4e} + \frac{0.75iM_{A}}{Z} + \frac{0.75iM_{C}}{3Z} \le f_{cr}$$

where

 f_{cr} = design stress in creep range at max(T1 through T10)

Stresses due to single non-repeated Support Movement (settlement)

The stress (σ_6) due to a single non-repeated support movement (settlement) is calculated from equation (12.3.6-1)

$$\sigma_6 = \frac{iM_D}{3Z} \le \sigma_{6a}$$

where

 M_D = resultant moment from a single non-repeated anchor movement (settlement)

 σ_{6a} = allowable stress = min(2R_{p0.2t}; R_m)

Since only f and R_m are input into CAEPIPE, the above allowable stress criterion can be rewritten as follows.

 $\sigma_{6a} = 3f$, if [f < (R_m/2.4)]; otherwise

$$\sigma_{6a} = R_{\rm m}$$
, if [f = (R_{\rm m}/2.4)]

where

f = allowable stress @ Reference Temperature (T_{ref}) entered in CAEPIPE.

Stresses on Buried Piping as per EN 13480-6 (2017)

The axial stress (S_L) due to combined pressure and temperature change effects is calculated from equation 1 of Clause 5.2.4 of EN 13480-6 (2017).

$$S_L = \eta S_P - \mathrm{Ea}(\Delta_T) \le 0.9 S_y$$

where

 S_P = circumferential stress due to maximum of CAEPIPE input pressures [i.e., max(P1 through P10)]

 η = Poisson's ratio

 Δ_T = maximum temperature range

S_y = Yield Strength = 1.5 x f

bending					
Component	Out of plane	In-plane	Flexibility	Sketch	
description Welding elbow orpipe bend	i o 0.75 h ^{2/3} авсј	<u>0,9</u> 	chara cteristic $\frac{e_{\rm n}R}{r^2}$		
Closely spaced mitre bend / < r (1 + tanθ) (/= 2 R tanθ)	09 h ^{2/3} abcj	0,9 h ^{2/3} abcj	cotθ e _n / 2 r ²	e e e e e e e e e e e e e e e e e e e	
Single mitre bend or widely spaced mitre bend /≥r(1 + tan∂)	0,9 h ^{2/3} abcj	0,9 h ^{2/3} abcj	$\frac{e_{\rm h}}{r} \left(\frac{1+\cot\theta}{2}\right)$		
Forged tee to be welded, designed with a burst pressure greater than or equal to the burst pressure of the connected pipes	09 h ^{2/3} aefgi	0,75 <i>i</i> ₀ +0,25 _{aefgi}	<u>4,4e_n</u> r		
Reinforced fabricated tee with pad or saddle	09 h ^{2/3} adei	0,75 <i>i</i> ₀ +0,25 adei	$\frac{(e_{\rm n}+0.5e_{\rm r})^{5/2}}{r(e_{\rm n}^{3/2})}$		
Unreinforced fabricated tee	09 h ^{2/3} adei	0,75 <i>i</i> ₀ +0,25 adei	en r	(to be continued)	

Table H.3 — Flexibility characteristics and stress intensification factors for out-of-plane and in-plane bending

Component	Out-of-plane	In-plane	Flexibility	Sk etch
description	i ₀	Å	characteristic	
Extruded welding tee	0,9 h ^{2/3} aei	0,75 <i>i</i> ₀ + 0,25 a ei	$\left(1+\frac{r_1}{r}\right)\frac{e_n}{r}$	
Welded in contour	0,9	0,75/ ₀ + 0,25	<u>4,4en</u>	
insert	h ^{2/3} aefgi	aefgi	r	
Branch welded on fitting (integrally reinforced)	09 h ^{2/3} adfb	0,75i _o +0,25 adfh	<u>3,3en</u> r	

Table H.3 (continued)

SIFs for Reducer and Weldsare computed as per Table H.1 as given below.

N°	Designation	Sketch	Flexibility characteristic <i>h</i>	Flexibility factor <i>k</i> B ^a	Stress intensification factor i	Section modulus Z
5	forged welded-in reducer	e	Shape conditions : $\alpha \le 60^{\circ}$ $e_n \ge d_0/100$ $e_2 \ge e_1$	1	$0.5 + \frac{\alpha}{100} \left(\frac{d_o}{e_n}\right)^{1/2}$ max. 2,0 (\alpha in deg.) ^d	
9	butt weld		$e_{\rm N} \le 5 {\rm mm}$ and $\delta \le 0,1 e_{\rm N}$ ¹	1	1,0 ^f	
		0	e _n < 5mm and δ> 0,1e _n f	1	1,8 ^r	

N°	Designation	Sketch	Flexibility characteristic h	Flexibility factor <i>k</i> B ^a	Stress intensification factor <i>i</i>	Section modulus Z
10	wall thickness transitions		$\alpha \le 30^{\circ}$ $\beta \le 15^{\circ}$ (without circumferential weld at transitions $\delta = 0$)	1	$1,3 +$ $0,0036 \frac{d_o}{e_n} +$ $3,6 \frac{\delta}{e_n}$ max 1,9 f	$\frac{\pi}{32} \frac{d_0^4 - d_i^4}{d_0}$
11	fillet welds at set- in connections	d o b	concave shape with continuous transition to pipe	1	1,3	smaller value of $\frac{\pi}{32} \frac{d_0^4 - d_1^4}{d_0}$ and
12		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	2,1	π 4 ² a

Table H.1 (concluded)

SIFs for Flanges and Threaded Joints are computed as given below.

Sl. No.	Designation	Flexibility factor	Stress intensification factor i
1	Weld Neck Flange	1	1.0
2	Double Welded Slip on Flange	1	1.2
3	Single Welded Slip on Flange	1	1.3
4	Fillet Welded Flange	1	1.3
5	Socket Welded Flange	1	1.3
6	Lap Joint Flange	1	1.6
7	Threaded Flange	1	2.3
8	Threaded Joint	1	2.3

Note:

In-plane and out-of-plane SIF values are the same for Reducers, Welds, Flanges and Threaded Joints (computed as per Table H.1 as well as the Table provided above).

CAEPIPE internally incorporates the SIF values and Flexibility factors as given by the above three (3) Tables in any stress model.

Allowable Pressure

The allowable pressure for straight pipes is calculated from equation 6.1-1 or 6.1-3 depending on the ratio between inner and outer diameter.

For $D_o/D_i \leq 1.7$

$$P = \frac{2fze}{D_o - e}$$

For $D_o/D_i > 1.7$

$$P = fz \frac{(1-a^2)}{(1+a^2)}$$

where

P = allowable pressure

f = allowable stress

- Z = joint factor (input as material property in CAEPIPE)
- e = nominal pipe thickness × (1 mill tolerance $\frac{0}{100}$ corrosion allowance)"c"

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

$$D_o = \text{outer diameter}$$

$$D_i = \text{inner diameter}$$

$$a = 1 - \frac{2e}{D_o}$$

For pipe bends the maximum allowable pressure is calculated using the equivalent pipe wall thickness e_{equi-}

$$e_{equi} = \frac{e}{t_f}$$

where

$$t_{\rm f} = \left(\frac{R/D - 0.25}{R/D - 0.50}\right)$$

R = radius on bend

For closely spaced miter bends, the allowable pressure is calculated from equations 6.3.4-1 and 6.3.4-2.

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s-r)}{r(R_s-r/2)}\right] \text{ with } \theta \le 22.5$$

For widely spaced miter bends, the allowable pressure is calculated from equations 6.3.4-1, 6.3.4-2 and 6.3.5-1

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s-r)}{r(R_s-r/2)}\right] \text{ with } \theta \le 22.5$$
$$P = \frac{fze^2}{r(e+1.25\tan\theta\sqrt{re})} \text{ with } \theta \le 22.5$$

where

r = mean radius of pipe = (D - t)/2

 R_S = effective bend radius of the miter

 θ = miter half angle

Sustained Stress

The stress (σ_1) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation (12.3.2-1)

$$\sigma_1 = \frac{PD_o}{4e_n} + \frac{0.75iM_A}{Z} \le f_j$$

where

P = maximum of CAEPIPE input pressures [i.e., max(P1 through P10)]

Do = outside diameter

 $e_n = nominal pipe thickness$

i = stress intensification factor; the product of 0.75 ishall not be less than 1.0

 M_{A} = resulting bending moment due to sustained loads

Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus

 $f_f = min(f; fcr) = design stress for flexibility analysis at the maximum operating temperature under consideration [i.e., max(T1 through T10)], where$

f = min(Rp0.2t/1.5; Rm/2.4)

 f_{cr} = design stress in creep range at max(T1 through T10)

Rp0.2t = minimum 0.2% proof strength at max(T1 through T10)

Rm = Tensile Strength (= Tensile as shown in CAEPIPE material input)

Note: Starting Version 7.50 of CAEPIPE, the value of "ff" is no longer input in the material properties table. Instead, the value of "f" which is calculated as min(Rp0.2t/1.5; Rm/2.4) is input for each temperature.

If a stress model created using an earlier version of CAEPIPE is read into Version 7.50 of CAEPIPE, then in the 7.50 model file, the material properties should be updated appropriately.

Sustained plus Occasional Stress

The stress (σ_2) due to sustained and occasional loads is calculated from equation (12.3.3-1) as the sum of stress due to sustained loads such as due to pressure, weight and other sustained mechanical loads and stress due to occasional loads such as earthquake or wind. Wind and earthquake are not considered concurrently

$$\sigma_2 = \frac{PD_o}{4e_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le kf_f$$

where

 M_B = resultant bending moment due to occasional load

k=1.2 if the occasional load is acting less than 1% in any 24 hour operating period. In CAEPIPEk=1.2; user can change this input in Layout window> Options > Analysis > Code >EN13480.

Expansion Stress

The stress (σ_3) due to thermal expansion is calculated from equation (12.3.4-1)

$$\sigma_3 = \frac{iM_C}{Z} \le f_a$$

where

 M_C = resultant moment due to thermal expansion and alternating loads

Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus

$$f_a = U(1.25f_c + 0.25f_h) \frac{E_h}{E_c}$$
 as per Equation (12.1.3-1)

U = cyclic stress range reduction factor taken from Table 12.1.3-1

- E_c = modulus of elasticity at the minimum metal temperature consistent with the loading under consideration
- E_h = modulus of elasticity at the maximum metal temperature consistent with the loading under consideration
- $f_c = \min(R_m/3; f)$, where $f = \min(R_{p0.2t}/1.5; R_m/2.4)$ at room temperature (T_{ref}) as per Equation (12.1.3-2)
- f_h = basic allowable stress at maximum metal temperature consistent with the loading under consideration = min(f_c; f; f_{cr}) as per Equation 12.1.3-3, with fc determined at minimum metal temperature consistent with the loading under consideration and f determined at maximum metal temperature consistent with the loading under consideration.

For example, for the thermal range (T1-T2), with T1 = 300° C, T2 = 100° C and Tref = 21° C, E_c is determined at T2 = 100° C and E_h is determined at T1 = 300° C

 f_c as per Equation (12.1.3-2) listed above is determined at Tref = 21°C, the value of fc used in calculating f_h is determined at T2 = 100°C the value of f used in calculating f_h is determined at T1 = 300 0C and the value of f_{cr} is taken at T1 = 300°C (if available)

If the above condition in equation (12.3.4-1) is not met, equation (12.3.4-2) may be used.

$$\sigma_4 = \frac{PD_o}{4e_n} + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le f_f + f_a$$

Additional Conditions for the Creep Range

For piping operating within the creep range, the stress, (σ_3) , due to sustained, thermal and alternating loadings shall satisfy the equation (12.3.5-1) below.

$$\sigma_{5} = \frac{PD_{o}}{4e} + \frac{0.75iM_{A}}{Z} + \frac{0.75iM_{C}}{3Z} \le f_{cr}$$

where

 f_{cr} = design stress in creep range at max(T1 through T10)

Stresses due to single non-repeated Support Movement (settlement)

Settlement evaluation as per Equation (12.3.6-1) of EN 13480-3 (2012) is not yet implemented in CAEPIPE.

N°	Designation	Sketch	Flexibility characteristic <i>h</i>	Flexibility factor <i>k</i> B ^a	Stress intensification factor <i>i</i>	Section modulus Z
1	straight pipe		1	1	1	
2	plain bend		$\frac{4Re_{\sf n}}{d_{\sf m}^2}$	<u>1,65</u> h	0,9 h ^{2/3} bc	$\frac{\pi}{32} \frac{d_0^4 - d_i^4}{d_0}$
3	Closely spaced mitre bend $l < r (1 + \tan \theta)$ $(l = 2 R \tan \theta)$		$\frac{4Re_{n}}{d_{m}^{2}}$ with $R = \frac{l\cot\theta}{2}$	$\frac{1,52}{h^{5/6}}$	0,9/h ^{2/3} b c	
	1	1		1	(1	to be continued)

Table H.1 — Flexibility characteristics, flexibility and stress intensification factors and section moduli for general cases

N°	Designation	Sketch	Flexibility characteristic <i>h</i>	Flexibility factor <i>k</i> B ^a	Stress intensification factor <i>i</i>	Section modulus Z
4	Single mitre bend or widely spaced mitre bend l≥r(1 + tanθ)		$R = \frac{\frac{4Re_{\rm n}}{d_{\rm m}^2}}{4}$ $R = \frac{d_{\rm m}(1 + \cot\theta)}{4}$	$\frac{1,52}{h^{5/6}}$	0,9 h ^{2/3} b	
5	forged welded-in reducer	d o d o d o d o d o d o d o d o d o d o	Shape conditions : $\alpha \le 60^{\circ}$ $e_{\rm n} \ge d_{\rm 0}/100$ $e_{\rm 2} \ge e_{\rm 1}$	1	$0,5 + \frac{\alpha}{100} \left(\frac{d_o}{e_n}\right)^{1/2}$ max. 2,0 (\alpha in deg.) ^d	
6	tee with welded- on, welded-in or extruded nozzle		2e _n d _m	1	0,9 h ^{2/3} be	Header : $\frac{\pi}{32} \frac{d_o^4 - d_i^4}{d_o}$
7	as above, however, with additional reinforcing ring		$\frac{2(e_n + 0.5e_{pl})^{5/2}}{d_m e_n^{-3/2}}$ with $e_{pl} \le e_n$	ſ	$\frac{0,9}{h^{2/3}}$ be	Nozzle $\frac{\pi}{4}d_{n,b}^2e_x$ with ex as
8	forged welded-in tee with e _n and e _{n,b} as connecting wall thickness		<u>8,8en</u> d _m	1	$\frac{0,9}{h^{2/3}}$ bg	smaller value of $e_{x1} = e_n$ and $e_{x2} = i e_{n,b}$ resp.
9	butt weld		$e_{\rm N} \le 5 { m mm}$ and $\delta \le 0,1 e_{\rm N}$ f	1	1,0 ^f	5.
		ø	e _n < 5mm and δ> 0,1e _n f	1	1,8 ^f	

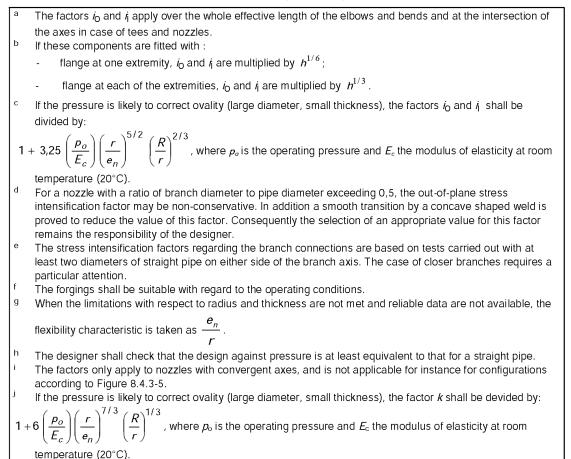
Table H.1 (continued)

N°	Designation	Sketch	Flexibility characteristic <i>h</i>	Flexibility factor <i>k</i> B ^a	Stress intensification factor <i>i</i>	Section modulus Z
10	wall thickness transitions	e o o o o o o o o o o o o o o o o o o o	$\alpha \le 30^{\circ}$ $\beta \le 15^{\circ}$ (without circumferential weld at transitions $\delta = 0$)	1	$1,3 + 0,0036 \frac{d_o}{e_n} + 3,6 \frac{\delta}{e_n}$	$\frac{\pi}{32} \frac{d_o^4 - d_i^4}{d_o}$
					max 1,9 ^f	
11		2	concave shape with continuous transition to pipe			smaller value of
	fillet welds at set-in connections			1	1,3	$\frac{\pi}{32} \frac{d_o^4 - d_i^4}{d_o}$ and
12				1	2,1	$\frac{\pi}{4}d_0^2a$
L I	he flexibility factor	kB applies to bending in all plan	nes. The factor related	to torsion is	equal to 1 in all case	es.
	The factors <i>k</i> B and case of tees and no	<i>i</i> apply over the whole effective pzzles.	length of the elbows a	and bends an	d at the intersection	of the axes in
i I	f these component	s are fitted with :				
	flange at one	extremity, <i>k</i> B and <i>i</i> are multiplied	d by $h^{1/6}$;			
	flange at each	of the extremities, <i>k</i> B and <i>i</i> are	multiplied by $h^{1/3}$.			
	The wall thickness not less than e_n .	of the reducer is not less than e	$_1$ except in the vicinity	of the small	end where however	the thickness is
e (Other values may b	e used subject to justification.				
	he factor applies i he designer.	f the fabrication tolerances are r	net. Otherwise the det	termination of	the factors is the re	sponsibility of
a 1	The feators only an	nly to nozzles with convergent a	WOO C			

Table H.1 (concluded)

⁹ The factors only apply to nozzles with convergent axes.

Component description	Out-of-plane i _o	In-plane <i>i</i> i	Flexibility characteristic	Sketch
Welding elbow or pipe bend	0,75 h ^{2/3} abc	0,9 h ^{2/3} abc	$\frac{e_{n}R}{r^{2}}$	i a
Closely spaced mitre bend $l < r (1 + \tan \theta)$ $(l = 2 R \tan \theta)$	0,9 h ^{2/3} abc	0,9 h ^{2/3} abc	$\frac{\cot\theta}{2}\frac{e_{\rm n}l}{r^2}$	0
Single mitre bend or widely spaced mitre bend /≥r(1 + tan <i>θ</i>)	0,9 h ^{2/3} abc	0,9 h ^{2/3} abc	$\frac{e_{n}}{r} \left(\frac{1 + \cot \theta}{2} \right)$	
Forged tee to be welded, designed with a burst pressure greater than or equal to the burst pressure of the connected pipes	0,9 h ^{2/3} aefgi	0,75 <i>i</i> _o + 0,25 aefgi	<u>4,4e_n r</u>	
Reinforced fabricated tee with pad or saddle	0,9 h ^{2/3} adei	0,75 <i>i</i> ₀ + 0,25 adei	$\frac{(e_{\rm n}+0.5e_{\rm r})^{5/2}}{r(e_{\rm n}^{3/2})}$	
Unreinforced fabricated tee	$rac{0,9}{h^{2/3}}$ adei	0,75 <i>i</i> ₀ + 0,25 _{adei}	en r	(to be continued)


Table H.3 — Flexibility characteristics and stress intensification factors for out-of-plane and in-plane bendin

SS EN 13480-3:2012

Table T.S (continued)						
Component description	Out-of-plane <i>i</i> o	In-plane [†] i	Flexibility characteristic	Sketch		
Extruded welding tee	0,9 h ^{2/3} aei	0,75 <i>i</i> ₀ + 0,25 aei	$\left(1+\frac{r_1}{r}\right)\frac{e_n}{r}$			
Welded in contour insert	0,9 h ^{2/3} aefgi	0,75 <i>i</i> ₀ + 0,25 aefgi	$\frac{4.4e_{\rm n}}{r}$			
Branch welded on fitting (integrally reinforced)	$rac{0,9}{h^{2/3}}$ adfh	0,75 <i>i</i> ₀ + 0,25 adfh	$\frac{3.3e_{\rm n}}{r}$			

Table H.3 (continued)

Table H.3 (concluded)

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 6.3.

$$p = \frac{2fz_L T_{eff}}{Dm - T_{eff}}$$

where

p = allowable pressure

f = allowable stress

 z_L = joint efficiency of longitudinal weld (input as material property)

 T_{eff} = nominal pipe thickness × (1 – mill tolerance/100) – corrosion allowance

D =outside diameter

d = inside diameter

m = pressure coefficient

= 1.0 for D/d < 1.6

= 0.25(D/d) + 0.6 for $1.6 \le D/d \le 2.0$

Sustained Stress

Stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 9.32.

$$S_L = \frac{pD}{4T_{eff}Z_C} + \frac{0.75k_1M_A}{W} \le f_2$$

where

p = maximum pressure

 z_c = joint efficiency of circumferential weld (input as material property)

 k_1 = stress intensification factor. The product $0.75k_1$ shall not be less than 1.0

 M_A = resultant bending moment due to sustained loads

W = section modulus, for reduced outlets, effective section modulus

 f_2 = hot allowable stress

Occasional Stress

The stress (S_{LO}) is calculated as the sum of the stress due to sustained loads (S_L) and the stress (S_O) due to occasional loads such as earthquake or wind from Equation 9.33. Wind and earthquake are not considered concurrently.

$$S_{LO} = \frac{pD}{4T_{eff}Z_C} + \frac{0.75k_1(M_A + M_B)}{W} \le 1.2f_2$$

where

 M_B = resultant bending moment due to occasional loads

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation 9.34.

$$S_E = \frac{k_1 M_C}{W} \le S_r$$

Alternatively, Equation 9.35 may be used.

$$S_L + S_E \le f_2 + S_r$$

where

 M_C = resultant bending moment due to thermal expansion.

 $S_r = f_r(1.17R_1 + 0.17R_2)$

 f_r = stress range reduction factor taken from Table 9.1.

 R_1 = smaller of f_1 and $0.267R_{\rm m}$

 R_2 = smaller of f_2 and $0.367R_{\rm m}$

 f_1 = allowable stress at cold condition

 f_2 = allowable stress at hot condition

 $R_{\rm m}$ = tensile strength at room temperature

At moderate temperatures (up to 370° C) for carbon steel, low alloy steel and chromium steel (specified as CS material type) and up to 425° C for austenitic stainless steel (specified as AS material type), the limits $0.267R_{\rm m}$ and $0.367R_{\rm m}$ are disregarded and S_r is selected as smaller of S'_r and S''_r ,

where

 $\begin{array}{rcl} S_r' &=& 1.17 f_1 + 0.20 f_2 \\ S_r'' &=& 290 f_{\rm r} - f_2 \end{array}$

t k ₁ Figure		L A A A A A A A A A A A A A A A A A A A	Radio Color
Stress coefficient k ₁	6,0 E/2,4	6.0 6.74	6'0
Flexibility coefficient k		1,52 h5/6	-
Characteristic value h	н Ч Ч Ч Ч Ч Ч	L · T · cotth 2rn	1 (1 + cot t _k) 2 r _m
Type of pipe component	Pipe bend, see notes 1 and 2	Pipe bend of welded seg- ments with a segment length L < r (1 + tan t _h) see notes 1 and 2	Pipe bend of welded segments with a segment length $[2 r (1 + tan t_h)$ or inclined circumferent- ial welds, see notes 1 and 3
Iten	-	~	m

Stress and flexibility coefficients for pipe and pipe components (fittings)

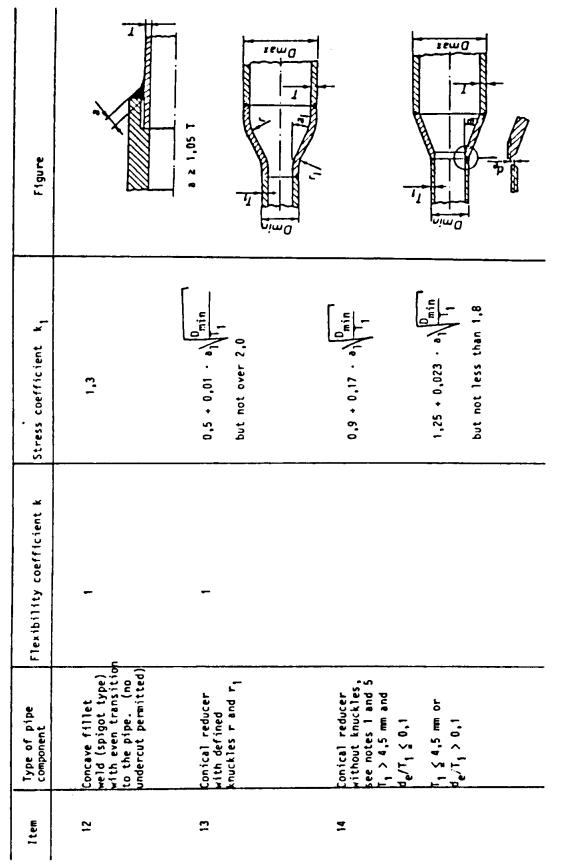
Table 9.2

	f lgure	WI I I I I I I I I I I I I I I I I I I			
	Stress coefficient k ₁	6 ⁴ 0	6'0	6.0 £/24	
	Flexibility coefficient k	-	-	-	
Stress and riexountry contractions for pupe and pupe components in the second pupe	Characteristic value h	4 4 4	⊢≝∣⊱≝	(T _h) 3/2 T _e · R _e r _h	
STRESS AND TIERIU	Type of pipe component	Tee bend according to NS 5594, see note 1	Branch without local rein forcement of the main pipe, see note 1	Branch or main pipe with raised edges radiused at joint between main pipe and branch. see note 1	
	l tem	-	υ.	۵	

Stress and flexibility coefficients for pipe and pipe components (fittings)

Norwegian (1983)

F igure				<pre>= effective wall thickness = 1/2 (T_r + T_s) (mm) = wall thickness at fillet radius (see item 5) (am) = wall thickness of main pipe at a point located diametrically opposite of the branch (see item 5) (mm) = wall thickness of locally thickened main pipe (mm) = thickness of plate reinforcement (mm) </pre>
ouress coefficient k ₁	6.0 E/24	6.0 57 ⁵ 4	6,0 £7 ⁵ 4	tive wall thickn thickness at fil thickness of mai ite of the branc thickness of loc ness of plate re
coefficient k	-	-	F	Tr = effec Tr = wall s = oppos Tf = wall tf = wall
Characteristic value h	$\frac{1}{r_h} + \frac{1}{1_h} \frac{5/2}{3/2}$	$\frac{1}{r_{h}} \frac{5/2}{1h_{h}}$	$\frac{(T_{h} + \frac{T_{2}}{2})}{T_{h} \cdot T_{h}}$	Is (items 4 - 8) • fillet radius (mm) • mean radius of branch = $\left(\frac{d-t_{g}}{2}\right)(mn)$ • mean radius of branch = $\left(\frac{d-t_{g}}{2}\right)(mn)$ • effective radius = $r + r_{h}$ (mm) • mean radius of main pipe $\left(\frac{d-1}{2}\right)$ (mm) • specified wall thickness of branch (mm) • specified wall thickness of main (mm)
Type of pipe component	Branch on locally thickened main pipe, see note 1	ا < <mark>ط</mark> ًا + ۱,8√۵.1۶ ۱ ≥ <mark>ط</mark> ً ₁ + ۱,8√۵.1۶	Branch with plate reinforcement, see notes 1 and 4	
ltem	~		80	


Stress and flexibility coefficients for pipe and pipe components (fittings)

Norwegian (1983)

Figure	radius		C A A A A A A A A A A A A A A A A A A A	Flange s 2 1, 2 T a 2 1, 05 T Joint
Stress coefficient k ₁	1,0	1,8 (If the weld is ground flush inside and out, the value 1,0 may be used)	1.3-0.0036 D + 3.6 de but not over 1.9	2,1
Flexibility coefficient k	-	-		-
Type of pipe component	Butt weld T > 4.5 mm and de ^{/T} nom < 0.1	1 ≤ 4.5 mm or de/T _{nom} > 0.1	Butt weld between components of unequal thickness	Fillet weld (spigpt type)
ltem	6		2	=

Norwegian (1983)

Norwegian (1983)

ວ∠⊤

Item	Type of component	Flexibility coefficient k	Stress coefficient k ₁
15	Threaded joint or con- nection to threaded flange	1	2,3

Symbols (items 13 - 14)

Dmin, Dmaks, aj see clause 6.5

- T₁ = specified wall thickness of the smaller pipe (mm)
- specified wall thickness of the larger pipe (mm) т
- de = difference in mean radius at each side of the welding groove (mm)

Notes relating to illustrations shown in table 9.2

All dimensions are nominal

The coefficients k and k, apply to bending in any plane and shall never be given a value less than 1. For plain bends and bends made of welded segments, the coefficients shall be applied to the effective length of the arc (shown by a heavy centreline in the illustrations). For branches and tees, they shall be applied up to the intersection point between the main pipe and the branch, see fig. 9.3. 1.

k and k_1 as functions of h can be taken from fig. 9.4.

If a flange is joined to one end or both, the coefficients k and k_1 shall be multiplied by the factor F as shown below. 2.

 $F = h^{1/6}$ if one end has a flange

 $F = h^{1/3}$ if both ends have flanges

F as function of h can be taken from fig. 9.5.

An inclined circumferential weld at the angle the degrees so that 3. (T)

$$t_h \leq 9 \cdot \sqrt{\frac{1}{r_m}}$$

may be considered as a perpendicular circumferential weld.

т

4. When
$$T_0 \ge 2.5 T_h$$
 is set to $h = 4.05 \frac{h}{r_h}$

- The formula for k₁ applies only when the following conditions are 5. satisfied:
 - the reducer is concentric
 - the angle a_l does not exceed 60⁰
 - neither D_{max}/T nor D_{min}/T₁ exceeds 100.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 6.3.

$$p = \frac{2fz_L T_{eff}}{Dm - T_{eff}}$$

where

p = allowable pressure

f = allowable stress

 z_L = joint efficiency of longitudinal weld (input as material property)

 T_{eff} = nominal pipe thickness × (1 – mill tolerance/100) – corrosion allowance

D =outside diameter

d = inside diameter

m = pressure coefficient

$$= 1.0 \text{ for } D/d < 1.6$$

= 0.25(D/d) + 0.6 for $1.6 \le D/d \le 2.0$

Sustained Stress

Stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 10.7.

$$S_L = \frac{pD}{4T_{eff}Z_C} + \frac{0.75k_1M_A}{W} \le f_2$$

where

$$p$$
 = maximum pressure

 z_c = joint efficiency of circumferential weld (input as material property)

 k_1 = stress intensification factor. The product $0.75k_1$ shall not be less than 1.0

 M_A = resultant bending moment due to sustained loads

W = section modulus, for reduced outlets, effective section modulus

 f_2 = hot allowable stress

Occasional Stress

The stress (S_{LO}) is calculated as the sum of the stress due to sustained loads (S_L) and the stress (S_O) due to occasional loads such as earthquake or wind from Equation 10.8. Wind and earthquake are not considered concurrently.

$$S_{LO} = \frac{pD}{4T_{eff}z_C} + \frac{0.75k_1(M_A + M_B)}{W} \le 1.2f_2$$

where

 M_B = resultant bending moment due to occasional loads

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation 10.9.

$$S_E = \frac{k_1 M_C}{W} \le S_r$$

Alternatively, Equation 10.10 may be used.

$$S_L + S_E \le f_2 + S_r$$

where

 M_C = resultant bending moment due to thermal expansion.

 S_r = smaller of S'_r and S''_r

 $S'_r = 1.25f_1 + 0.25f_2$

 $S_r^{\prime\prime} = f_r R_s - f_2$

 f_r = stress range reduction factor

 f_1 = allowable stress at cold condition

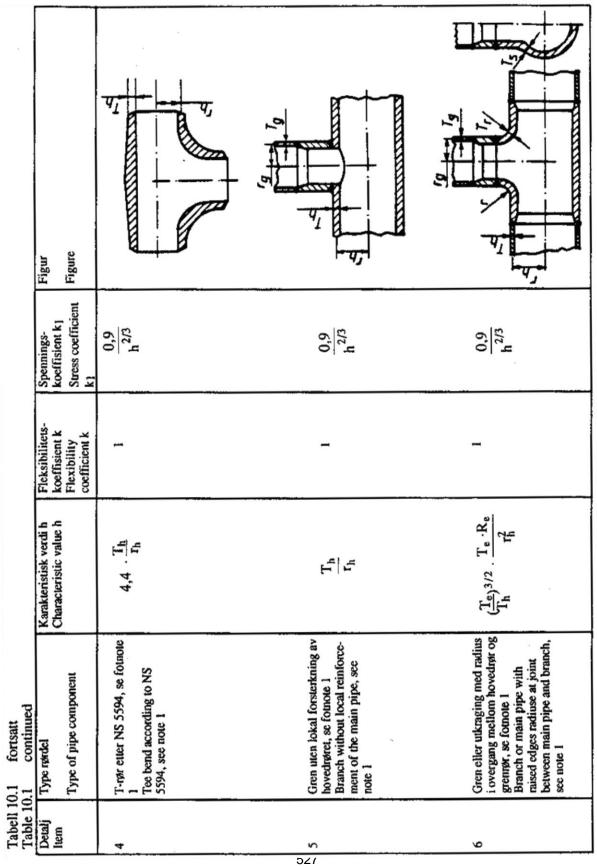
 f_2 = allowable stress at hot condition

 R_s = permissible extent of stress for 7000 load cycles for different materials R_s is determined by material type as follows:

Material	Type	R_s
Carbon and low alloy steel	CS	290
Austenitic stainless steel	AS	400
Copper alloys, annealed	CA	150
Copper alloys, cold worked	CC	100
Aluminum	AL	130
Titanium	ΤI	200

The stress range reduction factor f_r depends on the number of thermal cycles (NE). For moderate high temperatures ($\leq 370^\circ$ C for carbon, low alloy and chromium steel and $\leq 425^\circ$ C for austenitic stainless steel), f_r is calculated from

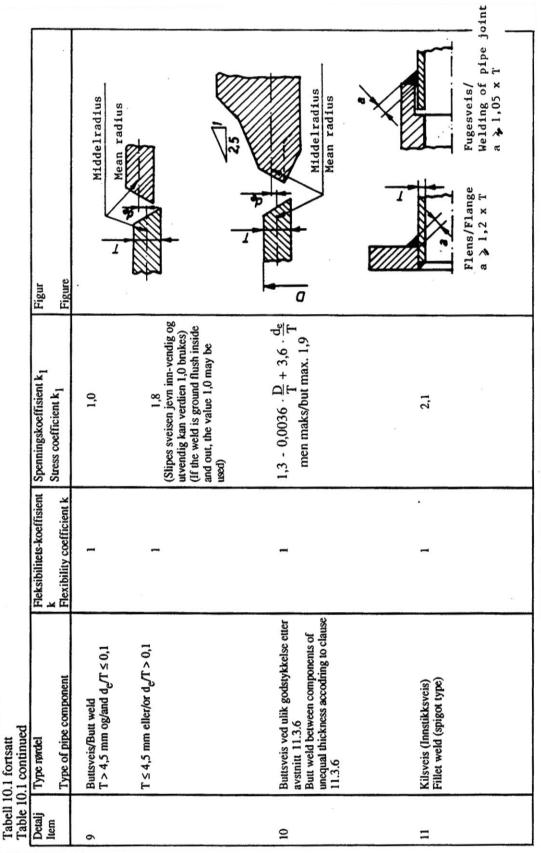
$$f_r = (7000/N_E)^{0.2} N_E > 100 \ (i.e., f_r \le 2.34)$$

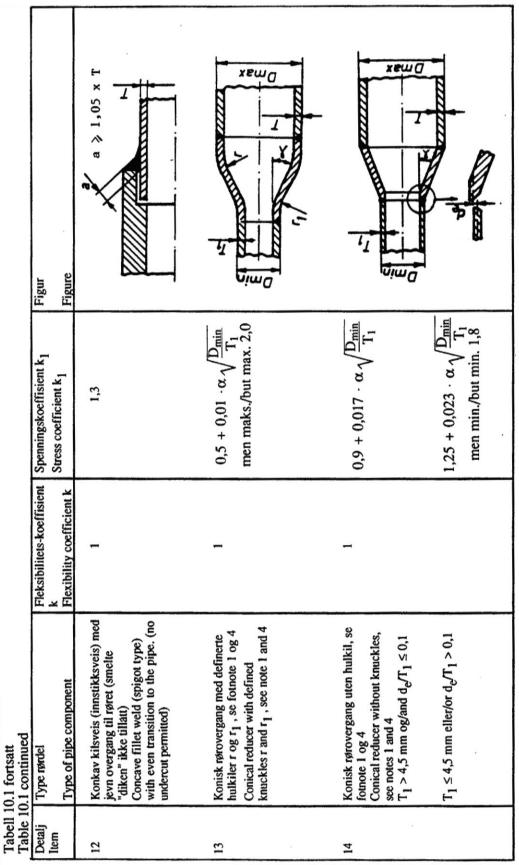

At higher temperatures, S_r shall not be greater than $f_r(1.25R_1 + 0.25R_2)$ and f_r shall not be greater than 1.0.

where

 R_1 = smaller of f_1 and $0.25R_m$ R_2 = smaller of f_2 and $0.25R_m$ R_m = tensile strength at room temperature

Tabell 10.1 Spennings- og fleksibilitets- koeffisient for rør og rørdeler	Table 10.1Stress and flexibility coefficients for pipe and pipe components (fittings)		
Betegnelser (detalj 4 - 8)	Symbols (item 4-8)		
r = hulkilradius (mm)	r = fillet radius (mm)		
r_g = grenens middelradius = (d - T_g)/2 (mm)	$r_g = mean radius of branch = (d - T_g)/2$ (mm)		
r_h = hovedrørets middelradius = (d - T_h)/2 (mm)	r_h = mean radius of main pipe = (d - T_h)/2 (mm)		
$R_e = r + r_h (mm)$	$R_e = r + r_h (mm)$		
$T_e = 0.5 x (T_r + T_s) (mm)$	$T_e = 0.5 x (T_r + T_s) (mm)$		
T _f = veggtykkelse i lokalt tykkere hovedrør (mm)	T _f = wall thickness of locally thickened main pipe		
T _g = grenens nominelle veggtykkelse (mm)	T _g = nominal wall thickness of branch (mm)		
T _h = hovedrørets nominelle veggtykkelse (mm)	T _h = nominal wall thickness of main pipe (mm)		
T _p = tykkelsen av plateforsterkning (mm)	T _p = thickness of plate reinforcement (mm)		
T _r = veggtykkelse ved hulkilradien (se detalj 6) (mm)	T _r = wall thickness at fillet radius (see item 6) (mm)		
T _s = veggtykkelse i hovedrørets side rett ovenfor grenen (se detalj 6) (mm)	T _s = wall thickness of pipe at a point located diametrically opposite of the branch (see item 6) (mm)		
Betegnelser (detalj 13 -14)	Symbols (item 13-14)		
D _{min} og D _{maks} , se punkt 7.5	D_{min} and D_{maks} , see clause 7.5.		
de = forskjell i middelradius på hver side av sveisefuge (mm)	d _e = difference in mean radius on each side of the welding grove (mm)		
T = nominell veggtykkelse i det største røret (mm)	T = nominal wall thickness of the larger pipe (mm)		
T ₁ = nominell veggtykkelse i det minste røret (mm)	T ₁ = nominal wall thickness of the smaller pipe (mm)		
α = vinkel, i grader	α = angle, in degrees 525		


(fittings)	Figur Figure		L A LEOLB	$R = \frac{Im(1+col B)}{2}$
nts (fittings)	Spennings- koeffisient k1 Stress coefficient k1	0,9 h ^{2/3}	$\frac{0.9}{h^{2/3}}$	0,9 h ^{2/3}
3.1 Spennings- og fleksibilitetskoeffisient for rør og rørdeler3.1 Stress and flexibility coefficient for pipe and pipe components (fittings)	Fleksibilitets- koeffisient k Flexibility coefficient k	<u>1,65</u> h	<u>1,52</u> h ^{5/6}	1,52 h ^{5/6}
	Karakteristisk verdi h Characteristic value h	rna ²	$\frac{L \cdot T \cdot \cot \theta}{2 \cdot r_m^2}$	$\frac{T \cdot (1 + \cot \theta)}{2 \cdot r_m}$
	Type rørdel Type of pipe component	Rørbend, se fotnote 1, 2 og 3 Pipe bend, see notes 1, 2 and 3	Segmentsveist rørbend med segmentlengde $L < r_m \cdot (1 + \tan \theta)$ se fotnote 1, 2 og 3 Pipe bend of welded segments with a segment length $L < r_m \cdot (1 + \tan \theta)$ see notes 1, 2 and 3	Segmentsveist rørbend med segmentlengde $L \ge r_m \cdot (1 + \tan \theta)$ eller skrå rundsveis, se fotnote 1 og 4 Pipe bend of welded segments with a segment length $L \ge r_m \cdot (1 + \tan \theta)$ or inclined circum-ferential welds, see notes 1 and 4
Tabell 10.1 Table 10.1	Detalj Item	_	N 020	ñ


fortsatt	continued
10.1	10.1
Tabell	Table

Figur Figure		J J J J J J J J J J J J J J J J J J J	
Spennings- koeffisient k1 Stress coefficient k1	0,9 h ^{2/3} h ^{2/3}	0,9 h ^{2/3}	
Fleksibilitets- koeffisient k Flexibility coefficient k	-	-	
Karakteristisk verdi h Characteristic value h	$\frac{(\frac{T_h}{2} + \frac{T_f}{2})^{5/2}}{r_h \cdot T_h^{3/2}}$ $\frac{T_f^{5/2}}{r_h \cdot T_h^{3/2}}$	$\frac{(T_h + \frac{T_P}{2})^{5/2}}{r_h \cdot T_h^{3/2}}$	
Type rørdel Type of pipe component	Gren med lokalt tykkere hoved- rør, se fotnote 1 Branch on locally thickened main pipe, see note 1 $L < \frac{d_1}{2} + 1, 8 \sqrt{D \cdot T_f}$ $L \ge \frac{d_i}{2} + 1, 8 \sqrt{D \cdot T_f}$	Gren med plateforsterkning, se fotnote 1 og 5 Branch with plate reinforcement, see notes 1 and 5	
Detalj Item	7	∞ ວ∠ŏ	

Norwegian (1990)

529

Tabell 10.1 fortsatt Table 10.1 continued

Detalj	Type rørdel	Fleksibilitetskoeffisient k	Spenningskoeffisient k ₁	
Item	Type of pipe component	Flexibility coefficient k	Stress coefficient k ₁	
15	Gjengeforbindelse eller tilslutning til gjengeflens Threaded joint or connection to threaded flange	1	2,3	

Fotnoter til figurene i tabell 10.1

Alle dimensjoner er nominelle.

 Koeffisientene k og k1 gjelder for bøying i vilkårlig plan og skal aldri være mindre enn 1. For glatte og segmentsveiste rørbend skal koeffisientene gjelde over den effektive buelengde (markert med tykk senterlinje i figurene). For gren og Trør skal de gjelde frem til skjæringspunktet mellom hovedrør og gren, se figur 10.5.

> k og k₁ som funksjon av h kan tas fra figur 10.3. Tilatte verdier for h er angitt i figur 10.3.

 Hvis en eller begge ender har standard flenstilslutning skal koeffisientene k og k₁ multipliseres med faktoren F som vist nedenfor

 $F = h^{1/6}$ om en ende har flens

 $F = h^{1/3}$ om begge ender har flens

F som funksjon av h kan tas fra figur 10.4. Tilatte verdier for h er angitt i figur 10.4.

 For albuer under innvendig trykk kan k endres på følgende måte:

> Under innvirkning av det innvendige overtrykk pminsker koeffisienten k til kp.

Notes relating to illustrations shown in table 10.1

All dimensions are nominal.

 The coefficients k and k₁ apply to bending in any plane and shall never be given a value less than 1. For plain bends and bends made of welded segments, the coefficients shall be applied to the effective length of the arc (shown by a heavy centreline in the illustrations). For branches and tees, they shall be applied up to the intersection point between the main pipe and the branch, see figure 10.5.

k and k_1 as functions of h can be taken from figure 10.3. Permissible values for h is given in figure 10.3.

 If a standard flange is joined to one end or both, the coefficients k and k₁ shall be multiplied by the factor F as shown below.

 $F = h^{1/6}$ if one end has a flange

 $F = h^{1/3}$ if both ends have flanges

F as function of h can be taken from figure 10.4. Permissible values for h is given in figure 10.4.

For elbows under internal pressure k may be changed in the following way:

The coefficient k is reduced to k_p due to the effect of the internal pressure, p:

$$k_{p} = \frac{k}{1 + \frac{R_{t}}{E} \cdot 6\left(\frac{r_{m}}{T}\right)^{4/3} \cdot \left(\frac{R}{r_{m}}\right)^{1/3}}$$

3)

where

der

Ε

р

- r_m = (D T)/2, rørtverrsnittets middelradius (mm)
- $R_t = (p \times r_m)/T$, tangentiell spenning

Minste verdi for k_p er 1.

 Skrå rundsveis med vinkelen θi grader slik at

- $r_m = (D-T)/2$, mean radius of the pipe section (mm)
- $R_t = (p x r_m)/T$, tangential stress (mm)

The minimum value of k_p is 1.

4) An inclined circumferential weld with the angle θ in degrees so that

$$\theta \leq 9 \cdot \sqrt{\frac{T}{r_m}}$$

kan betraktes som rett rundsveis.

5) Når
$$T_p \ge 2.5 \times T_h$$
 settes $h = 4.05 \times (T_h/r_h)$

- Formelen for k₁ gjelder bare under forutsetning av at følgende krav er oppfylt:
 - overgangsstykket er konsentrisk
 - vinkelen $\alpha \le 60^{\circ}$
 - D_{maks}/T respektive D_{min}/T₁ ikke er større enn 100.

may be considered as a perpendicular circumferential weld.

- 5) When $T_p \ge 2.5 \times T_h$ is set h = 4.05 x (T_h/r_h)
- 6) The formula for k₁ applies only when the following conditions are satisfied:
 - the reducer is concentric
 - the angle $\alpha \le 60^{\circ}$
 - neither D_{maks}/T nor D_{min}/T₁ exceeds 100

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated using eq. (2) in para. C 3641.1.

$$P_a = \frac{2St_a}{(D_o - 2Yt_a)}$$

where

 P_a = allowable pressure

S = allowable stress for the material at the design temperature (i.e., at T_{design} input into CAEPIPE). This value is given in the applicable tables of Annex Z I.

 $t_a{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 $D_0 =$ nominal outside diameter of pipe

$$Y = \text{coefficient} = 0.4$$

$$Y = \frac{d}{(d+D_o)}$$
 when $D_o/t_a < 6$

where, d = nominal inside diameter

Sustained Stress

The stress S_L due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from eq. (6) of para. C 3652.

$$S_L = \left| S_{lp} \right| + \frac{0.75iM_A}{Z} \le S_h$$

where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal pressure including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

 M_A = resultant bending moment due to weight and other sustained mechanical loads (excluding

pressure) =
$$\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$$

Z = un-corroded section modulus and should be computed as stated in para. C 3658 (b) and (d) $Z = \pi r^2 t_n$; for reduced outlets; $Z = \pi (r'_m) t_s$

r = mean cross-sectional radius; for reduced outlet, $r'_m =$ branch mean cross-sectional radius

 t_n = nominal wall thickness

 t_s = effective branch wall thickness = lesser of T_r or i. T_b

 $T_b = nominal branch wall thickness$

 $T_r = nominal run pipe wall thickness$

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal metal area

Occasional Stress

The stress S_{LO} , calculated as the sum of stress due to sustained loads S_L and stress due to occasional loads S_O such as earthquake or wind, shall meet eq. (10) of para. C 3654 (a). Wind and earthquake are not considered to act concurrently.

$$S_{LO} = S_L + \left| S_{lpo} \right| + \frac{0.75iM_B}{Z} \le k.S_h$$

 S_{lpo} = peak pressure stress = $\left|\frac{(P_o - P)d^2}{D^2 - d^2}\right|$ or $\left|\frac{(P_o - P)D}{4t_n}\right|$ This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

P = Maximum of CAEPIPE input pressures P1 through P10

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

k = 1.2 for Level B

k = 1.8 for Level C

$$k = 2.4$$
 for Level D

 M_B = resultant bending moment due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc. = $\sqrt{(M_{Bx})^2 + (M_{By})^2 + (M_{Bz})^2}$

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lpo}|$ with $|S_{lpo} + \frac{F_B}{A}|$

where

 F_B = axial force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

A = nominal metal Area

Expansion Stress Range

Stress range (S_E) due to thermal expansion is calculated using eq. (7) in para. C 3653.2 (a).

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from C 3680.

 M_C = resultant bending moment due to the thermal load range under analysis = $\sqrt{(M_{CL})^2 + (M_{CL})^2 + (M_{CL})^2}$

$$\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$$

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

 $S_A = f(1.25S_c + 0.25S_h)$ as per C 3653.3 (a)

 S_c = basic allowable stress at minimum metal temperature expected during the thermal stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the thermal stress range under analysis

f = stress range reduction factor from Table C 3653.3 (c)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_E as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_C}{Z} \le S_A$$

where

 F_C = axial force due to thermal load range under analysis.

Sustained + Expansion Stress

The sum of Sustained Stress due to pressure, weight, other sustained loads and Stress range due to thermal expansion is calculated using eq. (8) of para. C 3653.2 (b).

$$S_{TE} = |S_{lp}| + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_h + S_A$$

Where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal pressure including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

$$M_A$$
 = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure) = $\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$

 M_C = resultant bending moment due to the thermal load range under analysis = $\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress") $S_h =$ hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

 $S_A = f(1.25S_c + 0.25S_h)$ as per C 3653.3 (a)

 S_c = basic allowable stress at minimum metal temperature expected during the thermal stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the thermal stress range under analysis

f = stress range reduction factor from Table C 3653.3 (c) **Note:**

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$ and term $\frac{iM_C}{Z}$ with $\left|\frac{F_C}{A}\right| + \frac{iM_C}{Z}$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

 F_C = axial force due to thermal load range under analysis

Settlement Stress

The stress range (S_S) due to single, noncyclic displacement stress range (e.g., predicted settlement or uplift or movement of pipe support structures such as buildings, pipe racks, anchors, etc.) is calculated from eq. (9) in para. C 3653.2 (c).

$$S_E = \frac{iM_D}{Z} \le 3S_C$$

where

i = stress intensification factor from C 3680.

$$M_D$$
 = resultant bending moment due to any single noncyclic anchor movement (e.g., predicted

building settlement) = $\sqrt{(M_{Dx})^2 + (M_{Dy})^2 + (M_{Dz})^2}$

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

 S_{c} = basic allowable stress at room temperature (i.e., Tref in CAEPIPE)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_s as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_D}{Z} \le 3S_C$$

where

 F_C = axial force due to any single noncyclic anchor movement (e.g., predicted building settlement)

A = nominal metal area

Hydrotest Stress

The sum of longitudinal stress (S_{LT}) due to test pressure and dead loads for test condition is calculated from eq. (10) in para. C 3657.

$$S_{LT} = |S_{lp}| + \frac{0.75i(M_A + M_B)}{Z} \le 1.6S_h$$

where

 S_{lp} = pressure stress = $\frac{P_{max}D}{4t_n}$ or $\frac{P_{max}d^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

 P_{max} = Test pressure = hydrotest pressure input into CAEPIPE

- D = nominal outside diameter
- d = nominal inside diameter

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

- M_A = resultant bending moment due to weight and test fluid (excluding pressure) = $\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$
- M_B = resultant bending moment due to occasional loads = 0 (as occasional loads are not to be considered during the test condition)
- Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

 S_h = hot allowable stress at test temperature (i.e., at T_{ref} in CAEPIPE)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and test fluid (excluding pressure)

FLEXIBILITY AND STRESS INTENSIFICATION FACTORS (Do/t_n \leq 100)

Description	Flexibility characteristic h	Flexibility factor k	Stress intensification factor i	Sketch
Welding elbow or pipe bend (1), (2), (3), (9)	$\frac{t_n R}{r^2}$	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	R
Closely spaced miter bend (1), (2), (3) s < r (1 + tan θ)	$\frac{\mathrm{st}_{\mathrm{n}}\mathrm{cot}\theta}{2\mathrm{r}^2}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	S S S S S S S S S S S S S S S S S S S
$\begin{array}{lll} \mbox{Widely} & \mbox{spaced} \\ \mbox{miter bend} & (1), \\ (2), (4) \\ \mbox{s} \geq r \ (1 + tan \ \theta) \end{array}$	$\frac{t_n (1 + \cot \theta)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	S (1) (1) (1) (2) (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2
Welding tee per ANSI B 16.9 (1), (2)	$\frac{4.4 t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	
Reinforced fabricated tee (1), (2), (5)	$\frac{\left(t_{n}+t_{e}/2\right)^{5/2}}{rt_{n}^{-3/2}}$	1	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $
Unreinforced fabricated tee (1), (2)	<u>tn</u> r	1	$\frac{0.9}{h^{2/3}}$	

FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

Description	Flexibility factor k	Stress intensification factor i	Sketch
Branch connections (2), (6)	1	- Analysis of run pipe: $\begin{split} Z &= \pi R_m^2 T_r \\ i &= 0.4 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r_m'}{R_m}\right) \geq 1.5 \\ \text{- Analysis of branch pipe} \\ Z &= \pi (r_m')^2 T_b' \\ i &= 1.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r_m'}{R_m}\right)^{1/2} \left(\frac{T_b'}{T_r}\right) \left(\frac{r_m'}{r_p}\right) \end{split}$	Figure C 3680.2
Butt welds (1) $t_n > 4.75mm$ and $\frac{\delta}{t_n} \le 0.1$	1	1.0	
Butt welds (1) $t_n \le 4.75mm$ or $\frac{\delta}{t_n} > 0.1$	1	for flush weld 1.0 for as-welded 1.8	r 8 r
Fillet welded joint, socket welded flange or single welded slip-on flange	1	2.1	Figure C 3661.2.a sketch (c) Figure C 3661.2.b Figure C 3661.2.c Figure C 3661.2.d sketches (a) to (c)
Brazed joint	1	2.1	Conformity to C 3671.4.b
Full fillet weld	1	1.3	Figure C 3661.2.d sketch (d)
Tapered transition ≤ 30° (ANSI B 16.25) (1)	1	1.9 max or : 1.3 + 0.0036 $\frac{D_o}{T_n}$ + 3.6 $\frac{\delta}{T_n}$	t _n D ₀
Concentric reducers (ANSI B 16.9 or MSS SP 43) (2), (7)	1	2.0 max or : 0.5 + 0.01 $\alpha \left(\frac{D_2}{t_2}\right)^{1/2}$	t_1 D_2
Threaded pipe joint or threaded flange	1	2.3	
Corrugated straight pipe or corrugated or creased bend (8)	5	2.5	

NOTES TO FIGURE C 3680.1 :

(1)The following nomenclature applies:

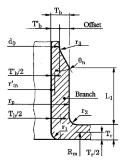
- r = mean radius of pipe (matching pipe for tees and elbows),
- t_n = nominal wall thickness of pipe (matching pipe for tees and elbows, see note (9)).
- R = bend radius of elbow or pipe bend.
- θ = one-half angle between adjacent miter axes,
- s = miter spacing at centreline,
- te = reinforced thickness,
- δ = mismatch
- Do = outside diameter.
- (2)The flexibility factors k and stress intensification factors i apply to bending in any plane for fitting and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy centrelines in the sketches) for curved and miter elbows, and to the intersection point for tees.
- (3)Where flanges are attached to one or both ends the values of k and i shall be corrected by the factor c given below:

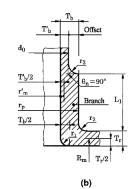
one end flanged $c = h^{1/6}$

both ends flanged $c = h^{1/3}$

(4)Also includes single miter joints

(5) When $t_e > 1.5 t_n$, $h = 4.05 t_n/r$.


- (6)The equations apply only if the following conditions are met:
 - a) The reinforcement area requirements of C 3643 are met.
 - b) The axis of the branch pipe is normal to the surface of run pipe wall.
 - c) For branch connections in a pipe, the arc distance measured between the centres of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times
 - d) The inside corner radius r1 (figure C 3680.2) is between 10% and 50% of Tr.
 - e) The outer radius r₂ is not less than the larger of T_b/2, (T_b + y)/2 (fig. C 3680.2 sketch (c)) or T_r/2.


- f) The outer radius r3, is not less than the larger of
 - (1) 0.002 θ d₀
 - (2) 2 (sin θ)³ times the offset for the configurations shown in fig. C 3680.2.
 (a) and (b).
- g) $R_{m}/T_{r} \leq 50$ and $r'_{m}/R_{m} \leq 0.5$

(7)The equations apply only if the following conditions are met:

- a) Cone angle α does not exceed 60°, and the reducer is concentric,
- b) The larger of D₁/t₁ and D₂/t₂ does not exceed 100,
- c) The wall thickness is not less than t₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t₂.
- (8)Factors shown apply to bending, flexibility factor for tension equals 0.9.
- (9)The designer is cautioned that cast butt welding elbows may have considerably heavier walls than those of the pipe with which they are used.

Large errors may be introduced unless the effect of these greater thicknesses is considered.

 \mathbf{r}_3

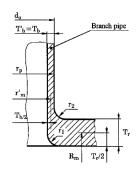
у

_

(c)

Branch pipe

Branch


 \mathbf{r}_2

R_m T_r/2

 L_1

 $\Gamma_r/2$

Tr 4

(d)

Notes :

 $\mathbf{d}_{\mathbf{0}}$

r'm

 $T_b/2$

 $\mathbf{r}_{\mathbf{i}}$

rp

 $\mathbf{T}_{\mathbf{b}}$

- $\begin{array}{lll} r'_m &=& average \ radius \ of \ branch \ p\\ T'_b &=& nominal \ thickness \ of \ branch \\ R_m &=& average \ radius \ of \ run \ pipe, \\ T_r &=& nominal \ thickness \ of \ run \ pipe, \\ d_0 &=& outer \ diameter \ of \ branch \ pipe. \end{array}$ average radius of branch pipe,nominal thickness of branch pipe,

 $\begin{array}{lll} T_b = \ T_b' + \ 0.667 \ y \\ \theta \ \leq \ 45^o \end{array}$

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated using eq. (2) in para. C 3641.1.

$$P_a = \frac{2St_a}{(D_o - 2Yt_a)}$$

where

 P_a = allowable pressure

S = allowable stress for the material at the design temperature (i.e., at T_{design} input into CAEPIPE). This value is given in the applicable tables of Annex Z I.

 $t_a{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 $D_0 =$ nominal outside diameter of pipe

$$Y = \text{coefficient} = 0.4$$

$$Y = \frac{d}{(d+D_o)}$$
 when $D_o/t_a < 6$

where, d = nominal inside diameter

Sustained Stress

The stress S_L due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from eq. (6) of para. C 3652.

$$S_L = \left| S_{lp} \right| + \frac{0.75iM_A}{Z} \le S_h$$

where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal pressure including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

 M_A = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure) = $\sqrt{(M_{\star})^2 + (M_{\star})^2}$

pressure) =
$$\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$$

Z = un-corroded section modulus and should be computed as stated in para. C 3658 (b) and (d) $Z = \pi r^2 t_n$; for reduced outlets; $Z = \pi (r'_m) t_s$

r =mean cross-sectional radius; for reduced outlet, r'_m = branch mean cross-sectional radius

t_n= nominal wall thickness

 t_s = effective branch wall thickness = lesser of T_r or i. T_b

 $T_b = nominal branch wall thickness$

 $T_r = nominal run pipe wall thickness$

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal metal area

Occasional Stress

The stress S_{LO} , calculated as the sum of stress due to sustained loads S_L and stress due to occasional loads S_O such as earthquake or wind, shall meet eq. (10) of para. C 3654 (a). Wind and earthquake are not considered to act concurrently.

$$S_{LO} = S_L + \left| S_{lpo} \right| + \frac{0.75iM_B}{Z} \le k.S_h$$

 S_{lpo} = peak pressure stress = $\left|\frac{(P_o - P)d^2}{D^2 - d^2}\right|$ or $\left|\frac{(P_o - P)D}{4t_n}\right|$ This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

P = Maximum of CAEPIPE input pressures P1 through P10

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

k = 1.2 for Level B

k = 1.8 for Level C

$$k = 2.4$$
 for Level D

 M_B = resultant bending moment due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc. = $\sqrt{(M_{Bx})^2 + (M_{By})^2 + (M_{Bz})^2}$

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lpo}|$ with $|S_{lpo} + \frac{F_B}{A}|$

where

 F_B = axial force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

A = nominal metal Area

Expansion Stress Range

Stress range (S_E) due to thermal expansion is calculated using eq. (7) in para. C 3653.2 (a).

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from C 3680.

 M_C = resultant bending moment due to the thermal load range under analysis = $\sqrt{(M_{CL})^2 + (M_{CL})^2 + (M_{CL})^2}$

$$\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$$

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

 $S_A = f(1.25S_c + 0.25S_h)$ as per C 3653.3 (a)

 S_c = basic allowable stress at minimum metal temperature expected during the thermal stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the thermal stress range under analysis

f = stress range reduction factor from Table C 3653.3 (c)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_E as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_C}{Z} \le S_A$$

where

 F_C = axial force due to thermal load range under analysis.

Sustained + Expansion Stress

The sum of Sustained Stress due to pressure, weight, other sustained loads and Stress range due to thermal expansion is calculated using eq. (8) of para. C 3653.2 (b).

$$S_{TE} = |S_{lp}| + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_h + S_A$$

Where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal pressure including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

$$M_A$$
 = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure) = $\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$

 M_C = resultant bending moment due to the thermal load range under analysis = $\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress") $S_h =$ hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

 $S_A = f(1.25S_c + 0.25S_h)$ as per C 3653.3 (a)

 S_c = basic allowable stress at minimum metal temperature expected during the thermal stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the thermal stress range under analysis

f = stress range reduction factor from Table C 3653.3 (c) **Note:**

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$ and term $\frac{iM_C}{Z}$ with $\left|\frac{F_C}{A}\right| + \frac{iM_C}{Z}$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

 F_C = axial force due to thermal load range under analysis

Settlement Stress

The stress range (S_S) due to single, noncyclic displacement stress range (e.g., predicted settlement or uplift or movement of pipe support structures such as buildings, pipe racks, anchors, etc.) is calculated from eq. (9) in para. C 3653.2 (c).

$$S_E = \frac{iM_D}{Z} \le 3S_C$$

where

i = stress intensification factor from C 3680.

$$M_D$$
 = resultant bending moment due to any single noncyclic anchor movement (e.g., predicted

building settlement) = $\sqrt{(M_{Dx})^2 + (M_{Dy})^2 + (M_{Dz})^2}$

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

 S_c = basic allowable stress at room temperature (i.e., Tref in CAEPIPE)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_s as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_D}{Z} \le 3S_C$$

where

 F_C = axial force due to any single noncyclic anchor movement (e.g., predicted building settlement)

A = nominal metal area

Hydrotest Stress

The sum of longitudinal stress (S_{LT}) due to test pressure and dead loads for test condition is calculated from eq. (10) in para. C 3657.

$$S_{LT} = |S_{lp}| + \frac{0.75i(M_A + M_B)}{Z} \le 1.6S_h$$

where

 S_{lp} = pressure stress = $\frac{P_{max}D}{4t_n}$ or $\frac{P_{max}d^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

 P_{max} = Test pressure = hydrotest pressure input into CAEPIPE

- D = nominal outside diameter
- d = nominal inside diameter

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

- M_A = resultant bending moment due to weight and test fluid (excluding pressure) = $\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$
- M_B = resultant bending moment due to occasional loads = 0 (as occasional loads are not to be considered during the test condition)
- Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

 S_h = hot allowable stress at test temperature (i.e., at T_{ref} in CAEPIPE)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and test fluid (excluding pressure)

FLEXIBILITY AND STRESS INTENSIFICATION FACTORS (Do/t_n \leq 100)

Description	Flexibility characteristic h	Flexibility factor k	Stress intensification factor i	Sketch
Welding elbow or pipe bend (1), (2), (3), (9)	$\frac{t_n R}{r^2}$	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	R
Closely spaced miter bend (1), (2), (3) s < r (1 + tan θ)	$\frac{\mathrm{st}_{\mathrm{n}}\mathrm{cot}\theta}{2\mathrm{r}^2}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	S S S S S S S S S S S S S S S S S S S
$\begin{array}{lll} \mbox{Widely} & \mbox{spaced} \\ \mbox{miter bend} & (1), \\ (2), (4) \\ \mbox{s} \geq r \ (1 + tan \ \theta) \end{array}$	$\frac{t_n (1 + \cot \theta)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	S (1) (1) (1) (2) (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2
Welding tee per ANSI B 16.9 (1), (2)	$\frac{4.4 t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	
Reinforced fabricated tee (1), (2), (5)	$\frac{\left(t_{n}+t_{e}/2\right)^{5/2}}{rt_{n}^{-3/2}}$	1	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $
Unreinforced fabricated tee (1), (2)	<u>tn</u> r	1	$\frac{0.9}{h^{2/3}}$	

FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

Description	Flexibility factor k	Stress intensification factor i	Sketch
Branch connections (2), (6)	1	- Analysis of run pipe: $\begin{split} Z &= \pi R_m^2 T_r \\ i &= 0.4 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r_m'}{R_m}\right) \geq 1.5 \\ \text{- Analysis of branch pipe} \\ Z &= \pi (r_m')^2 T_b' \\ i &= 1.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r_m'}{R_m}\right)^{1/2} \left(\frac{T_b'}{T_r}\right) \left(\frac{r_m'}{r_p}\right) \end{split}$	Figure C 3680.2
Butt welds (1) $t_n > 4.75mm$ and $\frac{\delta}{t_n} \le 0.1$	1	1.0	
$\begin{array}{l} \text{Butt welds (1)} \\ t_n \leq 4.75 \text{mm} \\ \text{or } \frac{\delta}{t_n} > 0.1 \end{array}$	1	for flush weld 1.0 for as-welded 1.8	
Fillet welded joint, socket welded flange or single welded slip-on flange	1	2.1	Figure C 3661.2.a sketch (c) Figure C 3661.2.b Figure C 3661.2.c Figure C 3661.2.d sketches (a) to (c)
Brazed joint	1	2.1	Conformity to C 3671.4.b
Full fillet weld	1	1.3	Figure C 3661.2.d sketch (d)
Tapered transition ≤ 30° (ANSI B 16.25) (1)	1	1.9 max or : 1.3 + 0.0036 $\frac{D_o}{T_n}$ + 3.6 $\frac{\delta}{T_n}$	t _n D ₀
Concentric reducers (ANSI B 16.9 or MSS SP 43) (2), (7)	1	2.0 max or : 0.5 + 0.01 $\alpha \left(\frac{D_2}{t_2}\right)^{1/2}$	
Threaded pipe joint or threaded flange	1	2.3	
Corrugated straight pipe or corrugated or creased bend (8)	5	2.5	

NOTES TO FIGURE C 3680.1 :

(1)The following nomenclature applies:

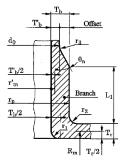
- r = mean radius of pipe (matching pipe for tees and elbows),
- t_n = nominal wall thickness of pipe (matching pipe for tees and elbows, see note (9)).
- R = bend radius of elbow or pipe bend.
- θ = one-half angle between adjacent miter axes,
- s = miter spacing at centreline,
- te = reinforced thickness,
- δ = mismatch
- Do = outside diameter.
- (2)The flexibility factors k and stress intensification factors i apply to bending in any plane for fitting and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy centrelines in the sketches) for curved and miter elbows, and to the intersection point for tees.
- (3)Where flanges are attached to one or both ends the values of k and i shall be corrected by the factor c given below:

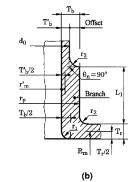
one end flanged $c = h^{1/6}$

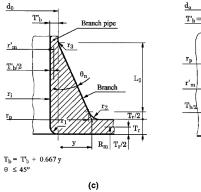
both ends flanged $c = h^{1/3}$

(4)Also includes single miter joints

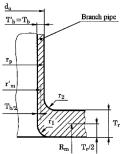
(5) When $t_e > 1.5 t_n$, $h = 4.05 t_n/r$.


- (6)The equations apply only if the following conditions are met:
 - a) The reinforcement area requirements of C 3643 are met.
 - b) The axis of the branch pipe is normal to the surface of run pipe wall.
 - c) For branch connections in a pipe, the arc distance measured between the centres of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times
 - d) The inside corner radius r1 (figure C 3680.2) is between 10% and 50% of Tr.
 - e) The outer radius r₂ is not less than the larger of T_b/2, (T_b + y)/2 (fig. C 3680.2 sketch (c)) or T_r/2.


- f) The outer radius r3, is not less than the larger of
 - (1) 0.002 θ d₀
 - (2) 2 (sin θ)³ times the offset for the configurations shown in fig. C 3680.2.
 (a) and (b).
- g) $R_{m}/T_{r} \leq 50$ and $r'_{m}/R_{m} \leq 0.5$


(7)The equations apply only if the following conditions are met:

- a) Cone angle α does not exceed 60°, and the reducer is concentric,
- b) The larger of D₁/t₁ and D₂/t₂ does not exceed 100,
- c) The wall thickness is not less than t₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t₂.
- (8)Factors shown apply to bending, flexibility factor for tension equals 0.9.
- (9)The designer is cautioned that cast butt welding elbows may have considerably heavier walls than those of the pipe with which they are used.


Large errors may be introduced unless the effect of these greater thicknesses is considered.

(a)

(d)

Notes :

- average radius of branch pipe,nominal thickness of branch pipe,

r'm T'b Rm = T_r = d_o =

- average radius of run pipe, nominal thickness of run pipe, outer diameter of branch pipe.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated using eq. (2) in para. C 3641.1.

$$P_a = \frac{2St_a}{(D_o - 2Yt_a)}$$

where

 P_a = allowable pressure

S = allowable stress for the material at the design temperature (i.e., at T_{design} input into CAEPIPE). This value is given in the applicable tables of Annex Z I.

 $t_a{=}$ available thickness for pressure design = $t_n \times (1$ - mill tolerance/100) - corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

 t_n = nominal pipe thickness

 $D_0 =$ nominal outside diameter of pipe

$$Y = \text{coefficient} = 0.4$$

$$Y = \frac{d}{(d+D_o)}$$
 when $D_o/t_a < 6$

where, d = nominal inside diameter

Sustained Stress

The stress S_L due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from eq. (6) of para. C 3652.

$$S_L = \left| S_{lp} \right| + \frac{0.75iM_A}{Z} \le S_h$$

where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal pressure including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

 M_A = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure) = $\sqrt{(M_{\star})^2 + (M_{\star})^2}$

pressure) =
$$\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$$

Z = un-corroded section modulus and should be computed as stated in para. C 3658 (b) and (d) $Z = \pi r^2 t_n$; for reduced outlets; $Z = \pi (r'_m) t_s$

r =mean cross-sectional radius; for reduced outlet, r'_m = branch mean cross-sectional radius

t_n= nominal wall thickness

 t_s = effective branch wall thickness = lesser of T_r or i. T_b

 $T_b = nominal branch wall thickness$

 $T_r = nominal run pipe wall thickness$

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

A = nominal metal area

Occasional Stress

The stress S_{LO} , calculated as the sum of stress due to sustained loads S_L and stress due to occasional loads S_O such as earthquake or wind, shall meet eq. (10) of para. C 3654 (a). Wind and earthquake are not considered to act concurrently.

$$S_{LO} = S_L + \left| S_{lpo} \right| + \frac{0.75iM_B}{Z} \le k.S_h$$

 S_{lpo} = peak pressure stress = $\left|\frac{(P_o - P)d^2}{D^2 - d^2}\right|$ or $\left|\frac{(P_o - P)D}{4t_n}\right|$ This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

 $P_o = peak pressure = (peak pressure factor in CAEPIPE) x P$

P = Maximum of CAEPIPE input pressures P1 through P10

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

k = 1.2 for Level B

k = 1.8 for Level C

$$k = 2.4$$
 for Level D

 M_B = resultant bending moment due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc. = $\sqrt{(M_{Bx})^2 + (M_{By})^2 + (M_{Bz})^2}$

 S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lpo}|$ with $|S_{lpo} + \frac{F_B}{A}|$

where

 F_B = axial force due to occasional loads such as thrusts from pressure/safety relief valve loads, from pressure and flow transients, earthquake/wind, etc.

A = nominal metal Area

Expansion Stress Range

Stress range (S_E) due to thermal expansion is calculated using eq. (7) in para. C 3653.2 (a).

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

i = stress intensification factor from C 3680.

 M_C = resultant bending moment due to the thermal load range under analysis = $\sqrt{(M_C)^2 + (M_C)^2 + (M_C)^2}$

$$\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$$

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

 $S_A = f(1.25S_c + 0.25S_h)$ as per C 3653.3 (a)

 S_c = basic allowable stress at minimum metal temperature expected during the thermal stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the thermal stress range under analysis

f = stress range reduction factor from Table C 3653.3 (c)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_E as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_C}{Z} \le S_A$$

where

 F_C = axial force due to thermal load range under analysis.

Sustained + Expansion Stress

The sum of Sustained Stress due to pressure, weight, other sustained loads and Stress range due to thermal expansion is calculated using eq. (8) of para. C 3653.2 (b).

$$S_{TE} = |S_{lp}| + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le S_h + S_A$$

Where

 S_{lp} = pressure stress = $\frac{PD}{4t_n}$ or $\frac{Pd^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

P = internal pressure including the effects of static head = maximum of CAEPIPE input pressures P1 through P10

D = nominal outside diameter

d = nominal inside diameter

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

$$M_A$$
 = resultant bending moment due to weight and other sustained mechanical loads (excluding pressure) = $\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$

 M_C = resultant bending moment due to the thermal load range under analysis = $\sqrt{(M_{Cx})^2 + (M_{Cy})^2 + (M_{Cz})^2}$

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress") $S_h =$ hot allowable stress at maximum CAEPIPE temperature [i.e., at max (T_{ref}, T1 through T10)]

 $S_A = f(1.25S_c + 0.25S_h)$ as per C 3653.3 (a)

 S_c = basic allowable stress at minimum metal temperature expected during the thermal stress range under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the thermal stress range under analysis

f = stress range reduction factor from Table C 3653.3 (c) Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$ and term $\frac{iM_C}{Z}$ with $\left|\frac{F_C}{A}\right| + \frac{iM_C}{Z}$

where

 F_A = axial force due to weight and other sustained mechanical loads excluding pressure

 F_C = axial force due to thermal load range under analysis

Settlement Stress

The stress range (S_S) due to single, noncyclic displacement stress range (e.g., predicted settlement or uplift or movement of pipe support structures such as buildings, pipe racks, anchors, etc.) is calculated from eq. (9) in para. C 3653.2 (c).

$$S_E = \frac{iM_D}{Z} \le 3S_C$$

where

i = stress intensification factor from C 3680.

$$M_D$$
 = resultant bending moment due to any single noncyclic anchor movement (e.g., predicted

building settlement) = $\sqrt{(M_{Dx})^2 + (M_{Dy})^2 + (M_{Dz})^2}$

Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

 S_{c} = basic allowable stress at room temperature (i.e., Tref in CAEPIPE)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will compute S_s as given below.

$$S_E = \left|\frac{F_C}{A}\right| + \frac{iM_D}{Z} \le 3S_C$$

where

 F_C = axial force due to any single noncyclic anchor movement (e.g., predicted building settlement)

A = nominal metal area

Hydrotest Stress

The sum of longitudinal stress (S_{LT}) due to test pressure and dead loads for test condition is calculated from eq. (10) in para. C 3657.

$$S_{LT} = |S_{lp}| + \frac{0.75i(M_A + M_B)}{Z} \le 1.6S_h$$

where

 S_{lp} = pressure stress = $\frac{P_{max}D}{4t_n}$ or $\frac{P_{max}d^2}{D^2-d^2}$. This pressure option can be selected in CAEPIPE through Layout Window > Options > Analysis > Pressure.

 P_{max} = Test pressure = hydrotest pressure input into CAEPIPE

- D = nominal outside diameter
- d = nominal inside diameter

i = stress intensification factor from C 3680 and 0.75i shall not be less than 1.0

- M_A = resultant bending moment due to weight and test fluid (excluding pressure) = $\sqrt{(M_{Ax})^2 + (M_{Ay})^2 + (M_{Az})^2}$
- M_B = resultant bending moment due to occasional loads = 0 (as occasional loads are not to be considered during the test condition)
- Z = un-corroded section modulus as defined above (see write-up for "Sustained Stress")

 S_h = hot allowable stress at test temperature (i.e., at T_{ref} in CAEPIPE)

Note:

When the option "Include axial force in stress calculations" is turned ON, then CAEPIPE will replace the term $|S_{lp}|$ with $|S_{lp} + \frac{F_A}{A}|$

where

 F_A = axial force due to weight and test fluid (excluding pressure)

FLEXIBILITY AND STRESS INTENSIFICATION FACTORS (Do/t_n \leq 100)

Description	Flexibility characteristic h	Flexibility factor k	Stress intensification factor i	Sketch
Welding elbow or pipe bend (1), (2), (3), (9)	$\frac{t_n R}{r^2}$	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	R
Closely spaced miter bend (1), (2), (3) s < r (1 + tan θ)	$\frac{\mathrm{st}_{\mathrm{n}}\mathrm{cot}\theta}{2\mathrm{r}^2}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	S S COT E
$\begin{array}{lll} \mbox{Widely} & \mbox{spaced} \\ \mbox{miter bend} & (1), \\ (2), (4) \\ \mbox{s} \geq r \ (1 + tan \ \theta) \end{array}$	$\frac{t_n (1 + \cot \theta)}{2r}$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	S (1) = 2(2+cot 0) (1) = 2(2+cot 0)
Welding tee per ANSI B 16.9 (1), (2)	$\frac{4.4 t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	
Reinforced fabricated tee (1), (2), (5)	$\frac{(t_{n} + t_{e}/2)^{5/2}}{rt_{n}^{3/2}}$	1	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $
Unreinforced fabricated tee (1), (2)	r	1	$\frac{0.9}{h^{2/3}}$	

FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

Description	Flexibility factor k	Stress intensification factor i	Sketch
Branch connections (2), (6)	1	- Analysis of run pipe: $\begin{split} Z &= \pi R_m^2 T_r \\ i &= 0.4 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r_m'}{R_m}\right) \geq 1.5 \\ \text{- Analysis of branch pipe} \\ Z &= \pi (r_m')^2 T_b' \\ i &= 1.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r_m'}{R_m}\right)^{1/2} \left(\frac{T_b'}{T_r}\right) \left(\frac{r_m'}{r_p}\right) \end{split}$	Figure C 3680.2
Butt welds (1) $t_n > 4.75mm$ and $\frac{\delta}{t_n} \le 0.1$	1	1.0	
$\begin{array}{l} \text{Butt welds (1)} \\ t_n \leq 4.75 \text{mm} \\ \text{or } \frac{\delta}{t_n} > 0.1 \end{array}$	1	for flush weld 1.0 for as-welded 1.8	
Fillet welded joint, socket welded flange or single welded slip-on flange	1	2.1	Figure C 3661.2.a sketch (c) Figure C 3661.2.b Figure C 3661.2.c Figure C 3661.2.d sketches (a) to (c)
Brazed joint	1	2.1	Conformity to C 3671.4.b
Full fillet weld	1	1.3	Figure C 3661.2.d sketch (d)
Tapered transition ≤ 30° (ANSI B 16.25) (1)	1	1.9 max or : 1.3 + 0.0036 $\frac{D_o}{T_n} + 3.6 \frac{\delta}{T_n}$	t _n D ₀
Concentric reducers (ANSI B 16.9 or MSS SP 43) (2), (7)	1	2.0 max or : 0.5 + 0.01 $\alpha \left(\frac{D_2}{t_2}\right)^{1/2}$	
Threaded pipe joint or threaded flange	1	2.3	
Corrugated straight pipe or corrugated or creased bend (8)	5	2.5	

NOTES TO FIGURE C 3680.1 :

(1)The following nomenclature applies:

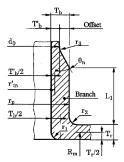
- r = mean radius of pipe (matching pipe for tees and elbows),
- t_n = nominal wall thickness of pipe (matching pipe for tees and elbows, see note (9)).
- R = bend radius of elbow or pipe bend.
- θ = one-half angle between adjacent miter axes,
- s = miter spacing at centreline,
- te = reinforced thickness,
- δ = mismatch
- Do = outside diameter.
- (2)The flexibility factors k and stress intensification factors i apply to bending in any plane for fitting and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy centrelines in the sketches) for curved and miter elbows, and to the intersection point for tees.
- (3)Where flanges are attached to one or both ends the values of k and i shall be corrected by the factor c given below:

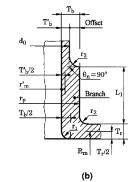
one end flanged $c = h^{1/6}$

both ends flanged $c = h^{1/3}$

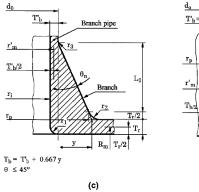
(4)Also includes single miter joints

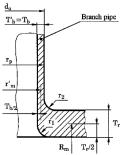
(5) When $t_e > 1.5 t_n$, $h = 4.05 t_n/r$.


- (6)The equations apply only if the following conditions are met:
 - a) The reinforcement area requirements of C 3643 are met.
 - b) The axis of the branch pipe is normal to the surface of run pipe wall.
 - c) For branch connections in a pipe, the arc distance measured between the centres of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times
 - d) The inside corner radius r1 (figure C 3680.2) is between 10% and 50% of Tr.
 - e) The outer radius r₂ is not less than the larger of T_b/2, (T_b + y)/2 (fig. C 3680.2 sketch (c)) or T_r/2.


- f) The outer radius r3, is not less than the larger of
 - (1) 0.002 θ d₀
 - (2) 2 (sin θ)³ times the offset for the configurations shown in fig. C 3680.2.
 (a) and (b).
- g) $R_m/T_r \le 50$ and $r'_m/R_m \le 0.5$

(7)The equations apply only if the following conditions are met:


- a) Cone angle α does not exceed 60°, and the reducer is concentric,
- b) The larger of D₁/t₁ and D₂/t₂ does not exceed 100,
- c) The wall thickness is not less than t₁ throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than t₂.
- (8)Factors shown apply to bending, flexibility factor for tension equals 0.9.
- (9)The designer is cautioned that cast butt welding elbows may have considerably heavier walls than those of the pipe with which they are used.


Large errors may be introduced unless the effect of these greater thicknesses is considered.

(a)

(d)

Notes :

- average radius of branch pipe,nominal thickness of branch pipe,

r'm T'b Rm = T_r = d_o =

- average radius of run pipe, nominal thickness of run pipe, outer diameter of branch pipe.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 2 of C 3641.1.

$$P = \frac{2SEt_m}{D - 2Yt_m}$$

where

P = allowable pressure

S = allowable stress

E = joint factor (input as material property)

 t_m = minimum required thickness, including mechanical and corrosion allowance

= $t \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

- t = nominal pipe thickness
- D =outside diameter
- d = inside diameter
- Y = pressure coefficient

= 0.4 for t < D/6

= d/(D+d) for $t \ge D/6$

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 6 of C 3652.

$$S_L = \frac{PD}{4t} + \frac{0.75iM_A}{Z} \le S_h$$

where

P = maximum pressure

D =outside diameter

t = nominal wall thickness

i = stress intensification factor. The product 0.75*i*, shall not be less than 1.0

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

Z = section modulus, for reduced outlets, effective section modulus

 S_h = hot allowable stress

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_O) , such as earthquake or wind from Equation 10 of C 3654. Wind and earthquake are not considered concurrently.

$$S_{LO} = S_L + \frac{0.75iM_B}{Z} \le 1.2S_h$$

where

 M_B = resultant moment due to occasional loads

Expansion Stress

The stress (SE) due to thermal expansion is calculated from Equation 7 of C 3653.2.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

 M_C = resultant moment due to thermal expansion

 $S_A = f(1.25S_c + 0.25S_h)$

 S_c = allowable stress at cold temperature

f = stress range reduction factor from Table C 3653.3

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation 8 of C 3653.2.

$$S_{TE} = S_L + S_E \le S_h + S_A$$

FLEXIBILITY AND STRESS INTENSIFICATION FACTORS (Do/tn \leqslant 100)

Description	Flexibility characteristic h	Fiexbility factor k	Strem Intensification factor i	Sketch
Welding albow or pipe bend. (Notes (11, (2), (3) }-	(n A ,2	1.65 h	0,9 	
Closely speced miter bend. (Notes (1), (2), (3)) $s \le c (1 + tan d)$	<u></u>	1,52 h 5%	0,9 h ² 3	3
Widely spaced mitar bend (Notes [1], (2), (4). $s \ge r(1 + tan \theta)$	$\frac{t_n (1 + \cot \theta)}{2r}$	1,52 h ³ .4	0.9 n 2.3	4
Weiding tee per ANSI 5.16.9 INotes (11, 12),	4.4 t _n	1	0,9 h ² 1	
Reinforced faoricated Lee Notes (1), (2), (5)).	$\frac{(t_n + \frac{t_0}{2})^{\frac{5}{2}}}{rt_n^{-2/2}}$	1	0.9 h ² 3	
Uncentorced fabricated tee (Notes (1) (2) 1.	<u>tn</u>	1	0,9 h 2-3	

Description	Flexibility factor K	Stress intensification factor (Shotch
Branch connections Note (6) }	٦	- Analysis of run pipe: $Z = r (R_m)^2 T_r$ $i = 0.4 \left(\frac{R_m}{T_r}\right) \nu_J + \frac{r'm}{R_m}$ with a minimum value of 1.5 - Analysis of branch pipe $Z = r (r'm)^2 T'_D$ $i = 1.5 \left(\frac{R_m}{T_r}\right) \nu_J r \left(\frac{T_D}{T_r}\right) \left(\frac{r'm}{T_p}\right)$	Fig. C 3680.2
Butt weids Note (1)] $t_n > 4,75 \text{ mm and } \frac{\delta}{t_n} \le 0,1$	1	1,0	
Butt weld [Note [1)] $1_0 \le 4.75 \text{ mm or } \frac{h}{1_0} > 0.1$	1	tor flush weld	
Fillet welded joint, socket welded flange or single welded slip-on flange	1	2.1	Figure C 3661.2 Sketchai (C), (Dł, (El, (F) and (G)
Brazed joint	1	2,1	Cantormity to C 3671.4.01
Full filler weid	1	נו	Figure C 3661.2 Sketch (H)
Tapered transition < 30° [ANSI B 16.25] [Note [1]]	1	1,9 mex. or : 1,3 + 0,0036 <mark>- 0₀ + 3,6 - ⁶.</mark> ^t n ^t n ^t n	
Concentric reducers (ANSI B.16.9 or MSS SP 48) Note (7).]	1	2.0 max. or .0,5 + 0,01 e (<mark>D₂</mark>)//3	
Threaded pipe joint or threaded flange	1	2,2	
Corrugated straight pipe or corrugated or creased bend { Note (8) }	5	2,5	

FLEXIBILITY AND STRESS INTENSIFICATION FACTORS (cont'd)

NOTES TO FIGURE C 3640.1:

The following nomenclature applies
 mean radius

- mean radius of pipe (matching pipe for tees and elbows)
- In nominal wall thickness of pipe (matching pipe for tees and elbriws, see note (9))
- A bend radius of elbow or pipe bend
- 8 = one-half angle between adjacent miter axes
- miler spacing at centreline
- te reinforced thickness
- 6 = mismalch
- Do outside diameter
- (2) The flexibility factors k and stress intensitication factors i apply to benifting in any plane for hittings and shall in no case be taken (ess than unity. Both factors apply over the effective air length physics to theavy centrelines in the sketches) for curved and mitter elbows, and to the intersection point for tens.
- (3) Where llanges are attached to one or both ends the values of k and i shall be corrected by the factor given below.

both ends flanged c = http:// both ends flanged c = http://

- (4) Also includes single miter joints
- (5) When te > 15 in h = 405 in/r

(6) The equation applies only if the following conditions are met

a) The reinforcement area requirements of C 3643 are inet

- b) The axis of the branch pipe is normal to the surface of him pipe wall
- c) For branch connections in a pipe, the arc distance measured between the centres of adjuent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the sum of their inside radii along the circumference of the run pipe.
- d) The inside corner radius rt (ligure C 3680.2) is between 10% and 50% of Tr
- e) The outer radius r2 is not less than the larger of Tb/2 (Tb + y1/2) thg. C 3680.2 sketch icit or Tr/2
- 1) The outer radius r3 is not less than the larger of

(1) 0 002 8 do

(2) 2 (sin #)³ times the offset for the configurations shown in fig. C 3640.2, skell hes rat and roll

- g) Rm/Tr < 50 and rm/Rm < 05
- (7) The equations apply only if the following conditions are met
 - a) Cone angle a does not exceed 60° and the reducer is concentric
 - b) The larger of D1/H and D2/I2 does not exceed 100
 - c) The wall thickness is not less than t1, throughout the body of the reducer, except in and immediately adjacent to the cyclindrical portion on the small end, where the thickness shall not be less than t.
- (8) Factors shown apply to bending flexibility factor for tension equals 0.9
- (9) The designer is cautioned that cast butt welding elbows may have considerably heavier walls than those of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.

Allowable Pressure

For straight pipes and bends, the allowable pressure is calculated using Eq. (C2.2.2-2) for straight pipes and Eq. (C2.3.2-1) for bends from paras. C2.2.2. and C2.3.2.respectively

$$P = \frac{2fze}{D-e}$$

where

P = allowable pressure

f = allowable stress

z = joint factor (input as material property in CAEPIPE)

 $e = nominal pipe thickness \times (1 - mill tolerance/100) - corrosion allowance "c"$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

D =outside diameter

For pipe bends the maximum allowable pressure is calculated using the equivalent pipe wall thickness e_{equi}

$$e_{equi} = \frac{e}{t_f}$$

where

$$t_f = \left[\frac{R/D_o - 0.25}{R/D_o - 0.50}\right]$$

For closely spaced miter bends, the allowable pressure is calculated from

$$P = \min\left[\left(\frac{2fze}{D_m} \cdot \frac{e}{e + 0.643\tan\theta\sqrt{0.5D_me}}\right), \left(\frac{2fze}{D_m} \cdot \frac{R - 0.5D_m}{R - 0.25D_m}\right)\right] \text{ with } \theta \le 22.5$$

For widely spaced miter bends, the allowable pressure is calculated from

$$P = \min\left[\left(\frac{2fze}{D_m} \cdot \frac{e}{e + 0.643 \tan \theta \sqrt{0.5D_m e}}\right), \left(\frac{2fze}{D_m} \cdot \frac{R - 0.5D_m}{R - 0.25D_m}\right)\right] \text{ with } \theta \le 22.5$$
$$P = \left(\frac{2fze}{D_m} \cdot \frac{e}{e + 1.25 \tan \theta \sqrt{0.5D_m e}}\right) \text{ with } \theta \le 22.5$$

where

 D_m = mean diameter of pipe = D-t_n

R = effective bend radius of the miter

 θ = miter half angle

 t_n = nominal thickness

Sustained Stress

The stress (σ_1) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated using Eq. (C10.3.2) from para. C10.3.2.

$$\sigma_1 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} \le f_h$$

Where

- P = maximum of CAEPIPE input pressures P1 through P10
- D_o = outside diameter
- e = nominal pipe thickness x [1 mill tolerance%/100] corrosion allowance "c"
- i = stress intensification factor from Table C10.2.6-1; the product of 0.75i shall not be less than 1.0
- M_A = resulting bending moment due to sustained loads
- Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus
- f_h = hot allowable stress

Sustained plus Occasional Stress

The stress (σ_2) due to sustained and occasional loads is calculated as the sum of stress due to sustained loads such as due to pressure, weight and other sustained mechanical loads and stress due to occasional loads such as earthquake or wind. Wind and earthquake are not considered concurrently (see para. C10.3.3)

$$\sigma_2 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le kf_h$$

where,

- P = maximum of CAEPIPE input pressures P1 through P10
- D_o = outside diameter
- M_B = resultant bending moment due to occasional load
- k = 1.2 if the occasional load is acting less than 1% in any 24 hour operating period. In CAEPIPE k =1.2 is used for occasional loading.
- e = nominal pipe thickness x [1 mill tolerance%/100] corrosion allowance "c"

Expansion Stress

The stress (σ_3) due to thermal expansion is calculated from Eq. C10.3.4-1 from para. C10.3.4.

$$\sigma_3 = \frac{iM_C}{Z} + \le f_a$$

where,

 M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of thermal anchor movements

- Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus
- $f_a = U(1.25f_c + 0.25f_h) \frac{E_h}{E_c}$ Eq. (C10.2.4.2-1) of para. C10.2.4.2.
- *i* = stress intensification factor from Table C10.2.6-1; the product of 0.75i shall not be less than 1.0
- U = cyclic stress range reduction factor from Table C10.2.4.3 and are mentioned below.

Stress range reduction factor U
1.0
0.9
0.8
0.7
0.6
0.5

- f_c = basic allowable stress as minimum metal temperature expected during the displacement cycle under analysis
- f_h = basic allowable stress as maximum metal temperature expected during the displacement cycle under analysis
- E_c = elastic modulus at cold temperature
- E_h = elastic modulus at hot temperature

Sustained + Expansion Stress

The stress due to pressure, weight, other sustained loads and thermal expansion is calculated from Equation C10.3.4-2 of para. C10.3.4.

$$\sigma_4 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le f_H + f_a$$

where,

- P = maximum of CAEPIPE input pressures P1 through P10
- D_o = outside diameter
- e = nominal pipe thickness x [1 mill tolerance%/100] corrosion allowance "c"
- M_A = resulting bending moment due to sustained loads
- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of thermal anchor movements
- Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus
- i = stress intensification factor from Table C10.2.6-1; the product of 0.75i shall not be less than 1.0

$$f_a = U(1.25f_c + 0.25f_h) \frac{E_h}{E_c}$$
 Eq. (C10.2.4.2-1) of para. C10.2.4.2.

- f_c = basic allowable stress as minimum metal temperature expected during the displacement cycle under analysis
- f_h = basic allowable stress as maximum metal temperature expected during the displacement cycle under analysis
- E_c = elastic modulus at cold temperature

 E_h = elastic modulus at hot temperature

 f_H = allowable stress at Maximum of CAEPIPE input temperatures T1 through T10

Additional Conditions for the Creep Range

For piping operating within the creep range, the stress, (σ_5) , due to sustained, thermal and alternating loadings shall satisfy the Eq. C10.3.4-3 of para. C10.3.4.

$$\sigma_{5} = \frac{PD_{o}}{4e} + \frac{0.75iM_{A}}{Z} + \frac{0.75iM_{C}}{3Z} \le f_{cr}$$

where,

- P = maximum of CAEPIPE input pressures P1 through P10
- D_o = outside diameter
- e = nominal pipe thickness x [1 mill tolerance%/100] corrosion allowance "c"
- M_A = resulting bending moment due to sustained loads
- M_C = range of resultant moments due to displacement cycle between two thermal states inclusive of thermal anchor movements
- Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus
- *i* = stress intensification factor from Table C10.2.6-1; the product of 0.75i shall not be less than 1.0
- f_{cr} = allowable creep stress value

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	Coefficients d'intensification de contrainte		Module d'inertie
	h	k Note (1)	i	<i>i</i> ₀ hors du plan	i _i dans le plan	Ζ
1. Tuyau droit soudé bout-à-bout e _n D _i		1	1	1	I	$\frac{\pi}{32} \frac{D_e^4 - D_i^4}{D_e}$
2. Tuyau droit ondulé ou coude ondulé		5	2,5	2,5	2,5	
3. Coude ou cintre soudé bout-à-bout $\begin{array}{c} e_n \\ \hline D_m \\ \hline D_o \\ \hline R_c \\ \hline D_i \\ \hline \end{array}$ Note : Pour les intersections tubulure-coude voir § C5.5.4.	$\frac{4 e_n R_c}{D_m^2}$	<u>1,65</u> h	$\frac{0.9}{h^{2/3}}$ Notes (2) & (3)	$\frac{0,75}{h^{2/3}}$ No (2), (3)		$\frac{\pi}{32} \frac{D_e^4 - D_i^4}{D_e}$

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	nts d'intensif contrainte	ication de	Module d'inertie
	h	k Note (1)	i	<i>i</i> ₀ hors du plan	<i>i</i> , dans le plan	Ζ
4.1. Coude à sections rapprochées ou à sections multiples $S_{i} = 0$ $C_{i} $	$\frac{4 R_{\rm c} e_{\rm n}}{D_{\rm m}^2}$	$\frac{1,52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$ $s_i \ge 6 e_n$ $\theta \le 22.5^\circ$ Notes (2) & (3)	No	$\frac{0.9}{h^{2/3}}$	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$
4.2. Coude à sections espacées et coude à un onglet S_m D_1 D_m D_m D_1 D_m P_m P_m $R_c = \frac{D_m (1 + \cot \theta)}{4}$	$\frac{4 R_{\rm c} e_{\rm n}}{D_{\rm m}^2}$	$\frac{1,52}{h^{5/6}}$	$\frac{0,9}{h^{2/3}}$ $\theta \le 22,5^{\circ}$ Note (2)		$\frac{0,9}{h^{2/3}}$	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	nts d'intensif contrainte	ication de	Module d'inertie
	h	k Note (1)	i	<i>i</i> ₀ hors du plan	i _i dans le plan	Ζ
5.1. Réduction forgée		1		$0,5 +$ $\frac{\alpha}{100} \left(\frac{D_2}{e_2} \right)^{1/2}$ $MAX = 2,0$ $(\alpha \text{ en }^\circ)$ $\alpha \le 60^\circ$ $D_1/e_1 \le 100$ $D_2/e_2 \le 100$ Note (5)		
5.2. Réduction chaudronnée voir Figure C2.5				Note (14)		
6. Té reconstitué non renforcé avec tubulure posée ou pénétrante	$\frac{2 e_n}{D_m}$	1	$\frac{0,9}{h^{2/3}}$ Notes (2), (12) & (16)	$\frac{0.9}{h^{2/3} (\sin \alpha)}$ $\alpha = \text{ angle d'inclinaison de la tubulure par rapport au collecteur }$ Not (2), (6), (7)	$\frac{3 i_0}{4} + 0,25$	Collecteur $\frac{\pi}{32} \frac{D_{e}^{4} - D_{i}}{D_{e}}$ Dérivation $\frac{\pi}{4} d_{m}^{2} e_{x}$ $e_{x} = MIN$ $(e_{f}; i e_{b})$

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficier	nts d'intensif contrainte	îcation de	Module d'inertie
	h	k Note (1)	i	i ₀ hors du plan	<i>i</i> . dans le plan	Ζ
7. Té reconstitué avec tubulure posée ou pénétrante et renforcé par anneau ou selle de renfort	si e _r ≤ 1,5 e _n			$\frac{0.9}{h^{2/3}\left(\sin\alpha\right)}$	3/2	Collecteur $\frac{\pi}{32} \frac{D_{\rm e}^4 - D_{\rm i}^4}{D_{\rm e}}$
$\begin{array}{c} \begin{array}{c} d_{0} \\ d_{i} \\ \end{array}$	$\frac{2\left(e_{\rm n}+0.5\ e_{\rm n}\right)}{e_{\rm n}^{3/2}\ D_{\rm r}}$	$\frac{1}{r}$ $\frac{5/2}{1}$ 1	$\frac{0,9}{h^{2/3}}$ Notes (2), (12) & (16)	α = angle d'inclinaison de la tubulure par rapport au collecteur		Dérivation $\frac{\pi}{4} d_{\rm m}^2 e_{\rm x}$
avec avec anneau renfort selle de renfort	si $e_r > 1.5 e_n$ 8 $\frac{e_r}{D_m}$				$\frac{3 i_0}{4} + 0.25$	$e_{\rm x} = MIN$ $(e_{\rm f}; i e_{\rm b})$
8. Piquage avec pièces forgées						
en eb	$6,6 \frac{e_n}{D_m}$	1 Type manchon forgé		2,1	2,1	
$D_{e} = D_{m}$	ν _m	l Type weldolets [®] etc.		$\frac{0,9}{h^{2/3}}$	$\frac{3 i_0}{4} + 0.25$	
Type Type manchon forgé weldolets [®] etc.					otes 8) & (10)	

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	ents d'intensif contrainte	ication de	Module d'inertie
10	h	k Note (1)	i	<i>i</i> 0 hors du plan	<i>i</i> , dans le plan	Ζ
9. Piquage posé intégralement renforcé						
d_0 d_1 e_h d_1 e_h D_1 D_e D_m	$6,6 \frac{e_n}{D_m}$	1		$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	
10. Piquage avec selle de renfort					otes 8) & (10)	
10. Fiquage avec sele de remort insérée $\frac{d_0}{d_1} + \frac{d_0}{d_1} + \frac{e_b}{D_e} + \frac{1}{D_m}$	<u>8,8 e_n</u> D _m	1	$\frac{0,9}{h^{2/3}}$ et Tableau C10.2.6-2 Note 16	$\frac{0.9}{h^{2/3}}$ $r_1 \ge c$ $e_1 \ge 1$ No (2), (7), (8)	tes	

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	nts d'intensif contrainte	ication de	Module d'inertie
	h	k Note (1)	i	i ₀ hors du plan	<i>i</i> , dans le plan	Ζ
11. Té forgé						Collecteur $\frac{\pi}{32} \frac{D_e^4 - D}{D_e}$
$\begin{array}{c} e_{t} \\ e_{t} \\ \hline \\ D_{e} \\ \hline \\ D_{i} \\ \hline \\ D_{i} \\ \hline \\ \\ D_{m} \\ \hline \\ D_{m} \\ \hline \\ \\ D_{m} \\ \hline \\ \end{array}$	$\frac{8,8 e_{\rm n}}{D_{\rm m}}$	1	$\frac{0.9}{h^{2/3}}$ Notes (2) & (12)	$\frac{0,9}{h^{2/3}}$	$\frac{3 i_0}{4} + 0.25$	Dérivation $\frac{\pi}{4} d_{\rm m}^2 e_{\rm x}$ $e_{\rm x} = \rm MIN$
en					1,5 e _n ites , (9) & (11)	(e _f ; <i>i</i> e _b)
12. Té à souder extrudé $r_{t} \rightarrow d_{0} \rightarrow e_{t}$ $e_{n} \rightarrow D_{e} \rightarrow D_{i} \rightarrow D_{m}$	$\left(1 + \frac{2r_{\rm t}}{D_{\rm m}}\right) \frac{2e}{D_{\rm m}}$	<u>n</u> 1	Note (13)	$\frac{0,9}{h^{2/3}}$ $r_{t} \ge 0,$ $e_{t} \le 1$ No (2) d	1,5 e _n	

Composant	Caracté- ristique de de Coefficients d'intensification de flexibilité flexibilité		ication de	Module d'inertie		
	h	k Note (1)	i	<i>i</i> ₀ hors du plan	i _i dans le plan	Ζ
13. Triform	2 e _n		N	$\frac{0.9}{h^{2/3}}$	$\frac{3 i_0}{4} + 0.25$	Collecteur $\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$ Dérivation
$\frac{1}{D_i D_c} - D_m$	$\frac{2 e_{\rm n}}{D_{\rm m}}$	1	Note (13)	h	4	$\frac{\pi}{4} d_{\rm m}^2 e_{\rm x}$ $e_{\rm x} = \text{MIN}$ $(e_{\rm f}; i e_{\rm b})$
14.1. Bride à assembler bout-à-bout		I		1		
14.2. Bride à emmancher et à souder (soudée des deux côtés)		I		1,2		

Tableau C10 2 6-1 - Caractéristique de flevibilité coefficient de flevibilité

CODETI (2013)

et coef	ficients d'int	ensification de	e contrainte. (suite)	
Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficients d'intensification de contrainte	Module d'inertie
1977	h	k Note (1)	i i_0 i_i hors du plan dans le plan	Ζ
14.3. Bride tournantes		1	1,6	
14.4 Bride à visser Voir Figure C6.3.7-2		1	2,3	
15.1 Soudure bout-à-bout $\frac{\delta}{e_n} e_n$			1 e _n $\geq 5 \text{ mm}$ et $\delta \leq 0,1 e_n$ Note (15)	-4 -4
			1,8 $e_n < 5 \text{ mm ou}$ $\delta > 0,1 e_n$ Note (15)	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$
15.2. Transition d'épaisseur de paroi				
e_n			$1,3 + 0,0036 D_o / e_n + 3,6 \delta / e_n$ avec un maximum de 1,9 Note (15)	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$
$\alpha \leq 30^{\circ}$ $\beta \leq 15^{\circ}$			sans soudure circonférentielle au niveau de la transition $\delta = 0$	

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	nts d'intensification c contrainte	de Module d'inertie
	h	k Note (1)	i	i_0 i_1 hors du plan dans le	plan Z
15.3 Composant emmanché-soudé e_{lg} D_{e} forme concave avec raccordement régulier au tuyau		1	1,3	$\frac{2.1 e_n}{e_{lg}}$ avec un minimum de et un maximum de 2	π
15.4 Composant emmanché-soudé e_{lg} D_{e} forme convexe		1	2,1	$\frac{2.1 e_n}{e_{lg}}$ avec un minimum de et un maximum de 2	T

Notes du Tableau C10.2.6-1.

(1) Le coefficient de flexibilité k s'applique à la flexion dans tous les plans. Le coefficient pour la torsion est égal à 1 dans tous les cas à l'exception du cas 2 (tuyau droit et coude ondulé) pour lequel il est égal à 0,9.

(2) Les coefficients k, i, io, i₁ s'appliquent sur toute la longueur effective des coudes et des cintres (ligne épaissie sur les schémas) et à l'intersection des axes pour les tés et les piquages.

(3) Si ces composants sont munis :

- d'une bride à l'une de leurs extrémités, k, i, i_0 , i_1 sont à multiplier par $h^{1/6}$,
- d'une bride à leurs deux extrémités, k, i, i_0 , i_1 sont à multiplier par $h^{1/3}$.

(4) Si la pression est susceptible d'apporter une correction d'ovalisation (grand diamètre, petite épaisseur), les coefficients sont divisés par :

$$- 1 + 6 \left(\frac{P}{E}\right) \left(\frac{r_{\rm m}}{e_{\rm r}}\right)^{7/3} \left(\frac{R_{\rm c}}{r_{\rm m}}\right)^{1/3} \quad \text{pour le coefficient } k.$$
$$- 1 + 3,25 \left(\frac{P}{E}\right) \left(\frac{r_{\rm m}}{e_{\rm r}}\right)^{5/2} \left(\frac{R_{\rm c}}{r_{\rm m}}\right)^{2/3} \quad \text{pour les coefficients } i, i_0, i_1$$

P étant la pression de service et E le module d'élasticité à 20°C.

(5) L'épaisseur de la paroi de la réduction ne doit pas être inférieure à e_1 sauf au voisinage de l'extrémité de petit diamètre où, toutefois, l'épaisseur de la paroi ne doit pas être inférieure à e_2 .

(6) Le coefficient d'intensification de contrainte « hors du plan », pour un piquage dont le rapport des diamètres de la tubulure et du collecteur est supérieur à 0,5, peut être non-conservatif. Par ailleurs, il a été démontré qu'un raccordement régulier par une soudure de forme concave réduit la valeur de ce coefficient. Le choix d'une valeur appropriée pour ce coefficient reste donc de la responsabilité du Concepteur.

(7) Les coefficients d'intensification de contrainte pour les raccordements de tubulures sont basés sur des essais avec au moins deux diamètres de tuyau droit de chaque coté de l'axe de la tubulure. Le cas de tubulures plus proches requiert une attention particulière.

(8) Les pièces forgées utilisées doivent être appropriées aux conditions de service.

(9) Lorsque les limitations portant sur le rayon et l'épaisseur ne sont pas respectées et en l'absence de données fiables la caractéristique de flexibilité doit être prise égale à $\frac{2 e_n}{D}$.

(10) Le Concepteur doit vérifier que le dimensionnement en fonction de la pression est au moins équivalent à celui du tuyau droit.

(11) Les coefficients ne s'appliquent qu'aux piquages à axes concourants.

(12) D'autres valeurs peuvent être utilisées sous réserve de justification.

(13) En l'absence de données fiables, la détermination des coefficients est de la responsabilité du Concepteur.

(14) En l'absence de données plus précises, les coefficients d'intensification de contrainte peuvent être pris égaux à 2,5.

(15) Le coefficient s'applique dans le cas où les tolérances de fabrication (voir Partie F) sont respectées. Dans le cas contraire, la détermination des coefficients est de la responsabilité du Concepteur.

(16) Pour des rapports $\frac{d_m}{D_m} \le 0.5$, le coefficient d'intensification de contrainte peut être déterminé à partir de la formulation cidessous :

$$i = \text{MIN} \left| 0.45 \left\{ \frac{D_{\text{m}}}{2 e_{\text{n}}} \right\}^{\frac{2}{3}} \left\{ \frac{d_{\text{m}}}{D_{\text{m}}} \right\}^{\frac{1}{2}} \left\{ \frac{e_{\text{b}}}{e_{\text{n}}} \right\} F : \left[0.17 \left\{ \frac{D_{\text{m}}}{2 e_{\text{n}}} \right\}^{\frac{2}{3}} + 0.25 \right] \left\{ \frac{e_{\text{b}}}{e_{\text{n}}} \right\} F$$

avec :

F = 1 pour une soudure meulée arasée

F = 1.6 dans les autres cas

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from

$$P = \frac{2fze}{D-e}$$

where

P = allowable pressure

f = allowable stress

z = joint factor (input as material property in CAEPIPE)

 $e = nominal pipe thickness \times (1 - mill tolerance/100) - corrosion allowance "c"$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

D=outside diameter

For pipe bends the maximum allowable pressure is calculated using the equivalent pipe wall thickness e_{equi}

$$e_{equi} = \frac{e}{t_f}$$

Where

$$t_f = \left[\frac{R/D - 0.25}{R/D - 0.50}\right]$$

For closely spaced miter bends, the allowable pressure is calculated from

$$P = \min\left[\left(\frac{2fze}{D_m} \cdot \frac{e}{e + 0.643 \tan \theta \sqrt{0.5D_m e}}\right), \left(\frac{2fze}{D_m} \cdot \frac{R - 0.5D_m}{R - 0.25D_m}\right)\right] \text{ with } \theta \le 22.5$$

For widely spaced miter bends, the allowable pressure is calculated from

$$P = \min\left[\left(\frac{2fze}{D_m} \cdot \frac{e}{e + 0.643 \tan \theta \sqrt{0.5D_m e}}\right), \left(\frac{2fze}{D_m} \cdot \frac{R - 0.5D_m}{R - 0.25D_m}\right)\right] \text{ with } \theta \le 22.5$$
$$P = \left(\frac{2fze}{D_m} \cdot \frac{e}{e + 1.25 \tan \theta \sqrt{0.5D_m e}}\right) \text{ with } \theta \le 22.5$$

Where

 D_m = mean diameter of pipe = D-t_n

R = effective bend radius of the miter

 θ = miter half angle

 t_n = nominal thickness

Sustained Stress

The stress (σ_1) due to sustained loads (pressure, weight and other sustained mechanical loads) iscalculated from

$$\sigma_1 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} \le f_h$$

Where

- P = maximum of CAEPIPE input pressures P1, P2 and P3
- D_o = outside diameter
- e = nominal pipe thickness x [1 mill tolerance%/100] corrosion allowance "c"
- i = stress intensification factor; the product of 0.75i shall not be less than 1.0
- M_A = resulting bending moment due to sustained loads
- Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus
- f_h = hot allowable stress

Sustained plus Occasional Stress

The stress (σ_2) due to sustained and occasional loads is calculated as the sum of stress due to sustained loads such as due to pressure, weight and other sustained mechanical loads and stress due to occasional loads such as earthquake or wind. Wind and earthquake are not considered concurrently

$$\sigma_2 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le kf_h$$

 M_B = resultant bending moment due to occasional load

k = 1.2 if the occasional load is acting less than 1% in any 24 hour operating period. In CAEPIPE k =1.2 is used for occasional loading.

Expansion Stress

The stress (σ_3) due to thermal expansion is calculated from

$$\sigma_3 = \frac{iM_C}{Z} + \leq f_a$$

Z = un-corroded section modulus; for reduced outlets / branch connections, effective section modulus

$$f_a = U(1.25f_c + 0.25f_h)\frac{E_h}{E_c}$$

U = cyclic stress range reduction factor as mentioned below

Number of cycle	Stress range reduction factor U
$f_a <= 7000$	1.0
7001 to 140000	0.9
14001 to 220000	0.8
22001 to 0.7	0.7
45001 to 100000	0.6
100001 to 2000000	0.5

f _C	=	allowable stress at cold temperature
fc	=	allowable stress at hot temperature
E_{C}	=	elastic modulus at cold temperature
E_h	=	elastic modulus at hot temperature

$$\sigma_4 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le f_h + f_a$$

Additional Conditions for the Creep Range

For piping operating within the creep range, the stress, (σ_5) , due to sustained, thermal and alternating loadings shall satisfy the equation below.

$$\sigma_5 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} + \frac{0.75iM_C}{3Z} \le f_{cr}$$

Where

 f_{cr} = allowable creep stress value

Tableau C3.2.6-1 - Caractéristique de flexibilité, coefficient de flexibilité
et coefficients d'intensification de contrainte

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	nts d'intensif contrainte	ication de	Module d'inertie
	h	k Note (1)	i	i_0 hors du plan	i_i dans le plan	u mertie
1. Tuyau droit soudé bout-à-bout $D_{i} - D_{0} - D_{m}$ $P_{f} - D_{m}$		1	1	1	1	$\frac{\pi}{32} \frac{D_e^4 - D_i^4}{D_e}$
2. Tuyau droit ondulé ou coude ondulé		5	2,5	2,5	2,5	
3. Coude ou cintre soudé bout-à-bout	$\frac{4 e_{\rm f} R_{\rm c}}{D_{\rm m}^2}$	<u>1,65</u> h	$\frac{0.9}{h^{2/3}}$ Notes (2) & (3)	$\frac{0,75}{h^{2/3}}$ No (2), (3)		$\frac{\pi}{32} \frac{D_{\rm e}^4 - D_{\rm i}^4}{D_{\rm e}}$

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	ents d'intensif contrainte	ication de	Module
	h	k Note (1)	i	<i>i</i> ₀ hors du plan	<i>i</i> _i dans le plan	d'inertie
4.1 Coude à sections rapprochées ou à sections multiples $s_{i} \rightarrow 0$ $s_{m} \rightarrow 0$ $b_{i} \rightarrow 2\theta$ $z_{\theta} \rightarrow 0$ $z_{\theta} $	$\frac{4 R_c e_f}{D_m^2}$	$\frac{1,52}{h^{5/6}}$	$\frac{0,9}{h^{2/3}}$ $s_i \ge 6 e_f$ $\theta \le 22,5^{\circ}$ Notes (2) & (3)	$\frac{0.9}{h^{2/3}}$ (2),(3)	otes	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$
$R_{\rm c} = \frac{s_{\rm m} \cot \theta}{2}$						
4.2 Coude à sections espacées et coude à un onglet s_{m} D_{1} D_{m} D_{m} D_{m} $C_{c} = \frac{D_{m}}{2}(1 + \tan \theta)$ $R_{c} = \frac{D_{m}}{4}(1 + \cot \theta)$	$\frac{4 R_{\rm c} e_{\rm f}}{D_{\rm m}^2}$	$\frac{1,52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$ $\theta \le 22.5^{\circ}$ Note (2)	$\frac{0,9}{h^{2/3}}$ Not (2), (3)	es	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$

 Tableau C3.2.6-1 - Caractéristique de flexibilité, coefficient de flexibilité et coefficients d'intensification de contrainte (suite)

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité k		nts d'intensif contrainte i ₀	ication de i_i	Module d'inertie
	h	Note (1)	i	hors du plan		
5.1 Réduction forgée		1				
$ \begin{array}{c c} e_1 \\ \hline D_1 \\ \hline D_2 \\ \hline \end{array} $				$0,5 + \frac{\alpha}{100} \left(\frac{D_2}{e_2}\right)^{1/2}$ $MAX = 2,0$ $(\alpha \text{ en }^\circ)$ $\alpha \le 60^\circ$ $d_1/e_1 \le 100$ $d_2/e_2 \le 100$ Note (5)		
5.2 Réduction chaudronnée voir figure C2.2.4				Note (14)		
6. Té reconstitué non renforcé avec tubulure posée ou pénétrante	$\frac{2 e_{\rm f}}{D_{\rm m}}$	1	$\frac{0,9}{h^{2/3}}$ Notes (2) & (12)	$h^{2/3}$ (sin α) α = angle d'inclinaison de la tubulure par rapport au collecteur	$\frac{3 i_0}{4} + 0,25$	Collecteur $\frac{\pi}{32} \frac{D_e^4 - D_i^4}{D_e}$ Dérivation $\frac{\pi}{4} d_m^2 e_x$ $e_x = MIN$ $(e_f; i e_b)$
				(2), (6), (7) & (11)	

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	nts d'intensif contrainte	ication de	Module d'inertie
	h	k Note (1)	i	<i>i</i> 0 hors du plan	i _i dans le plan	
7. Té reconstitué avec tubulure posée ou pénétrante et renforcé par anneau ou selle de renfort	si <i>e</i> _r ≤ 1,5 <i>e</i> _f			$\frac{0.9}{h^{2/3}\left(\sin\alpha\right)}$	3/2	Collecteur $\frac{\pi}{32} \frac{D_{\rm e}^4 - D_{\rm i}^4}{D_{\rm e}}$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{2\left(e_{\rm f}+0.5e\right)}{e_{\rm f}^{3/2}D_{\rm n}}$	$\frac{5^{5/2}}{1}$ 1	$\frac{0,9}{h^{2/3}}$ Notes (2) & (12)	α = angle d'inclinaison de la tubulure par rapport au collecteur	1	Dérivation $\frac{\pi}{4} d_{\rm m}^2 e_{\rm x}$
avec $avec$	si $e_r > 1,5 e_f$ 8 $\frac{e_r}{D_m}$		(2) & (12)	No		$e_{\rm x} = MIN$ $(e_{\rm f}; i e_{\rm b})$
anneau renfort selle de renfort				(2), (6), (7) & (11)	
8. Piquage avec pièces forgées d_{i} e_{f} e_{b}	$6,6\frac{e_{\rm f}}{D_{\rm m}}$	1 Type manchon forgé		2,1	2,1	
Type Type manchon forgé weldolets etc.	2 m	1 Type weldolets etc.		$\frac{0,9}{h^{2/3}}$		

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	nts d'intensif contrainte	ïcation de	Module d'inertie
	h	k	i	i ₀	i _i	
11. Té forgé		Note (1)		nors du plan	dans le plan	Collecteur
$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & &$						$\frac{\pi}{32} \frac{D_{\rm e}^4 - D_{\rm i}^4}{D_{\rm e}}$
D_{e}	$\frac{8,8 e_{\rm f}}{D_{\rm m}}$	1	$\frac{0.9}{h^{2/3}}$	$\frac{0,9}{h^{2/3}}$	$\frac{3 i_0}{4} + 0,25$	Dérivation $\frac{\pi}{4} d_{\rm m}^2 e_{\rm x}$
e _f				$e_{t} \geq 1$	1,5 e _f	$e_{\rm x} = {\rm MIN}$ $(e_{\rm f}; i e_{\rm b})$
				No (2), (7), (8)		
12. Té à souder extrudé						
$\begin{array}{c} r_{t} \\ e_{t} \\ e_{f} \\ \hline \end{array} \\ \hline \bigg $ \\ \hline \bigg \\ \hline \\ \hline \bigg \\ \hline \end{array} \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \hline \bigg \\ \\ \hline \bigg \\ \\ \\ \\ \bigg \\ \\ \\ \\ \bigg \\ \\ \\ \\ \\ \\	$\left(1 + \frac{2r_{\rm t}}{D_{\rm m}}\right) \frac{2e_{\rm f}}{D_{\rm m}}$	<u> </u>	Note (13)	$\frac{0,9}{h^{2/3}}$ $r_{t} \ge 0, t$ $e_{t} \le 1$ Not (2) &	,5 e _f	

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	nts d'intensif contrainte	ication de	Module d'inertie
	h	k Note (1)	i	i ₀ hors du plan	<i>i</i> i dans le plan	umertie
13. Triform	$\frac{2 e_{\rm f}}{D_{\rm m}}$	1	Note (13)	$\frac{0,9}{h^{2/3}}$	$\frac{3 i_0}{4} + 0,25$	Collecteur $\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$ Dérivation $\frac{\pi}{4} d_m^2 e_x$ $e_x = MIN$ $(e_f; i e_b)$
14.1 Bride à assembler bout-à-bout		1		1		
14.2 Bride à emmancher et à souder (soudée des deux côtés)		1		1,2		

Tableau C3.2.6-1 - Caractéristique de flexibilité, coefficient de flexibilité	
et coefficients d'intensification de contrainte (suite)	

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coeffici	ents d'intensit contrainte	fication de	Module
	h	k Note (1)	i	i ₀ hors du plan	<i>i</i> _i dans le plan	d'inertie
14.3 Bride tournantes						
		1		1,6		
14.4 Bride à visser Voir figure C2.2.8.3.7-2		1		2,3		
15.1 Soudure bout-à-bout				1		
δ er				$e_n \ge 5 \text{ mm}$ et $\delta \le 0,1 e_f$ Note (15)		$\pi D_o^4 - D_i^4$
		-		$1,8$ $e_{n} < 5 \text{ mm ou}$ $\delta > 0,1 e_{f}$ Note (15)		32 D _o
15.2 Transition d'épaisseur de paroi						
e_{f}				0036 <i>D</i> ₀ / <i>e</i> _f + un maximum o Note (15)		$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$
$\alpha \leq 30^{\circ}$ $\beta \leq 15^{\circ}$				lure circonfére de la transition		

	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	Coefficients d'intensification de contrainte		
	h	<i>k</i> Note (1)	i	i_0 hors du plan	<i>i</i> _i dans le plan	
15.3 Composant emmanché-soudé e_{lg} D_0 e_f forme concave avec raccordement régulier au tuyau		1	1,3	$\frac{2,1}{e_1}$ avec un min et un maxir	g	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$ $\frac{\pi}{4} D_o^2 e_f$
15.4 Composant emmanché-soudé e_{1g} p_{0} e_{f} forme convexe		1	2,1	$\frac{2,1}{e_1}$ avec un mini- et un maxir	^g imum de 1,3	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$ $\frac{\pi}{4} D_o^2 e_f$

CODETI 2006 Division 1 • Partie C – CONCEPTION ET CALCULS Section C3 – ANALYSE ET CRITÈRES D'ACCEPTATION

Notes du tableau C3.2.6-1

(1) Le coefficient de flexibilité k s'applique à la flexion dans tous les plans. Le coefficient pour la torsion est égal à 1 dans tous les cas à l'exception du cas 2 (tuyau droit et coude ondulé) pour lequel il est égal à 0,9.

(2) Les coefficients k, i, i_0 , i_1 s'appliquent sur toute la longueur effective des coudes et des cintres (ligne épaissie sur les schémas) et à l'intersection des axes pour les tés et les piquages.

(3) Si ces composants sont munis :

- d'une bride à l'une de leurs extrémités, k, i, i_0 , i_1 sont à multiplier par $h^{1/6}$,
- d'une bride à leurs deux extrémités, k, i, i_0 , i_1 sont à multiplier par $h^{1/3}$.

(4) Si la pression est susceptible d'apporter une correction d'ovalisation (grand diamètre, petite épaisseur), les coefficients sont divisés par :

$$- 1 + 6\left(\frac{P}{E}\right)\left(\frac{r_{\rm m}}{e_{\rm r}}\right)^{7/3}\left(\frac{R_{\rm c}}{r_{\rm m}}\right)^{1/3} \quad \text{pour le coefficient } k.$$
$$- 1 + 3,25\left(\frac{P}{E}\right)\left(\frac{r_{\rm m}}{e_{\rm r}}\right)^{5/2}\left(\frac{R_{\rm c}}{r_{\rm m}}\right)^{2/3} \quad \text{pour les coefficients } i, i_0, i_1.$$

P étant la pression de service et E le module d'élasticité à 20 °C.

(5) L'épaisseur de la paroi de la réduction ne doit pas être inférieure à e_1 sauf au voisinage de l'extrémité de petit diamètre où, toutefois, l'épaisseur de la paroi ne doit pas être inférieure à e_2 .

(6) Le coefficient d'intensification de contrainte « hors du plan », pour un piquage dont le rapport des diamètres de la tubulure et du collecteur est supérieur à 0,5, peut être non-conservatif. Par ailleurs, il a été démontré qu'un raccordement régulier par une soudure de forme concave réduit la valeur de ce coefficient. Le choix d'une valeur appropriée pour ce coefficient reste donc de la responsabilité du Concepteur.

(7) Les coefficients d'intensification de contrainte pour les raccordements de tubulures sont basés sur des essais avec au moins deux diamètres de tuyau droit de chaque coté de l'axe de la tubulure. Le cas de tubulures plus proches requiert une attention particulière.

(8) Les pièces forgées utilisées doivent être appropriées aux conditions de service.

(9) Lorsque les limitations portant sur le rayon et l'épaisseur ne sont pas respectées et en l'absence de données fiables la $2 e_{\rm f}$

caractéristique de flexibilité doit être prise égale à $\frac{2 e_{\rm f}}{D_{\rm m}}$.

(10) Le Concepteur doit vérifier que le dimensionnement en fonction de la pression est au moins équivalent à celui du tuyau droit.

(11) Les coefficients ne s'appliquent qu'aux piquages à axes concourants.

(12) D'autres valeurs peuvent être utilisées sous réserve de justification.

(13) En l'absence de données fiables, la détermination des coefficients est de la responsabilité du Concepteur.

(14) En l'absence de données plus précises, les coefficients d'intensification de contrainte peuvent être pris égaux à 2,5.

(15) Le coefficient s'applique dans le cas où les tolérances de fabrication (voir partie F) sont respectées. Dans le cas contraire, la détermination des coefficients est de la responsabilité du Concepteur.

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from

$$S_L = \frac{P(D-t)}{4t} + \frac{0.75iM_A}{Z} \le S_h$$

where

P = maximum pressure

D =outside diameter

t = nominal wall thickness

i = stress intensification factor. The product 0.75*i*, shall not be less than 1.0

 M_A = resultant bending moment due to sustained loads = $\sqrt{M_X^2 + M_Y^2 + M_Z^2}$

Z = section modulus, for reduced outlets, effective section modulus

 S_h = hot allowable stress: smaller of:

0.67 yield stress at temperature

0.44 tensile strength at 20° C

0.67 rupture stress (after 100,000 hours at temperature)

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasionalloads (S_O) , such as earthquake or wind. Wind and earthquake are not considered concurrently.

$$S_{LO} = S_L + \frac{0.75iM_B}{Z} \le 1.2S_h$$

where

 M_B = resultant moment due to occasional loads

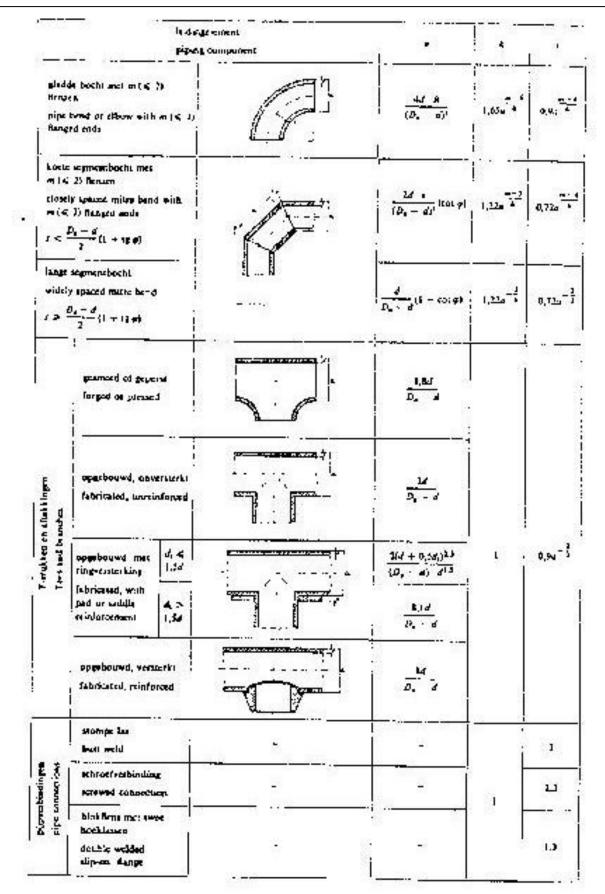
Expansion Stress

The stress (S_E) due to thermal expansion is calculated from

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

 M_C = resultant moment due to thermal expansion


 S_A = smaller of:

 C_f (0.8 yield strength at 20° C + 0.13 hot yield strength)

 C_f (0.8 yield strength at 20° C + 0.2 x 0.67 rupture stress)

 C_f = stress range reduction factor

Stoomwezen (1989)

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from Equation 6.3.

$$p = \frac{2\sigma_{tn} z_L s_{eff}}{D_y m - s_{eff}}$$

where

p = allowable pressure σ_{tn} = allowable stress

 z_L = joint efficiency of longitudinal weld (input as material property)

 s_{eff} = nominal pipe thickness × (1 – mill tolerance/100) – corrosion allowance

 D_{γ} = outside diameter

$$D_i$$
 = inside diameter = $D_y - s_{eff}$

m = pressure coefficient

= 1.0 for
$$D_v/D_i < 1.6$$

=
$$0.25(D_y/D_i)$$
+0.6 for $1.6 \le D_y/D_i \le 2.0$

Sustained Stress

Stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Equation 9.37.

$$S_L = \frac{p_{max}D_y}{4s_{eff}z_C} + \frac{0.75k_1M_A}{W_y} \le \sigma_{tn2}$$

where

 $\begin{array}{ll} p_{max} &= \text{maximum pressure} \\ z_{C} &= \text{joint efficiency of circumferential weld (input as material property)} \\ k_{1} &= \text{stress intensification factor. The product } 0.75k_{1}\text{shall not be less than } 1.0 \\ M_{A} &= \text{resultant bending moment due to sustained loads} \\ W_{y} &= \text{section modulus, for reduced outlets, effective section modulus} \\ \sigma_{tn2} &= \text{hot allowable stress} \end{array}$

Occasional Stress

The stress (S_{LO}) is calculated as the sum of the stress due to sustained loads (S_L) and the stress (S_O) due to occasional loads such as earthquake or wind from Equation 9.38. Wind and earthquake are not considered concurrently.

$$S_{LO} = \frac{p_{max}D_y}{4s_{eff}z_C} + \frac{0.75k_1(M_A + M_B)}{W_y} \le 1.2\sigma_{tn2}$$

where

 M_B = resultant bending moment due to occasional loads

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from Equation 9.39.

$$S_E = \frac{k_1 M_C}{W_V} \le S_r$$

where

 M_C = resultant bending moment due to thermal expansion $S_r = f(1.17\sigma_1 + 0.17\sigma_2)$ from Equation 9.43 f = stress range reduction factor taken from Table 9.1 σ_1 = smaller of σ_{tn1} and $0.267R_m$ σ_2 = smaller of σ_{tn2} and $0.367R_m$

 σ_{tn1} = allowable stress at cold condition

 σ_{tn2} = allowable stress at hot condition

 R_m = tensile strength at room temperature

At moderate temperatures (up to 370° C) for carbon steel, low alloy steel and chromium steel (specified as CS material type) and up to 425° C for austenitic stainless steel (specified as AS material type), the limits $0.267R_m$ and $0.367R_m$ are disregarded and S_r is selected as smaller of S'_r and S''_r ,

where

 $\begin{array}{lll} S'_r &=& 1.17 \sigma_{tn1} + 0.20 \sigma_{tn2} \\ S''_r &=& 290 f - \sigma_{tn2} \end{array}$

m	Type of fitting	h	k	×.	Figure
1	Bend, see notes 1 and 2	<u>snom · R</u> r _m	1,65 h	0,9 h ^{2/3}	
2	Mitre bend of segment length L smaller than r_m (1 + tan θ); see notes 1 and 2	<u>L s_{nom} cot #</u> 21 ²	1.5 A5/6	0,9 6 ⁷⁷ 7	R=Lcot#
3	Mitre bend of segment length L not less than r _m (1 + tan 8) or inclined circum- ferential welds; see notes 1 and 3	<u>s_{nom} (1 + cot #)</u> 2 r _m	1	0.9 h ^{2/3}	$B = \frac{r_{-}(1 + \cot \theta)}{2}$
Ĩ	Branch without local rein- forcement of the main pipe; see note 1	<u>5n</u> 7n	,	0,9 h ^{7/3}	
5	Raised adges on máin pipe or branch radiused at joint; see note 1	$\left(\frac{s_e}{s_n}\right)^{3/2} \cdot \frac{s_e \cdot R_e}{r_n}$	ı	0,9 h ^{2/3}	
6	Branch on locally thickened main pipe; see note 1 $L < \frac{d_i}{2} + 1.8 \sqrt{D_y \cdot s_f}$	$\frac{\left(\frac{s_n}{2} + \frac{s_i}{2}\right)^{b/2}}{r_p \cdot s_p^{3/2}}$	ì	0,9 h2/3	
	$L = \frac{d_1}{2} + 1.8\sqrt{D_{\mu} \cdot s_{\mu}}$	s,517 r, s,317	۱	0.9 h ^{2/3}	
,	Branch with plate reinforce- ment; see notes 1 and 4	$\frac{\left(s_h-\frac{s_p}{2}\right)^{5/2}}{r_h\cdot s_h^{3/2}}$	1	0,9 h ^{7/3}	

r = fillet radius

- $r_n = \text{mean radius of branch} \left| = \frac{d_x v_n}{2} \right|$ $R_r = \text{effective radius } r + r_h$
- $r_{+} = mcan radius of main pipe {= <math>\frac{D_{+} i_{h}}{2}$ } $r_{+} = nominal wall thickness of branch$
- $x_A = nominal wall thickness of main pipe$ $<math>x_A = effective wall thickness = 0.5(x_A + x_A)$ $x_a = wall (hickness in fillet (see item 5))$ $x_b = wall thickness of main pipe side at branch (see item 5))$ $x_b = wall thickness of locally thickened main pipe$ $<math>x_B = (hickness of plate reinforcement)$

lem	Type of fitting	h	*	k.	Figure	
8	Butt weld s _{nom} > 4,5 mm and δ/s _{nom} < 0,1 s _{nom} < 4,5 mm or δ/s _{nom} > 0,1		3 1	1,0 1,8 (If the weld ground flu side and o may be se	sh in- ut, k_1	
9	Butt weld between dissimilar thicknesses according to Section 11.2.2		,	1.3 + 0,003: but not ove	$\frac{D_r}{s_{nom}} + 3.6 \frac{\delta}{s_{num}}$ N 1.9 Mean radius	'
•	Fillet weld (spigot type)		1	2,1	Flange #1.2 snom Pipe join #1.2 snom	
1	Concave fillet weld (spigot type) with even transition to the pipe (no undercut al- lowed)		1	1,3	a>1,05 s _{nom}	
2	Conical reducer with defined knuckles r and r ₁ , complying with Section 6.5.2.3; see notes 1 and 5		1	0,5 + 0,01 but not ov	i minimum terretari	1
3	Conical reducer without knuckles; see notes 1 and 5 s _{1 nom} >4.5 mm and 8/s _{nom} <0,1 s _{1 nom} <4.5 mm or 8/s _{1 nom} >0,1		· 1	0,9 + 0,017 1,25 + 0,023 but not le		
4	Thread joint or connection to threaded flange		,	2,3		

a nominal wall thickness of the larger pipe
 δ = difference in mean radius across a weld

Allowable Pressure

The allowable pressure is calculated from 5.3.2.1.

$$P = 2StFLJT/D$$

where

- P = allowable pressure
- S = specified minimum yield strength
- t = minimum wall thickness
 - = nominal wall thickness \times (1 mill tolerance/100) corrosion allowance
- F = design factor = 0.8 for steel pipe (from 5.2.3)
- L = location factor (from Table 5.1)
- J = joint factor (from Table 5.2), input as material property
- T = temperature derating factor for steel pipe (from Table 5.3)

D =outside diameter

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) and wind loads, is calculated from (5.6.3.5)

$$S_L = \frac{PD}{4t} + i\frac{M}{Z} \le SFLJT$$

where

- P = maximum pressure
- D =outside diameter
- t = minimum wall thickness
- i = stress intensification factor
- M = resultant bending moment due to sustained loads
- Z = corroded section modulus
- S = specified minimum yield strength
- F = design factor
- L = location factor
- J = joint factor
- T = temperature derating factor

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained and wind loads (S_L) and stress due to occasional loads (S_O) , such as earthquake. The allowable stress for occasional stress is not given in the code, therefore it is conservatively taken the same as the sustained stress allowable.

$$S_{LO} = S_L + i \frac{M}{Z} \leq SFLJT$$

where

M = resultant bending moment due to occasional loads

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from (5.6.3.3).

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le 0.72ST$$

where

$$S_b$$
 = resultant bending stress = iM_b/Z

 S_t = torsional stress = $M_t/2Z$

 M_b = resultant bending moment due to expansion loads

 M_t = torsional moment due to expansion loads

Z = un-corroded section modulus

Description	Flex- ibility Factor k	Stress Intens. Factor i	Description	Flex- Ibility Factor k*	Stress Intens, Factor i*	Flexibility Character- istic h	See sketch
Buttwelded joint, reducer, or welding neck flange	1	1.0	Welding elbow. or pipe bend+	<u>1.65</u> h	0.9 h ^{2/3}	<u>tR</u> r ²	A
Double-welded slip-on or socket welding flange	1	1.2	Mitre bend with close spacing t_{s}^{+} s < r (I + tan α)	1.52 h ^{5/6}	0.9 h ^{2/3}	$\frac{\cot \alpha}{2} \cdot \frac{ts}{r^2}$	В
Fillet welded joint, or single-welded socket welding flange	1	1.3	Mitre bend with wide spacing $\$$ $s \ge r (1 + tan o)$	<u>1.52</u> h ^{5/6}	0.9 h ^{2/3}	$\frac{1+\cot \alpha}{2}$	с
Lap joint flange (with CSA Standard CAN3-Z245 12) (lap joint stub)	1	1.6	Welding tee per CSA Standard CAN3-Z245 11	1	0.9 h ^{2/3}	4.4 <u>1</u>	D
Screwed pipe joint, or screwed flange	1	2.3	Reinforced fabricated tee, with pad or saddle	1	0.9 h ^{2/3}	$\frac{(1 + 1/2 T)^{5/2}}{t^{3/2}r}$	E
Corrugated pipe, straight or curved, or creased bend**	5	2.5	Unreinforced fabricated tee	1	0.9 h ^{2 3}	<u>t</u>	·F

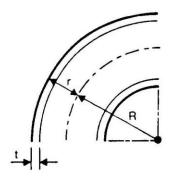
Table 5.5 Flexibility and Stress Intensification Factors

*The flexibility factors and stress intensification factors apply to fittings of the same nominal wall thickness as the pipe used in the pipeline system, and shall in no case be taken as less than unity. They apply over the effective arc length (shown by dash-dot lines in the sketches) for curved and mitre elbows, and to the intersection point for tees.

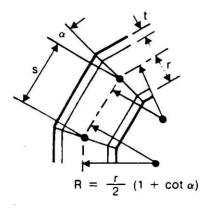
Where flanges are attached to one or both ends, the values of k and i in the Table shall be multiplied by the following factors:

One end flanged: $(h)^{1/6}$

Both ends flanged: $(h)^{1/3}$


\$Subject to the limitations of Clause 5.4.2.2.2(d).

§Also includes single-mitre joint.


**Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

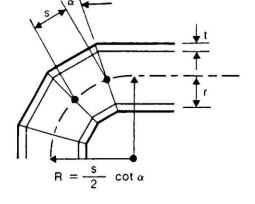
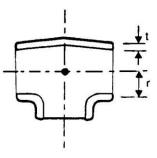
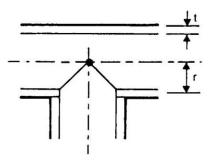

Note: Designers are cautioned that specific cases may require more comprehensive analysis than that specified in Clause 5.6.

Table 5.5 (Concluded)





Sketch C

Sketch F

Allowable Pressure

The allowable pressure is calculated from 5.4.2.1.

$$P = 2StFLJT/D$$

where

- P = allowable pressure
- S = specified minimum yield strength
- t = minimum wall thickness
 - = nominal wall thickness \times (1 mill tolerance/100) corrosion allowance
- F = design factor = 0.8 for steel pipe (from 5.2.3)
- L = location factor (from Table 5.1)
- J = joint factor (from Table 5.2), input as material property
- T = temperature derating factor for steel pipe (from Table 5.3)

D =outside diameter

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) and wind loads, is calculated from (5.19.3.5)

$$S_L = \frac{PD}{4t} + i\frac{M}{Z} \le SFLJT$$

where

- P = maximum pressure
- D =outside diameter
- t = minimum wall thickness
- i = stress intensification factor
- M = resultant bending moment due to sustained loads
- Z = corroded section modulus
- S = specified minimum yield strength
- F = design factor
- L = location factor
- J = joint factor
- T = temperature derating factor

Occasional Stress

The stress (S_{LO}) is calculated as the sum of stress due to sustained and wind loads (S_L) and stress due to occasional loads (S_O) , such as earthquake. The allowable stress for occasional stress is not given in the code, therefore it is conservatively taken the same as the sustained stress allowable.

$$S_{LO} = S_L + i\frac{M}{Z} \le SFLJT$$

where

M = resultant bending moment due to occasional loads

Expansion Stress

The stress (S_E) due to thermal expansion is calculated from (5.6.3.3).

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le 0.72ST$$

where

 S_b = resultant bending stress = iM_b/Z

 S_t = torsional stress = $M_t/2Z$

 M_b = resultant bending moment due to expansion loads

 M_t = torsional moment due to expansion loads

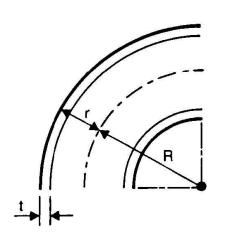
Z = un-corroded section modulus

Table 5.8										
Flexibility and	Stress	Intensification	Factors							

Description	Flex- ibility Factor k	Stress Intens. Factor /	Description	Flex- Ibility Factor k*	Stress Intens, Factor I*	Flexibility Character- istic h	See skeich
Buttwelded joint, reducer, or welding neck flange	1	1.0	Welding elbow. or pipe bendt	<u>1.65</u> h	0.9 h ^{2/3}	<u>- IR</u> r ²	A
Double-welded slip-on or socket welding flange	1	1.2	Mitre bend with close spacing†‡ s < r (l + tan a)	1.52 h ^{5/6}	0.9 h ^{7/3}	$\frac{\cot \alpha}{2} \cdot \frac{15}{r^2}$	В
Fillet welded joint, or single-welded socket welding flange	1	1.3	Mitre bend with wide spacing $\$$ $s \ge r(1 + tan o)$	1.52 h ⁵⁶	<u>0.9</u> h ^{2/3}	$\frac{1+\cot \alpha}{2}$	с
Lap joint flange (with ANSI B16.9 lap joint slub)	1	1.6	Welding tee per CSA Standard CAN/CSA-Z245.11	1	0.9 h ^{2/3}	4.4 t	D
Screwed pipe joint, or screwed flange	1	2.3	Reinforced fabricated tee, with pad or saddle	1	0.9 h ^{2/3}	$\frac{(t+1/2 T)^{5/2}}{t^{3/2}r}$	E
Corrugated pipe. straight or curved, or creased bend**	5	2.5	Unreinforced fabricated tee	1	0.9 h ^{2/3}	_ <u>t</u>	F

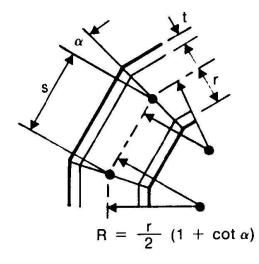
*The flexibility factors and stress intensification factors apply to fittings of the same nominal wall thickness as the pipe used in the pipeline system, and shall in no case be taken as less than unity. They apply over the effective arc length (shown by dash-dot lines in the sketches) for curved and mitre elbows, and to the intersection point for tees.

t Where flanges are attached to one or both ends, the values of k and i in the Table shall be multiplied by the following factors: One end flanged: $(h)^{1/6}$

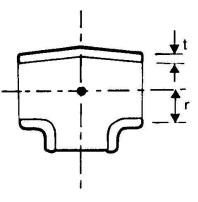

Both ends flanged: $(h)^{1/3}$

+ Subject to the limitations of Clause 7.2.3(e).

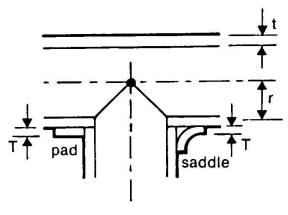
§Also includes single-mitre joint.

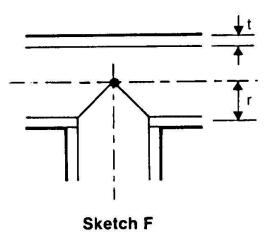

** Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Note: Designers are cautioned that specific cases may require more comprehensive analysis than that specified in Clause 5.19.



Sketch A





Sketch D

Sketch E

Allowable Pressure

For straight pipe, the allowable pressure for a given wall thickness shall be determined by the following formula from Clause 4.3.5.1.

$$P = FLJT\left(\frac{2St}{D}\right)$$

where

P = allowable pressure

S = specified minimum yield strength, input as material property in CAEPIPE

 $t = \text{minimum wall thickness} = \text{nominal wall thickness} \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$ (see Note below)

F = design factor = 0.8 as per Clause 4.3.6.

L =location factor (from Table 4.2), input into CAEPIPE analysis option

- J = joint factor (from Table 4.3), input as material property in CAEPIPE
- T = temperature factor for steel pipe (from Table 4.4), determined based on Design Temperature input into CAEPIPE

D =outside diameter

Note:

Corrosion allowance input into CAEPIPE should include corrosion/erosion allowance and allowance for grooving and threading.

Sustained + Occasional Stress (Unrestrained Piping = Un-buried Piping)

The sum of longitudinal pressure stress and the total bending stress due to sustained force (pressure, weight and other sustained mechanical loads) and occasional loads (such as wind, seismic, etc.) shall be limited in accordance with the following formula from Clause 4.8.5.

$$0.5S_h + s_B \leq SFLT$$

where

 S_h = hoop stress due to pressure P, as computed using formula given in Clause 4.6.5 = $\frac{PD}{2t}$

 S_B = absolute value of beam bending stresses resulting from sustained and occasional loads = $\frac{iM_B}{Z_C}$

P = maximum of CAEPIPE input pressures P1 through P10

D = outside diameter of pipe

- $t = \text{minimum wall thickness} = \text{nominal wall thickness} \times (1 \text{mill tolerance}/100) \text{corrosion allowance}$ (see Note above for corrosion allowance)
- i = stress intensification factor (from Table 4.8)
- M_B = resultant bending moment due to sustained and occasional loads
- $Z_C = \underline{\text{corroded}}$ section modulus computed using corroded wall thickness = Nominal wall thickness corrosion allowance, in which mill tolerance is not deducted.

S = specified minimum yield strength

F = design factor = 0.8 as per Clause 4.3.6

- L = location factor (from Table 4.2)
- T = temperature factor for steel pipe (from Table 4.4) determined based on Maximum Temperature input into CAEPIPE (T1 through T10)

Expansion Stress (Unrestrained Piping = Un-buried Piping)

The thermal expansion stress range (S_E) for those portions of pipeline systems shall be limited in accordance with the formulae given in Clauses 4.8.3 and 4.8.4.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le 0.72ST$$

where

 S_b = resultant bending stress = iM_b/Z

 $S_t = \text{torsional stress} = M_t / (2Z)$

 M_b = resultant bending moment due to expansion loads

 M_t = torsional moment due to expansion loads

 $Z = \underline{un-corroded}$ section modulus

i = stress intensification factor (from Table 4.8)

S = specified minimum yield strength

T = temperature factor for steel pipe (from Table 4.4), determined at T_{hot} .

 $T_{hot} = maximum(T_{opr}, T_{ref})$ (see Note 3 below)

Combined Stress (Restrained Piping = Buried Piping)

For those portions of restrained pipelines, the combined stress shall be limited in accordance with the formula given in Clause 4.7.2.1.

$$S_h - S_L + s_B \le ST$$

where

 S_h = hoop stress due to pressure P, as determined using formula given in Clause 4.6.5 = $\frac{PD}{2t}$

 S_L = longitudinal <u>compressive</u> stress as determined using the formula given in Clause 4.7.1

 $= S_L = \vartheta S_h - E_c \alpha (T_{opr} - T_{ref}) \text{ (see Notes below)}$

 S_B = absolute value of beam bending stresses resulting from sustained and occasional loads = $\frac{iM_B}{Z_C}$

P = maximum of CAEPIPE input pressures P1 through P10

D = outside diameter of pipe

t = minimum wall thickness

- = nominal wall thickness × (1 mill tolerance/100) corrosion allowance (see Note above)
- i = stress intensification factor (from Table 4.8)
- M_B = resultant bending moment due to sustained and occasional loads
- $Z_C = \underline{\text{corroded}}$ section modulus computed using corroded wall thickness = Nominal wall thickness corrosion allowance, in which mill tolerance is not deducted.

 ϑ = Poisson's ratio, input as material property in CAEPIPE

 T_{opr} = operating temperature under consideration. See Note 2 below.

 T_{ref} = ambient temperature at the time of restraint = Reference temperature in CAEPIPE

 $E_c =$ modulus of elasticity of steel at T_{ref}

 α = coefficient of thermal expansion at T_{opr} defined above

S = specified minimum yield strength

T = temperature factor for steel pipe (from Table 4.4), determined at T_{hot} .

 $T_{hot} = maximum(T_{opr}, T_{ref})$ (see Note 3 below)

Note:

- 1. Evaluation as per Clause 4.7.2.1 (listed above) for Restrained Piping shall be performed in CAEPIPE only when the value of S_L computed as listed above is negative (compressive).
- 2. If there are more than one thermal load defined in CAEPIPE, for example T1 and T2, then CAEPIPE calculates longitudinal stress (S_L) due to

Thermal expansion range from T_{ref} to T1 as

$$E_c \alpha (T_{opr} - T_{ref}) = E_c \alpha_{T1} (T_1 - T_{ref})$$

Thermal expansion range from T_{ref} to T2 as

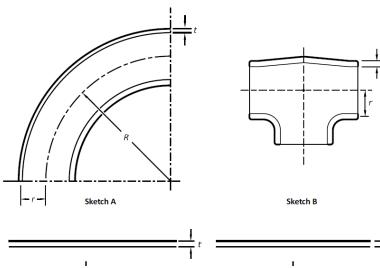
$$E_c \alpha (T_{opr} - T_{ref}) = E_c \alpha_{T2} (T_2 - T_{ref})$$

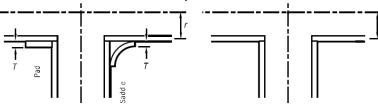
Thermal expansion range from T1 to T2 as

$$E_c \alpha(T_n - T_m) = E_c \alpha_n (T_n - T_{ref}) - E_c \alpha_m (T_m - T_{ref})$$
, where n = 1 and m = 2

3. If there are more than one thermal load defined in CAEPIPE, for example T1 and T2, then CAEPIPE determines Temperature factor (T) as given below.

Thermal expansion range from T_{ref} to T_1 as maximum (T_1, T_{ref})


Thermal expansion range from T_{ref} to T_2 as maximum (T_2, T_{ref})


Thermal expansion range from T_1 to T_2 as maximum(T_1, T_2)

Oil and gas pipeline systems CSA Z662 (2019)

Table 4.8Flexibility and stress intensification factors(See Clauses 4.8.7 and 11.14.2.)

G There is a commentary available for this Table.

Sketch C

(Continued)

Sketch D

Description	Flexibility factor, к*	Stress intensi- fication factor, i*	Description	Flexibility factor, к*	Stress intensifi- cation factor, <i>i</i> *	Flexibility character- istic, h	See sketch
Buttwelded joint, reducer, or welding neck flange	1	1.0	Welding elbow or pipe bend†	1.65 h	$\frac{0.9}{h^{2/3}}$	$\frac{tR}{r^2}$	A
Double-welded slip-on or socket welding flange	1	1.2	Welding tee per CSA Z245.11	1	$\frac{0.9}{h^{2/3}}$	$4.4\frac{t}{r}$	В
Fillet-welded joint or single- welded socket welding flange	1	1.3	Reinforced fabricated tee with pad or saddle	1	$\frac{0.9}{h^{2/3}}$	$\frac{(t+1/2T)^{\frac{5}{2}}}{t^{3/2}r}$	С
Lap joint flange (with ASME B16.9 lap joint stub)	1	1.6	Unreinforced fabricated tee	1	$\frac{0.9}{h^{2/3}}$	$\frac{t}{r}$	D
Screwed pipe joint or screwed flange	1	2.3					
Corrugated pipe, straight or curved, or creased bend‡	5	2.5					

Table 4.8 (Concluded)

* The flexibility factors and stress intensification factors apply to fittings of the same nominal wall thickness as the pipe used in the pipeline system and shall in no case be taken as less than unity. They apply over the effective arc length (shown by dash-dot lines in the sketches) for elbows, and to the intersection point for tees.

[†] Where flanges are attached to one or both ends, the values of κ and i in this Table shall be multiplied by the following factors: a) one end flanged: (h)^{1/6}

b) both ends flanged: (h)^{1/3}

‡ Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Note: Designers are cautioned that more comprehensive analysis than that specified in Clauses 4.6 to 4.10 can be necessary for specific cases.

Allowable Pressure

For straight pipe, the allowable pressure for a given wall thickness shall be determined by the following formula from Clause 4.3.5.1.

$$P = FLJT\left(\frac{2St}{D}\right)$$

where

P = allowable pressure

- S = specified minimum yield strength, input as material property in CAEPIPE
- $t = \text{minimum wall thickness} = \text{nominal wall thickness} \times (1 \text{mill tolerance}/100) \text{corrosion allowance}$ (see Note below)

F = design factor = 0.8 as per Clause 4.3.6.

- L =location factor (from Table 4.2), input into CAEPIPE analysis option
- J = joint factor (from Table 4.3), input as material property in CAEPIPE
- T = temperature factor for steel pipe (from Table 4.4), determined based on Design Temperature input into CAEPIPE

D =outside diameter

Note:

Corrosion allowance input into CAEPIPE should include corrosion/erosion allowance and allowance for grooving and threading.

Sustained + Occasional Stress (Unrestrained Piping = Un-buried Piping)

The sum of longitudinal pressure stress and the total bending stress due to sustained force (pressure, weight and other sustained mechanical loads) and occasional loads (such as wind, seismic, etc.) shall be limited in accordance with the following formula from Clause 4.8.5.

$$0.5S_h + s_B \le SFLT$$

where

 S_h = hoop stress due to pressure P, as computed using formula given in Clause 4.6.5 = $\frac{PD}{2t}$

 S_B = absolute value of beam bending stresses resulting from sustained and occasional loads $=\frac{iM_B}{iM_B}$

$$-Z_C$$

P = maximum of CAEPIPE input pressures P1 through P10

D = outside diameter of pipe

- $t = \text{minimum wall thickness} = \text{nominal wall thickness} \times (1 \text{mill tolerance}/100) \text{corrosion allowance}$ (see Note above for corrosion allowance)
- i = stress intensification factor (from Table 4.8)
- M_B = resultant bending moment due to sustained and occasional loads
- $Z_C = corroded$ section modulus computed using corroded wall thickness = Nominal wall thickness corrosion allowance, in which mill tolerance is not deducted.

S = specified minimum yield strength

F = design factor = 0.8 as per Clause 4.3.6

L = location factor (from Table 4.2)

T = temperature factor for steel pipe (from Table 4.4) determined based on Maximum Temperature input into CAEPIPE (T1 through T10)

Expansion Stress (Unrestrained Piping = Un-buried Piping)

The thermal expansion stress range (S_E) for those portions of pipeline systems shall be limited in accordance with the formulae given in Clauses 4.8.3 and 4.8.4.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le 0.72ST$$

where

 S_b = resultant bending stress = iM_b/Z

 $S_t = \text{torsional stress} = M_t / (2Z)$

 M_b = resultant bending moment due to expansion loads

 M_t = torsional moment due to expansion loads

 $Z = \underline{un-corroded}$ section modulus

i = stress intensification factor (from Table 4.8)

S = specified minimum yield strength

T = temperature factor for steel pipe (from Table 4.4), determined at T_{hot}

 $T_{hot} = maximum(T_{opr}, T_{ref})$ (see Note 3 below)

Combined Stress (Restrained Piping = Buried Piping)

For those portions of restrained pipelines, the combined stress shall be limited in accordance with the formula given in Clause 4.7.2.1.

$$S_h - S_L + s_B \le ST$$

where

 S_h = hoop stress due to pressure P, as determined using formula given in Clause 4.6.5 = $\frac{PD}{2t}$

 S_L = longitudinal <u>compressive</u> stress as determined using the formula given in Clause 4.7.1

 $= S_L = \vartheta S_h - E_c \alpha (T_{opr} - T_{ref}) \text{ (see Notes below)}$

 S_B = absolute value of beam bending stresses resulting from sustained and occasional loads = $\frac{iM_B}{Z_C}$

P = maximum of CAEPIPE input pressures P1 through P10

D = outside diameter of pipe

- t = minimum wall thickness
- = nominal wall thickness × (1 mill tolerance/100) corrosion allowance (see Note above)

i = stress intensification factor (from Table 4.8)

 M_B = resultant bending moment due to sustained and occasional loads

- $Z_C =$ <u>corroded</u> section modulus computed using corroded wall thickness = Nominal wall thickness corrosion allowance, in which mill tolerance is not deducted.
- ϑ = Poisson's ratio, input as material property in CAEPIPE

 T_{opr} = operating temperature under consideration. See Note 2 below.

 T_{ref} = ambient temperature at the time of restraint = Reference temperature in CAEPIPE

 $E_c =$ modulus of elasticity of steel at T_{ref}

 α = coefficient of thermal expansion at T_{opr} defined above

S = specified minimum yield strength

T = temperature factor for steel pipe (from Table 4.4), determined at T_{hot} .

 $T_{hot} = maximum(T_{opr}, T_{ref})$ (see Note 3 below)

Note:

- 1. Evaluation as per Clause 4.7.2.1 (listed above) for Restrained Piping shall be performed in CAEPIPE only when the value of S_L computed as listed above is negative (compressive).
- 2. If there are more than one thermal load defined in CAEPIPE, for example T1 and T2, then CAEPIPE calculates longitudinal stress (S_L) due to

Thermal expansion range from T_{ref} to T1 as

$$E_c \alpha (T_{opr} - T_{ref}) = E_c \alpha_{T1} (T_1 - T_{ref})$$

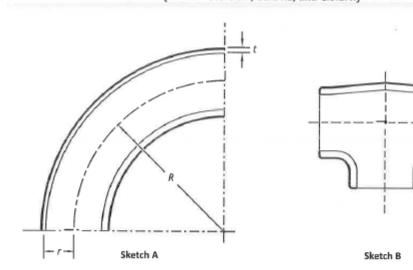
Thermal expansion range from T_{ref} to T2 as

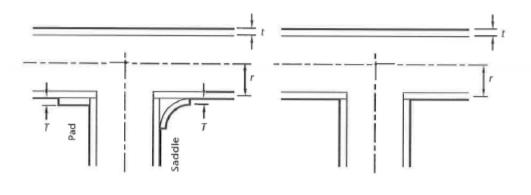
$$E_c \alpha (T_{opr} - T_{ref}) = E_c \alpha_{T2} (T_2 - T_{ref})$$

Thermal expansion range from T1 to T2 as

$$E_c \alpha(T_n - T_m) = E_c \alpha_n (T_n - T_{ref}) - E_c \alpha_m (T_m - T_{ref})$$
, where n = 1 and m = 2

3. If there are more than one thermal load defined in CAEPIPE, for example T1 and T2, then CAEPIPE determines Temperature factor (T) as given below.


Thermal expansion range from T_{ref} to T_1 as maximum (T_1, T_{ref})


Thermal expansion range from T_{ref} to T_2 as maximum (T_2, T_{ref})

Thermal expansion range from T_1 to T_2 as maximum (T_1, T_2)

Oil and gas pipeline systems CSA Z662 (2015) [superseded by CSA Z662 (2019)]

Table 4.8 Flexibility and stress intensification factors (See Clauses 4.8.7, 11.14.2, and C.5.1.4.)

Sketch C

Sketch D

(Continued)

Oil and gas pipeline systems CSA Z662 (2015) [superseded by CSA Z662 (2019)]

Description	Flexibility factor, κ*	Stress intensi- fication factor, i*	Description	Flexibility factor, K*	Stress intensifi- cation factor, i*	Flexibility character- istic, h	See sketch
Buttwelded Joint, reducer, or welding neck flange	1	1.0	Welding elbow or pipe bend†	1.65 h	$\frac{0.9}{h^{2/3}}$	$\frac{tR}{r^2}$	A
Double-welded slip-on or socket welding flange	1	1.2	Welding tee per CSA Z245.11	1	$\frac{0.9}{h^{2/3}}$	4.4 ^{<i>t</i>} / _{<i>r</i>}	В
Fillet-welded joint or single- welded socket welding flange	1	1.3	Reinforced fabricated tee with pad or saddle	1	$\frac{0.9}{h^{2/3}}$	$\frac{(t+1/2T)^{\frac{5}{2}}}{t^{3/2}r}$	c
Lap joint flange (with ASME B16.9 lap joint stub)	1	1.6	Unreinforced fabricated tee	1	$\frac{0.9}{h^{2/3}}$	t	D
Screwed pipe joint or screwed flange	1	2.3					
Corrugated pipe, straight or curved, or creased bend‡	5	2.5					

Table 4.8 (Concluded)

* The flexibility factors and stress intensification factors apply to fittings of the same nominal wall thickness as the pipe used in the pipeline system and shall in no case be taken as less than unity. They apply over the effective arc length (shown by dash-dot lines in the sketches) for elbows, and to the intersection point for tees. † Where flanges are attached to one or both ends, the values of κ and i in this Table shall be multiplied by the following factors: a) one end flanged: (h)^{1/4} b) both ends flanged: (h)^{1/4}

Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Note: Designers are cautioned that more comprehensive analysis than that specified in Clauses 4.6 to 4.10 can be necessary for specific cases.

Fiber Reinforced Plastic Pipe Stress

Hoop stress:
$$S_H = \frac{PD}{2t_m}$$

Axial stress: $S_A = \frac{PD}{4t_m} + \frac{F}{A}$
Bending stress: $S_B = \frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$
Torsional stress: $S_T = \frac{M_t}{2Z}$

Longitudinal maximum = $Axial + Bending = S_A + S_B$

Longitudinal Minimum = $Axial - Bending = S_A - S_B$

where

- P = pressure
- D =outside diameter
- $t_m = \text{minimum thickness}$
- = nominal thickness x (1 mill tolerance/100) corrosion allowance
- i_i = in-plane stress intensification factor
- i_o = out of plane stress intensification factor
- M_i = in plane bending moment
- M_o = out of plane bending moment
- M_t = torque
- Z = section modulus
- F = axial force
- A = cross-section area

Von Mises Stress and Maximum & Minimum Principal Stresses

Hoop stress: $S_H = \frac{PD}{2t_H}$ Axial stress: $S_A = \frac{PD}{4t} + \frac{F}{A}$ Bending stress: $S_B = \frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{z}$ Torsional stress: $S_T = \frac{M_t}{27}$ (a) At one Extreme Surface of Pipe $T1 = \frac{S_H - S_A - S_B}{2}$ $U1 = \sqrt{T1^2 + (S_T)^2}$ Sigma l = $\sigma_1 = \frac{S_H + S_A + S_B}{2} + U1$ Sigma 2 = $\sigma_2 = \frac{S_H + S_A + S_B}{2}$ - U1 VonMises_t = $\sqrt{(\sigma_1)^2 - \sigma_1 \sigma_2 + (\sigma_2)^2}$ $Max_t = \sigma_1$ $Min_t = \sigma_2$ (b) At the other Extreme Surface of Pipe $T2 = \frac{S_H - S_A + S_B}{2}$ $U2 = \sqrt{T2^2 + (S_T)^2}$ Sigma l = $\sigma_1 = \frac{S_H + S_A - S_B}{2} + U2$ Sigma 2 = $\sigma_2 = \frac{S_H + S_A - S_B}{2} - U2$ VonMises_b = $\sqrt{(\sigma_1)^2 - \sigma_1 \sigma_2 + (\sigma_2)^2}$ Max_b = σ_1 $Min_b = \sigma_2$ (c) For the entire Pipe Cross-section at a Node VonMises Stress = Max(VonMises_t, VonMises_b) Maximum Principal Stress = Max(Max_t, Max_b)

Minimum Principal Stress = Min(Min_t, Min_b)

where

- P = pressure
- D =outside diameter
- t = nominal thickness
- t_m = minimum thickness = t x (1 mill tolerance/100) corrosion allowance
- i_i = in-plane stress intensification factor
- i_o = out-of-plane stress intensification factor
- M_i = in-plane bending moment
- M_o = out-of-plane bending moment
- M_t = torque
- Z = section modulus
- F = axial force
- A = cross-section area

Stress Intensification Factors (SIFs)

CAEPIPE computes Stress Intensification Factors (SIFs) for "None" code as per SIF equations provided in ASME B31.3 as given below.

For "Piping code = None" and a non-FRP material, the in-plane and out-of-plane Stress Intensification Factors (SIF) for a 90° bend/elbow are taken to be the same as those computed using Appendix D of ASME B31.3 (appended below for reference).

For a bend with bend angle less than 90°, the in-plane and out-of-plane SIFsarecomputed using the procedure given in ASME/BPVC Section III, Division1, Case N-319-2 "Alternate Procedure for Evaluation of Stresses in Butt Welding Elbows in Class 1 Piping."

For better clarity, when piping code = None, the SIF for a bend of other than 90 deg is as follows:

The SIF for curved pipe of arc lengths between 0 and 180 deg can be estimated by multiplying the SIF for 90 deg bend as given by ASME B31.3 code by a scalar multiplier. This scalar multiplier is arrived at by taking the ratio of the involved Bending stress index C(2z) values as given below.

Scalar multiplier = [C(2z) value for the required angle bend / C(2z) value for 90 deg bend], where the C(2z) values are taken from ASME/BPVC Section III, Division 1, Code Case N-319-2 document titled "Alternate Procedure for Evaluation of Stresses in Butt Welding Elbows in Class 1 Piping", which are listed below.

 $C(2z) = 1.95/h^{(2/3)}$ for bend angles of 90 deg or greater

 $C(2z) = 1.75/h^{(0.56)}$ for a bend angle of 45 deg

C(2z) = 1.0 for a bend angle of 0 deg (straight pipe)

For other bend angles, the C(2z) values can be interpolated between the above C(2z) values.

As an example, a 45 deg bend SIF could be reasonably estimated to be {SIF for B31 90 deg bend} x [C(2z) for a 45 deg bend / C(2z) for a 90 deg bend]. You may note that the Scalar multiplier is 1.0 for bend angles greater than 90 deg.

APPENDIX D FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

See Table D300.

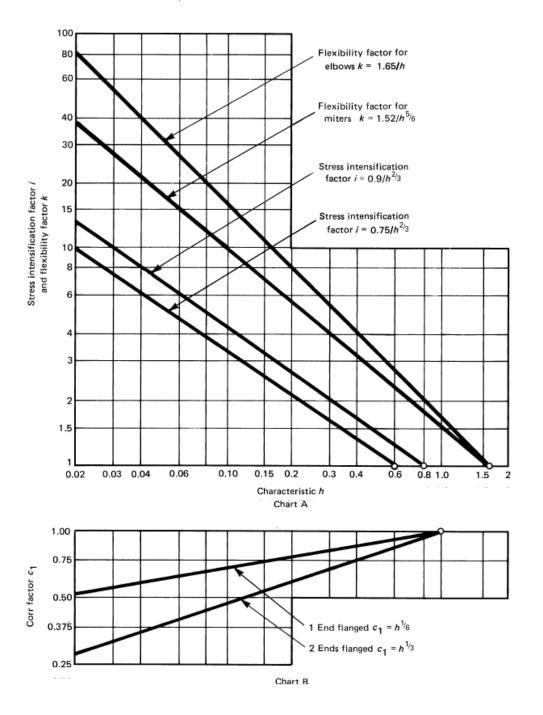
	Flexibility	Stress Inte Factor [Not		Flexibility	
Desc ription	Factor,	Out-of-Plane, j _o	In-Plane, J _i	Characteristic, ħ	Sketc h
Welding elbow or pipe bend [Notes (1), (3)-(6)]	1.65 ĥ	$\frac{0.75}{h^{2/3}}$	0.9 6 ^{2/≥}	$\frac{TR_1}{r_2^2}$	$\overline{r_1}$
Closely spaced miter bend $s < r_2$ (1 + tan θ) [Notes (1), (3), (4), (6)]	<u>1.52</u> h ^{sk}	$\frac{0.9}{h^{2\ell_2}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\cot \vartheta}{2} \left(\frac{s\overline{J}}{r_2^{-2}} \right)$	$\int_{\theta}^{\frac{1}{2}} R_1 = \frac{s \cot \theta}{2} r_2$
Single miter bend or widely spaced miter bend $s \ge r_2 (1 + \tan \theta)$ [Notes (1), (3), (6)]	<u>1.52</u> β ^{\$&}	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\emptyset}{2}\left(\frac{7}{r_2}\right)$	\vec{r}_{2}
Welding tee in accordance with ASME B16.9 [Notes (1), (3), (5), (7), (8)]	1	$\frac{0.9}{h^{2/b}}$	³ /4 ^j ₀ + ¹ /4	3.1 <u>7</u> ½	$-\frac{1}{r_c}$
Reinforced fabricated tee with pad or saddle [Notes (1), (3), (8), (9), (10)]	1	$\frac{0.9}{b^{2/3}}$	³ / ₄ <i>j₀</i> + ¹ / ₄	$\frac{(\overline{T} + \frac{1}{2} \overline{T}_r)^{2s}}{\overline{T}^{1s} r_2}$	$\vec{\tau}_r$ Pad Saddle $\vec{\tau}_r$

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i

Table D300	Flexibility	ctor, i (Cont'd)					
	Flexibility	Stress Inte Factor [Not		Flexibility			
	Factor,	Out-of-Plane,	In-Plane,	Characteristic,	Closek		
Description	k	j _o	ĥ,	h	Sketch		
Unreinforced fabricated tee [Notes (1), (3), (8), (10)]	1	$\frac{0.9}{h^{2/b}}$	³ / ₄ / ₀ + ¹ / ₄	$\frac{7}{r_2}$			
Extruded welding tee with $r_x \ge 0.05 \ D_b$ $\overline{T}_c < 1.5 \ \overline{T}$ [Notes (1), (3), (8)]	1	0.9 h ^{2/3}	³ / ₄ j _o + ¹ / ₄	$\left(1+\frac{r_s}{r_2}\right)\frac{\overline{f}}{r_2}$			
Welded-in contour insert [Notes (1), (3), (7), (8)]	1	$\frac{0.9}{h^{2/8}}$	$\frac{3}{4}i_{0}i_{0} + \frac{1}{4}i_{4}$	$3.1\frac{\overline{7}}{\overline{r_2}}$			
Branch welded-on fitting (integrally reinforced) [Notes (1), (3), (10), (11)]	1	$\frac{0.9}{h^{2/s}}$	$\frac{0.9}{b^{2/8}}$	3.3 <u>7</u>			

Table D300	Flexibility F	actor. k.	and Stress	Intensification	Factor. i	(Cont'd)
	- reaction of the reaction of	motor, m,		THE COMPANY OF THE OWNER OWNER	1 100001, 1	

Description	Flexibility Factor, <i>I</i> c	Stress Intensification Factor, <i>i</i>
Butt welded joint, reducer, or weld neck flange	1	1.0
Double-welded slip-on flange	1	1.2
Fillet or socket weld	1	1.3 [Note (12)]
Lap joint flange (with ASME B16.9 lap joint stub)	1	1.6
Threaded pipe joint or threaded flange	1	2.3
Corrugated straight pipe, or corrugated or creased bend [Note (13)]	5	2.5



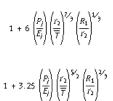

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Table D300 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

GENERAL NOTE: Stress intensification and flexibility factor data in Table D300 are for use in the absence of more directly applicable data (see para. 319.3.6). Their validity has been demonstrated for $D/\overline{T} \leq 100$.

- NOTES:
- (1) The flexibility factor, Ic, in the Table applies to bending in any plane; also see para. 319.3.6. The flexibility factors, Ic, and stress intensification factors, i, shall apply over the effective arc length (shown by heavy centerlines in the illustrations) for curved and miter bends, and to the intersection point for tees.
- (2) A single intensification factor equal to $0.9/h^{2/3}$ may be used for both i_j and i_o if desired.
- (3) The values of k and i can be read directly from Chart A by entering with the characteristic h computed from the formulas given above. Nomenclature is as follows:
 - D_{h} = outside diameter of branch
 - R_1 = bend radius of welding elbow or pipe bend
 - r_s = see definition in para. 304.3.4(c)
 - r_2 = mean radius of matching pipe

 - \vec{x} = miter spacing at centerline \vec{T} = for elbows and miter bends, the nominal wall thickness of the fitting
 - = for tees, the nominal wall thickness of the matching pipe
 - = crotch thickness of branch connections measured at the center of the crotch where shown in the illustrations
 - T_r = crotch thickness or brand T_r = pad or saddle thickness
 - θ = one-half angle between adjacent miter axes
- (4) Where flanges are attached to one or both ends, the values of i and i in the Table shall be corrected by the factors c_1 , which can be read directly from Chart B, entering with the computed h.
- (5) The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (6) In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and k. To correct values from the Table, divide *k* by

divide *i* by

For consistency, use kPa and mm for SI metric, and psi and in. for U.S. customary notation.

- (7) If $r_s \ge \frac{1}{8} D_b$ and $T_c \ge 1.5\overline{T}$, a flexibility characteristic of 4.4 \overline{T}/r_2 may be used.
- (8) Stress intensification factors for branch connections are based on tests with at least two diameters of straight run pipe on each side of the branch centerline. More closely loaded branches may require special consideration.
- (9) When \overline{T}_r is > $1^{1}/_{2} \overline{T}_r$ use $h = 4 \overline{T}/r_{2}$.
- (10) The out-of-plane stress intensification factor (SIF) for a reducing branch connection with branch-to-run diameter ratio of 0.5 < d/D < 1.0 may be nonconservative. A smooth concave weld contour has been shown to reduce the SIF. Selection of the appropriate SIF is the designer's responsibility
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a fillet weld is made between the pipe and fitting as shown in Fig. 328.5.2C. For welds to socket welded flanges, the stress intensification factor is based on the weld geometry shown in Fig. 328.5.2B, illustration (3) and has been shown to envelope the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 328.5.2A, has been shown to improve the fatigue performance of the weld.
- (13) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

(14)

This function is available to users who wish to inspect or examine high stress areas (Non-Destructive Evaluation, NDE) where piping has high "operating stresses" or examine stress areas that are higher than 35% of the allowable stress for Impact Testing as per para. 523.2.2 (f)(4) of ASME B31.5 (2017) code or examine stress ratios for Impact Test Exemption as per para . 323.2.2 (b)(3) of ASME B31.3 (2022) code.

While piping codes do not consider the operating condition (W+P+T) as a required load case for code compliance, you may, however, evaluate this load case the same way as you would do for other code compliance cases such as Sustained (W+P) and Expansion (T). CAEPIPE will show columns displaying Operating Stress (S_{opt}) and Allowable stress (S_{all}) alongside the code required stresses even though the Operating Stress is not a code requirement.

To display these columns, you will have to turn them on first:(mouse right click) > Show Operating Stress for NDE for all codes excepting ASME B31.5 and ASME B31.3. For ASME B31.5 Code, this option will change as "Show Operating Stress for Impact Test". Similarly, for ASME B31.3 Code, this option will change as "Show Operating Stress for Impact Test".

1-0-0	Caepipe	: B31.1	(2022) (Code c	omplian	ce (Sorte	d stresse	es) - [Sample.res (C:\Temp\Voided\01_Modeling_Review_Result — 🛛	×
File	Result	s Vie	w Opti	ons	Window	Help			
4	3 +				8	λ 🗄			
		Susta	ined			Expan	sion		
#	Node	SL (psi)	SH (psi)	SL SH	Node	SE (psi)	SA (psi)	SE SA	
1	80	2390	17900	0.13	30	53712	30101	1.78	
2	60	2057	17900	0.11	50	51274	30101	1.70	
3	70	1985	17900	0.11	20A	48398	30101	1.61	
4	30	1887	17900	0.11	20B	34219	3010	Show Stresses	
5	10	1300	17900	0.07	10	32606	3010	Show Stress Ratios	
6	40B	908	17900	0.05	80	27500	3010	Thresholds	
7	20B	835	17900	0.05	40A	19113	3010	Show Operating Stress for NDE	
8	20A	795	17900	0.04	60	17741	3010	Hide Allowables	
9	50	777	17900	0.04	70	12005	3010	Results	
10	40A	758	17900	0.04	40B	10396	3010	Next Result	
								Previous Result	

The allowable stress for NDE is NOT specified nor recommended by piping codes but, as mentioned above, may aid in identifying regions of high combined stress in the piping system, which may warrant a closer examination in engineering judgment.

Operating Stress for NDE / Impact Test / Impact Test Exemption

							d stresse	s) - [S	ample.res	s (C:\Temp	\Voided\	01_Mode	ling_Re	view_R	esult	—	×
<u>F</u> ile			v <u>O</u> pti		<u>N</u> indow	Help											
4	3 🗖				<u>)</u> (> s	^S ∕A							
		Susta				Expan	sion		Ope	rating Str	ess for N	IDE					
#	Node	SL (psi)	SH (psi)	SL SH	Node	SE (psi)	SA (psi)	<u>SE</u> SA	Node	Sopr (psi)	Sall (psi)	<u>Sopr</u> Sall					
1	80	2390	17900	0.13	30	53712	30101	1.78	30	52347	47375	1.10					
2	60	2057	17900	0.11	50	51274	30101	1.70	50	51330	47375	1.08					
3	70	1985	17900	0.11	20A	48398	30101	1.61	20A	44539	47375	0.94					
4	30	1887	17900	0.11	20B	34219	30101	1.14	20B	32686	47375	0.69					
5	10	1300	17900	0.07	10	32606	30101	1.08	10	28557	47375	0.60					
6	40B	908	17900	0.05	80	27500	30101	0.91	40A	18011	47375	0.38					
7	20B	835	17900	0.05	40A	19113	30101	0.63	80	10441	47375	0.22					
8	20A	795	17900	0.04	60	17741	30101	0.59	40B	10415	47375	0.22					
9	50	777	17900	0.04	70	12005	30101	0.40	70	3313	47375	0.07					
10	40A	758	17900	0.04	40B	10396	30101	0.35	60	1374	47375	0.03					
File	Result	ts View			Vindow	e (Sorter Help		s) - [Si		e.res (D:\k	(PDevelop	oment\Ve	rificatio	n\Verifi	cati	-	×
	Result	ts View	v Optio	ons V	Vindow	Help				S∕∧	(PDevelop asional	oment\Ve	rificatio	n\Verifi	icati	-	×
File	Result	ts View	v Optio	ons V	Vindow	Help	nsion		> s	Occa SL+SO	asional	oment\Ve	^	n\Verifi	cati	-	×
File	Result	ts View	v Optio	ons V	Vindow	Help Expa	nsion		Node	Occa SL+SO	asional SHO	SL+SO	^	n\Verifi	icati	-	×
File	Result	s Viev Susta SL (MPa)	ained SH (MPa) 82.74	ons V	Vindow Mode 540	Help Expa SE (MPa)	nsion SA (MPa)	SE SA 0.00	Node 70	Occa SL+SO (MPa)	asional SHO (MPa)	SL+SO SHO	^	n\Verifi	icati	-	×
File	Result	Susta SL (MPa) 18.21	v Optio	ons V	Vindow Mode 540 530	Help Expa SE (MPa) 0.000	nsion SA (MPa) 124.1		Node 70 240	Occe SL+SO (MPa) 21.68 19.20	asional SHO (MPa) 110.0 110.0	SL+SO SHO 0.20 0.17	^	n\Verifi	cati	-	×
File # 1 2 3	Result Node 240 70	Susta SL (MPa) 18.21 16.48	x Optic	ons V SL SH 0.22 0.20	Vindow Mode 540 530 520	Help Expa SE (MPa) 0.000 0.000	nsion SA (MPa) 124.1 124.1	SE SA 0.00 0.00	Node 240 80	Occes SL+SO (MPa) 21.68 19.20 Sho	asional SHO (MPa) 110.0 110.0 w Stresse	SL+SO SHO 0.20 0.17	^	n\Verifi	icati	-	×
File # 1 2 3 4	Result Node 240 70 60	Susta Susta SL (MPa) 18.21 16.48 14.47 14.01	x Option ained SH (MPa) 82.74 82.74 82.74 82.74	ons V SL SH 0.22 0.20 0.17 0.17	Vindow Node 540 530 520 510	Help Expa SE (MPa) 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1	SE SA 0.00 0.00 0.00	Node 70 240 80 60	Occca SL+SO (MPa) 21.68 19.20 Sho	asional SHO (MPa) 110.0 110.0 w Stresse	SL+SO SHO 0.20 0.17 Ratios	^	n\Verifi	cati	-	×
File # 1 2 3 4 5	Result 3 240 70 60 80 50	Susta SL (MPa) 18.21 16.48 14.47 14.01 12.16	 Option SH (MPa) 82.74 82.74 82.74 82.74 82.74 82.74 	ons V SL SH 0.22 0.20 0.17 0.15	Vindow Node 540 530 520 510 500B	Help Expa SE (MPa) 0.000 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1 124.1 124.1 124.1	SE SA 0.00 0.00 0.00 0.00	Node 70 240 80 60 50	Occe SL+SO (MPa) 21.68 19.20 Sho Sho	asional SHO (MPa) 110.0 110.0 110.0 www.stresse www.stresse www.stresse	SL+SO SHO 0.20 0.17 Is Ratios				-	×
File # 1 2 3 4 5 6	Result 3 240 70 60 80 50 420	Susta SL (MPa) 18.21 16.48 14.47 14.01 12.16 11.19	x Option ained SH (MPa) 82.74 82.74 82.74 82.74 82.74 82.74 82.74	ons V SL SH 0.22 0.20 0.17 0.17 0.15 0.14	Vindow Node 540 530 520 510 500B 500A	Help Expa SE (MPa) 0.000 0.000 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1 124.1 124.1 124.1 124.1	SE SA 0.00 0.00 0.00 0.00 0.00 0.00	 Node 70 240 80 60 50 410 	Occe SL+SO (MPa) 21.68 19.20 Sho Sho Sho	asional SHO (MPa) 110.0 110.0 ow Stresse ow Stress resholds ow Operat	SL+SO SHO 0.20 0.17 Ratios				ption	×
File	Result Node 240 70 60 80 50 420 410	Suster SL (MPa) 18.21 16.48 14.47 14.01 12.16 11.19 11.13	x Option ained SH (MPa) 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74	ons V SL SH 0.22 0.20 0.17 0.17 0.15 0.14 0.13	Node 540 520 510 500A 490	Help Expa SE (MPa) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1	SE SA 0.00 0.00 0.00 0.00 0.00 0.00 0.00	 Node 70 240 80 60 50 410 90 	Occe SL+SO (MPa) 21.68 19.20 Sho Sho Sho	asional SHO (MPa) 110.0 110.0 110.0 www.stresse www.stresse www.stresse	SL+SO SHO 0.20 0.17 Ratios				ption	×
File # 1 2 3 4 5 6 7 8	Result	Susta Susta SL (MPa) 18.21 16.48 14.47 14.01 12.16 11.19 11.13 11.10	x Option ained SH (MPa) 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74	SL SH 0.22 0.20 0.17 0.17 0.13	Vindow Mode 540 530 520 510 500B 500A 490 480	Help Expa SE (MPa) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1	SE SA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	 Node 70 240 80 60 50 410 90 100 	Occe SL+SO (MPa) 21.68 19.20 Sho Sho Sho Sho Hid	asional SHO (MPa) 110.0 110.0 ow Stresse ow Stress resholds ow Operat	SL+SO SHO 0.20 0.17 Ratios				ption	×
File # 1 2 3 4 5 6 7 8 9	Result Node 240 70 60 80 50 420 410 90 40	Susta SL (MPa) 18.21 16.48 14.47 14.01 12.16 11.19 11.13 11.10 11.01	ained SH (MPa) 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74	SIL SL SL 0.22 0.20 0.177 0.15 0.14 0.13 0.13	Vindow Node 540 530 520 510 500B 500A 490 480 470	Help Expa SE (MPa) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1	SE SA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	 Node 70 240 80 60 50 410 90 100 40 	Occe SL+SO (MPa) 21.68 19.20 Sho Sho Sho Chi Hid Res	asional SHO (MPa) 110.0 110.0 110.0 w Stress resholds w Operat de Allowal	SL+SO SHO 0.20 0.17 Ratios				ption	×
File # 1 2 3 4 5 6 7 8 9 10	Result	Susta SL (MPa) 18.21 16.48 14.47 14.01 12.16 11.19 11.13 11.10 11.01 10.85	xined SH (MPa) 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74	SL SL SH 0.22 0.21 0.17 0.17 0.17 0.13 0.13 0.13 0.13	Node 540 530 520 510 500B 500A 490 480 470 460	Help Expa SE (MPa) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1	SE SA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Node 70 240 60 50 410 90 100 40 420	Occes SL+SO (MPa) 21.68 19.20 Sho Sho Thr Sho Res Net	asional SHO (MPa) 110.0 110.0 w Stresse ow Stress resholds w Operat de Allowal sults	SL+SO SHO 0.20 0.17 es Ratios ting Stres bles				ption	×
File # 1 2 3 4 5 6 7 8 9 10 11	Result	Susta SL (MPa) 18.21 16.48 14.47 14.01 12.16 11.19 11.13 11.10 11.01 10.85 10.83	xined SH (MPa) 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74	Shift SL SH SH 0.22 0.20 0.17 0.17 0.15 0.14 0.13 0.13 0.13 0.13	Node 540 530 520 510 500B 500A 490 480 470 460 450	Help Expa SE (MPa) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1	SE SA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Node 70 240 80 50 410 90 100 420 520	Occa SL+SO (MPa) 21.68 19.20 Sho Sho Chir Res Ne Pre	asional SHO (MPa) 110.0 110.0 110.0 w Stress w Stress w Operat de Allowal sults xt Result vious Res	SL+SO SHO 0.20 0.17 ss Ratios ting Stres bles				ption	×
File # 1 2 3 4 5 6 7 8 9 10 11 12	Result Node 240 70 60 80 50 420 410 90 100 190 740	Susta SL (MPa) 18.21 16.48 14.47 14.01 12.16 11.19 11.13 11.10 11.01 10.85 10.83 10.59	Coption Copy Copy Copy Copy Copy Copy Copy Copy	Diss V Image: Sharp of the state	Vindow Node 540 530 520 510 500B 500A 490 480 480 480 480 480 450 440	Help Expa SE (MPa) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1	SE SA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Node 70 240 80 50 410 90 100 420 520 400	Occa SL+SO (MPa) 21.68 19.20 She She She Res Ne Pre	asional SHO (MPa) 110.0 110.0 110.0 w Stress resholds w Operat de Allowal sults xt Result vious Res 110.0	SL+SO SHO 0.20 0.17 es Ratios ting Stres bles ult 0.11				ption	×
File	Result	Susta SL (MPa) 18.21 16.48 14.47 14.01 12.16 11.19 11.13 11.10 11.01 10.85 10.83	xined SH (MPa) 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74	Shift SL SH SH SH 0.22 0.20 0.17 0.17 0.15 0.14 0.13 0.13 0.13 0.13 0.13	Vindow Node 540 530 520 510 500B 500A 490 480 480 480 480 480 450 440	Help Expa SE (MPa) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nsion SA (MPa) 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1	SE SA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Node 70 240 80 50 410 90 100 420 520 400	Occa SL+SO (MPa) 21.68 19.20 Sho Sho Chir Res Ne Pre	asional SHO (MPa) 110.0 110.0 110.0 w Stress w Stress w Operat de Allowal sults xt Result vious Res	SL+SO SHO 0.20 0.17 ss Ratios ting Stres bles				ption	

H	=1 Caepipe : B31.3 (2022) Code compliance (Sorted stresses) - [SuctionLine.res (D:\KPDevelopment\Verification — 🛛 🗙																
<u>F</u> ile	<u>F</u> ile <u>R</u> esults <u>V</u> iew <u>O</u> ptions <u>W</u> indow <u>H</u> elp																
4																	
	Sustained Expansion Occasional Oper. Impact Test Exempti											nption	^				
#	Node	SL (psi)	SH (psi)	SL SH	Node	SE (psi)	SA (psi)	<u>SE</u> SA	Node	SL+SO (psi)	SHO (psi)	SL+SO SHO	Node	Sopr (psi)	Sall (psi)	<u>Sopr</u> Sall	
1	240	2641	12000	0.22	540	0	18001	0.00	70	3144	15961	0.20	240	2641	12000	0.22	-
2	70	2390	12000	0.20	530	0	18001	0.00	240	2784	15961	0.17	70	2390	12000	0.20	
3	60	2098	12000	0.17	520	0	18001	0.00	80	2670	15961	0.17	60	2098	12000	0.17	
4	80	2032	12000	0.17	510	0	18001	0.00	60	2571	15961	0.16	80	2032	12000	0.17	
5	50	1764	12000	0.15	500B	0	18001	0.00	50	2161	15961	0.14	50	1764	12000	0.15	
6	420	1623	12000	0.14	500A	0	18001	0.00	410	2157	15961	0.14	420	1623	12000	0.14	
7	410	1615	12000	0.13	490	0	18001	0.00	90	2117	15961	0.13	410	1615	12000	0.13	
8	90	1610	12000	0.13	480	0	18001	0.00	100	2068	15961	0.13	90	1610	12000	0.13	
9	40	1596	12000	0.13	470	0	18001	0.00	40	1978	15961	0.12	40	1596	12000	0.13	
10	100	1573	12000	0.13	460	0	18001	0.00	420	1967	15961	0.12	100	1573	12000	0.13	
11	190	1571	12000	0.13	450	0	18001	0.00	520	1931	15961	0.12	190	1571	12000	0.13	
12	740	1536	12000	0.13	440	0	18001	0.00	400	1829	15961	0.11	740	1536	12000	0.13	
13	730	1527	12000	0.13	430	0	18001	0.00	580	1822	15961	0.11	730	1527	12000	0.13	
14	14 160A 1516 12000 0.13 420 0 18001 0.00 430 1819 15961 0.11 160A 1516 12000 0.13 🗸																
<																>	

Operating Stress for NDE / Impact Test / Impact Test Exemption

	aepipe Results						e (Sor	ted s	tresses) - [Lov	r-Temp	Piping M	lodel 2018.res (C:\Do 🗕 🗖 🗙
	🚑 🗄 🗐 🛍 🚳 🔍 🔚 <table-cell-rows> 🌩 🚽 🖪 🧏</table-cell-rows>												
#	Node	Susta SL (psi)		SL SH	Node	Expan SE (psi)	·	<u>SE</u> SA	, Node		asional 1.33SH (psi)	<u>SL+SO</u> 1.335H	
1	2285	8850						0.54		10341	19418	0.53	
2	2760 2810	8843 6161	17100 17100			11409 9438	21900 21900			10669 2000		0.47	
4	2450	6159				9276	21900				ow Stress ow Stress		
5	20A	5189			2020A	9080	21900		20B	Th	esholds		
6	30A 3040	4691 4531	14600 14600		20B 2020B	8874 8686	21900		3020B 30A				s for Impact Test
8	2515	5162				8627	21900			E HIC	le Allowal	bles	
9	2635	5153				7962	21900			16	sults		
10	20B	4380	14600	0.30	3020B	7675	21900	0.35	60A	6	xt Result vious Re	sult	
11	530	4350	14600	0.30	750A	7654	21900	0.35	30B	6070	13410	0.31	
12	50	4151	14600	0.28	920A	7283	21900	0.33	3030A	5997	19418	0.31	
13	40	4148	14600	0.28	20A	6529	21900	0.30	520B	5909	19418	0.30	
14	2680	4790	17100	0.28	1140	6417	21900	0.29	310B	5872	19418	0.30	
15	2560	4788				6129	21900			5868	19418	0.30	-1
10	220	2007	14000	0.27	COD	£120	21000	0.00	6004	F770	10/10	0.20	•

Operating Stress for NE	DE / Impact Test /	[/] Impact Test Exemption

💵 Caepipe : B31.5 (2016) Code compliance (Sorted stresses) - [Low-Temp Piping Model 2018.res (C:\Do 🗖 🗖 🗙																	
File Results View Options Window Help																	
4																	
I	Sustained				Expansion				Occasional			Oper. Stress for Impact Test 🔺					
#	Node	SL (psi)	SH (psi)	<u>SL</u> SH	Node	SE (psi)	SA (psi)	<u>SE</u> SA	Node	SL+SO (psi)	1.33SH (psi)	<u>SL+SO</u> 1.33SH	Node	Sopr (psi)	Sall (psi)	Sopr Sall	1
1	2285	8850	17100	0.52	2030B	11852	21900	0.54	3040	10341	19418	0.53	2030B	13389	5110	2.62	
2	2760	8843	17100	0.52	2030A	11409	21900	0.52	2760	10669	22743	0.47	2030A	12913	5110	2.53	
3	2810	6161	17100	0.36	762	9438	21900	0.43	20A	8800	19418	0.45	20B	12489	5110	2.44	
4	2450	6159	17100	0.36	932	9276	21900	0.42	2285	10086	22743	0.44	762	10916	5110	2.14	
5	20A	5189	14600	0.36	2020A	9080	21900	0.41	20B	7164	19418	0.37	932	10753	5110	2.10	
6	30A	4691	14600	0.32	20B	8874	21900	0.41	3020B	7131	19418	0.37	2020A	10249	5110	2.01	
7	3040	4531	14600	0.31	2020B	8686	21900	0.40	30A	6984	19418	0.36	3020B	10204	5110	2.00	
8	2515	5162	17100	0.30	3040	8627	21900	0.39	630B	6491	19418	0.33	260	10135	5110	1.98	
9	2635	5153	17100	0.30	260	7962	21900	0.36	60B	6379	19418	0.33	60B	9927	5110	1.94	
10	20B	4380	14600	0.30	3020B	7675	21900	0.35	60A	6283	19418	0.32	750A	9717	5110	1.90	
11	530	4350	14600	0.30	750A	7654	21900	0.35	30B	6075	19418	0.31	20A	9659	5110	1.89	
12	50	4151	14600	0.28	920A	7283	21900	0.33	3030A	5997	19418	0.31	2020B	9583	5110	1.88	
13	40	4148	14600	0.28	20A	6529	21900	0.30	520B	5909	19418	0.30	1140	9458	5110	1.85	
14	2680	4790	17100	0.28	1140	6417	21900	0.29	310B	5872	19418	0.30	920A	9338	5110	1.83	
15	2560	4788	17100	0.28	1110	6129	21900	0.28	480B	5868	19418	0.30	30B	8620	5110	1.69	
10	220	2007	14000	0.27	COD	£100	21000	0.00	6004	F770	10/10	0.50	2014	0501	E110	1.00	

Thickness and Section Modulus used in Weight, Pressure and Stress Calculations for ANSI B31.x Codes

Particulars	Allowable Pressure	Pipe Weight	Sustained Stress	Expansion Stress	Occasional Stress
ASME B31.1					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness
Section Modulus used	-	-	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus
ASME B31.3					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness - Corrosion allowance	-	Nominal Thickness – Corrosion allowance
Section Modulus used	-	-	<i>Corroded</i> Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus	<i>Corroded</i> Section Modulus; For Branch, effective section modulus
ASME B31.4					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness
Section Modulus used	-	-	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch effective section modulus
ASME B31.5					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness – Corrosion allowance	-	Nominal Thickness – Corrosion allowance

Thickness and Section Modulus used in Weight, Pressure and Stress Calculations for ANSI B31.x Codes

Particulars	Allowable Pressure	Pipe Weight	Sustained Stress	Expansion Stress	Occasional Stress
Section Modulus used	-	-	Corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus	Corroded Section Modulus; For Branch, effective section modulus
ASME B31.8 and	ASME B31.12 PL				
Pipe Thickness used	Nominal Thk.	Nominal Thickness	Nominal Thickness	-	Nominal Thickness
Section Modulus used	-	-	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus
ASME B31.9					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness
Section Modulus used	-	-	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus
ASME B31.12					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness
Section Modulus used	-	-	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus	Un-corroded Section Modulus; For Branch, effective section modulus

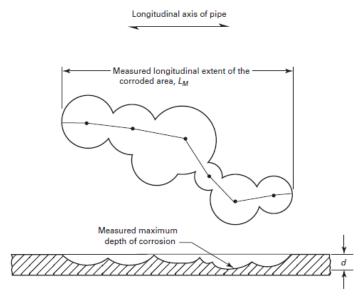
Note:

1. Corrosion allowance includes thickness required for threading, grooving, erosion, corrosion etc.

2. Un-corroded section modulus = section modulus calculated using the nominal thickness.

Thickness and Section Modulus used in Weight, Pressure and Stress Calculations for ANSI B31.x Codes

3. Corroded section modulus = section modulus calculated using the "corroded thickness". Corroded thickness = nominal thickness – corrosion allowance 4. Effective section modulus = section modulus calculated using effective branch thickness, which is lesser of $i_i t_b$ or t_h


where, t_b = branch nominal thickness, t_h = header nominal thickness, i_i = in-plane SIF at branch

This page is blank

Remaining Strength of Corroded Pipelines

Remaining Strength of Corroded Pipelines

ASME B31G (2023)

Method 1: B31G Original Method (0.67dL)

Failure Stress (SF) of Corroded Pipeline is computed as per Section 2.2 (a) titled "Level 1 Evaluation" as detailed below.

For Z <= 20

$$S_F = S_{flow} \left[\frac{1 - \frac{2}{3} \left(\frac{d}{t} \right)}{1 - \frac{2}{3} \left(\frac{d}{tM} \right)} \right]$$

For Z > 20

$$S_F = S_{flow} \left(1 - \frac{d}{t} \right)$$
$$P_F = \frac{2S_F t}{D}$$
$$L_{all} = 1.12. B\sqrt{D.t}$$
$$B = \sqrt{\left(\frac{\frac{d}{t}}{1.1\frac{d}{t} - 0.15}\right)^2 - 1}$$

where

 S_F = failure stress

 $S_{flow} = flow stress = 1.1 SMYS$

SMYS = Minimum Metal Yield Strength at Reference Temperature

d = measured maximum depth of corrosion

ASME B31G (2023)

t = pipe wall thickness

M = bulging magnification factor = $\sqrt{1 + 0.8Z}$

$$Z = \frac{L^2}{Dt}$$

L = length of metal loss

D = pipe outside diameter

 $P_{\rm F}$ = failure pressure

 P_{FS} = safe pressure = P_F /Safety Factor; where Safety factor is input by the user

 L_{all} = Maximum Allowable Defect Length

Method 2: B31G Modified Method (0.85dL)

Failure Stress (SF) of Corroded Pipeline is computed as per Section 2.2 (b) titled "Level 1 Evaluation" as detailed below.

For Z <= 50

 $\mathbf{M} = \sqrt{1 + 0.6275Z - 0.003375Z^2}$

For Z > 50

M = 0.032Z + 3.3

$$S_F = S_{flow} \left[\frac{1 - 0.85 \left(\frac{d}{t}\right)}{1 - 0.85 \left(\frac{d}{tM}\right)} \right]$$
$$P_F = \frac{2S_F t}{D}$$
$$L_{all} = 1.12. B\sqrt{D.t}$$
$$B = \sqrt{\left(\frac{\frac{d}{t}}{1.1\frac{d}{t} - 0.15}\right)^2 - 1}$$

where

 $S_F = failure stress$

 $S_{flow} = flow stress = SMYS + 10000 psi (69 MPa)$

SMYS = Minimum Metal Yield Strength at Reference Temperature

d = measured maximum depth of corrosion

t = pipe wall thickness

M = bulging magnification factor

 $Z = \frac{L^2}{Dt}$

L = length of metal loss

D = pipe outside diameter

 $P_{\rm F}$ = failure pressure

 P_{FS} = safe pressure = P_F /Safety Factor; where Safety factor is input by the user

L_{all} = Maximum Allowable Defect Length

Method 3: Exact Trapezoid

Failure Stress (SF) of Corroded Pipeline is computed as per Section 2.3 titled "Level 2 Evaluation" as detailed below. In this method, corroded area 'A' is numerically computed using the trapezoid method

$$S_F = S_{flow} \left(\frac{1 - \frac{A}{A_o}}{1 - \frac{A}{A_o M}} \right)$$
$$P_F = \frac{2S_F t}{D}$$
$$L_{all} = 1.12. B\sqrt{D.t}$$
$$B = \sqrt{\left(\frac{\frac{d}{t}}{1.1\frac{d}{t} - 0.15}\right)^2 - 1}$$

For Z <= 50

 $M = \sqrt{1 + 0.6275Z - 0.003375Z^2}$

For Z > 50

M = 0.032Z + 3.3

where

 S_F = failure stress

 $S_{flow} = flow stress = SMYS + 10000 psi (69 MPa)$

SMYS = Minimum Metal Yield Strength at Reference Temperature

M = bulging magnification factor

$$Z = \frac{L^2}{Dt}$$

L = length of metal loss

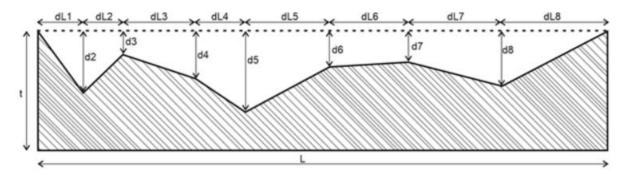
ASME B31G (2023)

A = corroded area numerically computed using the trapezoid method

 $A_o = L.t$

D = pipe outside diameter

t = pipe wall thickness


 P_F = failure pressure

 P_{FS} = safe pressure = P_F /Safety Factor; where Safety factor is input by the user

d/t = A/Ao

Method 4: Equivalent Area

Failure Stress (SF) of Corroded Pipeline is computed as per Section 2.3 as detailed below. In this method, corroded area 'A' is numerically computed using the Equivalent Area method

For $Z_e \leq 50$

$$M = \sqrt{1 + 0.6275Z_e - 0.003375Z_e^2}$$

For $Z_e > 50$

 $M = 0.032Z_e + 3.3$

$$S_F = S_{flow} \left(\frac{1 - \frac{A}{A_o}}{1 - \frac{A}{A_o M}} \right)$$
$$P_F = \frac{2S_F t}{D}$$

$$L_{all} = 1.12. B\sqrt{D.t}$$

$$B = \sqrt{\left(\frac{\frac{A}{A_o}}{1.1\frac{A}{A_o} - 0.15}\right)^2 - 1}$$

where

 S_F = failure stress

ASME B31G (2023)

 $S_{flow} = flow stress = SMYS + 10000 psi (69 MPa)$

SMYS = Minimum Metal Yield Strength at Reference Temperature

M = bulging magnification factor

$$L_e = equivalent flaw length = L. \frac{\left(\frac{d1+d2+d3+\dots+dn}{n}\right)}{d}$$

d1, d2,...dn = measured depth of corrosion at node 1, 2, ...n

L = length of metal loss

d = measured maximum depth of corrosion

$$Z_{e} = \frac{L_{e}^{2}}{Dt}$$

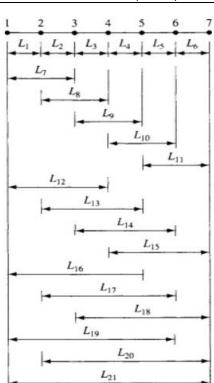
D = pipe outside diameter

t = pipe wall thickness

A = corroded area =
$$L.\left(\frac{d1+d2+d3+\dots+dn}{n}\right)$$

$$A_o = L.t$$

 P_F = failure pressure


 P_{FS} = safe pressure = P_F /Safety Factor; where Safety factor is input by the user

Method 5: Effective Area Method

Failure Stress (SF) of Corroded Pipeline is computed as per Section 2.3 titled "Level 2 Evaluation" as detailed below.

In the effective area method, each pit is assessed with a combination of other corroded regions in an iterative procedure. The numbers of calculations performed are n!/2(n-2)!, where n = number of pits. For example, if one takes seven (7) pit readings, the program will make 21 iterations as shown below.

Remaining Strength of Corroded Pipelines

ASME B31G (2023)

$$S_F = min\left[S_{flow}\left(\frac{1-\frac{A_i}{A_{oi}}}{1-\frac{A_i}{A_{oi}M_i}}\right)\right]$$
$$P_F = \frac{2S_F t}{D}$$
$$L_{all} = min(1.12.B_i\sqrt{D.t})$$
$$B_i = \sqrt{\left(\frac{\frac{A_i}{A_{oi}}}{1.1\frac{A_i}{A_{oi}} - 0.15}\right)^2 - 1}$$

For $Z_i \leq 50$

$$M_i = \sqrt{1 + 0.6275Z_i - 0.003375Z_i^2}$$

For $Z_i > 50$
 $M_i = 0.032Zi + 3.3$
where
 $S_F = failure stress$

ASME B31G (2023)

 $S_{flow} = flow stress = SMYS + 10000 psi (69 MPa)$

SMYS = Minimum Metal Yield Strength at Reference Temperature

M = bulging magnification factor

$$Z_{i} = \frac{Li^{2}}{Dt}$$

 L_i = length of possible failure area #i

 A_i = possible failure area #i. Area A_i numerically calculated using the trapezoid method

$$A_{oi} = L_i t$$

D = pipe outside diameter

t = pipe wall thickness

 P_F = failure pressure

 P_{FS} = safe pressure = P_F /Safety Factor; where Safety factor is input by the user

Fatigue Evaluation

Simplified Fatigue Evaluation

Given below are the equations that are used in computing the total number of "equivalent reference displacement stress range cycles (N)" for Simplified Fatigue Evaluation.

$$N = N_E + \sum (q_i^5. N_i) \ for \ i = 1, 2, ..., n$$
 Eq. 1

$$N = N_E + \sum (q_i^3 N_i) \text{ for } i = 1, 2, ..., n$$
 Eq. 2

$$N = N_E + \sum (q_i. N_i) \text{ for } i = 1, 2, ..., n$$
 Eq. 3

where

 N_E = number of cycles of the reference displacement stress range, S_E

 N_i = number of cycles associated with the displacement stress range, S_i

$$q_i = S_i/S_E$$

 S_E = reference displacement stress range, psi (kPa) = Maximum stress range computed among the displacement stress ranges <u>selected</u> by the user for Simplified Fatigue Evaluation.

 S_i = maximum computed stress range for the ith displacement stress range.

Table given below lists the specific equation used in computing total number of "equivalent reference displacement stress range cycles (N)", for different piping codes.

Once the "equivalent reference displacement stress range cycles (N)" is computed, then CAEPIPE uses this "N" to compute the Stress Range Reduction Factor (f or U) as per the piping code selected for analysis.

SI. No.	Piping Code and Description	Equation Number
1	ASME B31.1 (2022) - Power Piping	Eq. 1
2	ASME B31.1 (1967) - Power Piping	Eq. 1
3	ASME B31.1 (1973) - Power Piping	Eq. 1
4	ASME B31.1 (1977) - Power Piping	Eq. 1
5	ASME B31.1 (1980) - Power Piping	Eq. 1
6	ASME B31.3 (2022) - Process Piping	Eq. 2
7	ASME B31.4 (2022) - Pipeline Transportation Systems for Liquids and Slurries	Eq. 1
8	ASME B31.5 (2022) - Refrigeration Piping and Heat Transfer Components	Eq. 1
9	ASME B31.8 (2022) - Gas Transmission and Distribution Piping Systems	Eq. 1
10	ASME B31.9 (2020) - Building Services Piping	Eq. 1
	ASME B31.12 IP (2019) - Hydrogen Piping	Eq. 3
11	ASME B31.12 IP (2023) – Hydrogen Piping	Eq. 2
	ASME B31.12 PL (2019) - Hydrogen Pipelines	Eq. 3
12	ASME B31.12 PL (2023) – Hydrogen Pipelines	Eq. 2
13	ASME NM.1 (2022) - Thermoplastic Piping Systems	Not Applicable
	ASME NM.2 (2022) - Glass-Fiber-Reinforced Thermosetting-Resin Piping Systems	
14	(GRP/FRP)	Not Applicable
15	ASME Class 2 (1980) - ASME Section III, Subsection NC - Class 2	Eq. 1
16	ASME Class 2 (1986) - ASME Section III, Subsection NC - Class 2	Eq. 1
17	ASME Class 2 (1992) - ASME Section III, Subsection NC - Class 2	Eq. 1
18	ASME Class 2 (2015) - ASME Section III, Subsection NC - Class 2	Eq. 1
19	ASME Class 2 (2017) ASME Section III, Subsection NC - Class 2	Eq. 1

SI. No.	Piping Code and Description	Equation Number
20	ASME Class 2 (2021) - ASME Section III, Subsection NC - Class 2	Eq. 1
21	ASME Class 2 (2023) - ASME Section III, Subsection NC - Class 2	Eq. 1
22	ASME Class 3 (2017) - ASME Section III, Subsection ND - Class 3	Eq. 1
23	ASME Class 3 (2021) - ASME Section III, Subsection ND - Class 3	Eq. 1
24	ASME Class 3 (2023) - ASME Section III, Subsection ND - Class 3	Eq. 1
25	ISO 14692-3 (2017) - Petroleum and Natural Gas Industries - Glass Reinforced Plastics (GRP/FRP) Piping	Not Applicable
26	EN 13480 (2020) - Metallic industrial piping	Eq. 1
27	EN 13941 (2019) - District heating pipes	Not Applicable
28	BS 806 (1986) - Construction of Ferrous Piping Installations for and in Connection with Land Boilers (British)	Not Applicable
29	DNV-ST-F101 – Submarine pipeline systems	Not Applicable
30	IGEM (2012) - Institution of Gas Engineers and Managers (IGEM) IGE/TD/12 Edition 2 (UK)	Not Applicable
31	Norwegian (1983) - Process design	Eq. 1
32	Norwegian (1990) - Process design	Eq. 1
33	RCC-M (1985) - Design and Construction Rules for Mechanical Components of PWR Nuclear Islands (French)	Eq. 1
34	RCC-M (2018) - Design and Construction Rules for Mechanical Components of PWR Nuclear Islands (French)	Eq. 1
35	RCC-M (2020) - Design and Construction Rules for Mechanical Components of PWR Nuclear Islands (French)	Eq. 1
36	RCC-M (2022) - Design and Construction Rules for Mechanical Components of PWR Nuclear Islands (French)	Eq. 1
37	CODETI (2013) - CODE DE CONSTRUCTION DES TUYAUTERIES INDUSTRIELLES (French)	Eq. 1
38	Stoomwezen (1989) - Dutch Power piping code	Eq. 1
39	Swedish (1978) – Swedish piping code	Eq. 1
40	Z183 (1990) - Oil Pipeline Systems (Canadian)	Eq. 1
41	Z184 (1992) - Gas Pipeline Systems (Canadian)	Eq. 1
42	Z662 (2019) - Oil & Gas Pipeline Systems (Canadian)	Eq. 1
43	NONE (for AWWA M11 applications, and for applications in aircraft, aerospace & defence industries)	Not Applicable

Detailed Fatigue Evaluation

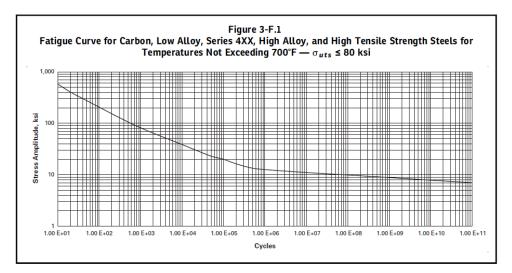
Detailed Fatigue Evaluation is performed as per Miner's Rule which is based on Cumulative Damage Theory.

Miner's Rule is based on the concept that fatigue damage accumulates over time and that failure occurs when the accumulated damage reaches a critical value, typically set to 1. The rule is expressed mathematically as:

$$D = \sum \frac{n_i}{N_i}$$

where, D = Total cumulative damage, $n_i = Actual$ number of cycles at alternating stress level i, $N_i = N$ umber of cycles to Failure at stress level i (from the S-N curve).

When the total damage D equals or exceeds 1.0, then the fatigue evaluation is considered to have failed.


Example Calculation

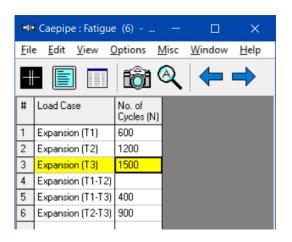
Assume a piping system experiences the following cyclic loading conditions:

- Expansion (T1): Alternating Stress amplitude of 15000 psi, with 5000 cycles.
- Expansion (T2): Alternating Stress amplitude of 30000 psi, with 2000 cycles.

The alternating stress amplitudes listed above are one-half of the stress range values (=SE/2.0) at a particular Node for Expansion (T1) and Expansion (T2) cases respectively.

From the sample S-N curve given below,

- At Alternating Stress 15000 psi: N1 (Number of cycles to failure) = 1E+6 cycles.
- At Alternating Stress 30000 psi: N2 (Number of cycles to failure) = 1E+4 cycles.


Calculate damage:

- **Damage at 15000 psi:** n1/N1 = 5000/1E+6 = 0.005
- **Damage at 30000 psi:** n2/N2 = 2000/1E+4 = 0.200
- Total Cumulative Damage: D = 0.005 + 0.2 = 0.205

Since D < 1.0, the component meets the Fatigue requirement for the given cyclic loading conditions, though it will have consumed 20.5% of its total allowable fatigue life.

Actual Number of Cycles to be Input for Simplified and Detailed Fatigue Analysis:

In CAEPIPE, the actual number of cycles associated with each selected expansion load case can be entered as shown below. When Simplified or Detailed Fatigue Analysis is enabled, CAEPIPE utilizes this table (containing the actual number of cycles for the selected load cases) to perform both Simplified and Detailed Fatigue Analysis. Please note, as stated above, when any of the load cases is not to be included in the Fatigue Evaluation, then leave the 'Number of Cycles (N)' field for that load case BLANK as shown below.

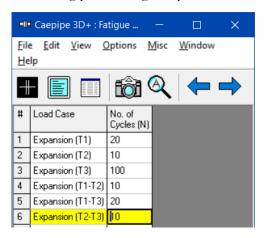
When Simplified Fatigue Analysis is turned ON, CAEPIPE uses the above table for calculating the "equivalent reference displacement stress range cycles (N)", which then is used to compute the stress range reduction factor ('f' or 'U') as detailed in the section titled 'Simplified Fatigue Evaluation' in the CAEPIPE Code Compliance Manual.

Similarly, when the Detailed Fatigue Analysis is turned ON, CAEPIPE uses the above table to compute the "Cumulative Damage (D)" as outlined in the section titled 'Detailed Fatigue Evaluation' in the CAEPIPE Code Compliance Manual.

For better clarity, refer to the example given below for inputting the Fatigue Cycle table:

Consider a piping system that operates at three different temperature levels, each with a corresponding number of cycles over its service life and with the reference temperature of $70^{\circ}F$.

20 cycles of $T_1 = Expansion (T_1) = T_1 - T_{ref} = 270^0 F - 70^0 F = 200^0 F$


10 cycles of $T_2 = Expansion (T_2) = T_2 - T_{ref} = -80^0 F - 70^0 F = -150^0 F$

100 cycles of $T_3 = Expansion (T_3) = T_3 - T_{ref} = -30^0 F - 70^0 F = -100^0 F$

With reference to the above temperature ranges, the number of cycles that can be entered in CAEPIPE for each load case are as follows.

- For Expansion (T_1) , the number of cycles=20
- For Expansion (T_2) , the number of cycles=10
- For Expansion (T_3) , the number of cycles=100
- For Expansion $(T_1 T_2)$, the number of cycles = Min (T_1, T_2) = Min(20, 10) = 10
- For Expansion $(T_1 T_3)$, the number of cycles = Min (T_1, T_3) = Min(20, 100) = 20
- For Expansion $(T_2 T_3)$, the number of cycles = Min (T_2, T_3) = Min(10, 100) = 10

Accordingly, the Fatigue Cycle table in CAEPIPE is to be input as shown below.

The above approach to input the number of cycles is conservative as the sum of the Number of Cycles input is greater than the sum of actual number of cycles (i.e., [170 = 20+10+100+10+20+10] > [130 = 20+10+100]). There may be alternate ways to input the number of cycles, such as "combining" or "lumping" the ranges of variations to produce the maximum effect as stated in Clause NB-3553 'Fatigue Usage' of ASME Section III, Subsection NB (2021).

Rotating Equipment Qualification

API 610 (11th Edition, 2010) / ISO 13709:2009 for Pumps The allowable nozzle forces and moments for pumps are taken from Table 4 of the eleventh edition of API Standard 610 / ISO 13709.

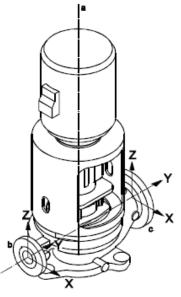
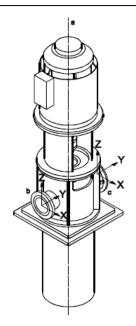

					SI units				
				Nominal	size of fla	nge (DN)			
	≼ 50	80	100	150	200	250	300	350	400
					Forces (N))			
Each top nozzle									
FX	710	1 070	1 420	2 490	3 780	5 340	6 670	7 120	8 450
F _Y	580	890	1 160	2 050	3 110	4 450	5 340	5 780	6 670
FZ	890	1 330	1 780	3 110	4 890	6 670	8 000	8 900	10 230
F _R	1 280	1 930	2 560	4 480	6 920	9 630	11 700	12 780	14 850
Each side nozzle									
FX	710	1 070	1 420	2 490	3 780	5 340	6 670	7 120	8 450
FY	890	1 330	1 780	3 110	4 890	6 670	8 000	8 900	10 230
FZ	580	890	1 160	2 050	3 110	4 450	5 340	5 780	6 670
F _R	1 280	1 930	2 560	4 480	6 920	9 630	11 700	12 780	14 850
Each end nozzle									
FX	890	1 330	1 780	3 110	4 890	6 670	8 000	8 900	10 230
FY	710	1 070	1 420	2 490	3 780	5 340	6 670	7 120	8 450
FZ	580	890	1 160	2 050	3 110	4 450	5 340	5 780	6 670
F _R	1 280	1 930	2 560	4 480	6 920	9 630	11 700	12 780	14 850
				Mo	ments (N	m)			
Each nozzle									
M _X	460	950	1 330	2 300	3 530	5 020	6 100	6 370	7 320
M _Y	230	470	680	1 180	1 760	2 440	2 980	3 120	3 660
Mz	350	720	1 000	1 760	2 580	3 800	4 610	4 750	5 420
M _R	620	1 280	1 800	3 130	4 710	6 750	8 210	8 540	9 820

Table 4 — Nozzle loadings

				US C	ustomary	units			
				Nominal	size of fla	nge (NPS)			
	≼ 2	3	4	6	8	10	12	14	16
					Forces (Ib	f)			
Each top nozzle									
F_X	160	240	320	560	850	1 200	1 500	1 600	1 900
FY	130	200	260	460	700	1 000	1 200	1 300	1 500
FZ	200	300	400	700	1 100	1 500	1 800	2 000	2 300
F _R	290	430	570	1 010	1 560	2 200	2 600	2 900	3 300
Each side nozzle									
F_X	160	240	320	560	850	1 200	1 500	1 600	1 900
FY	200	300	400	700	1 100	1 500	1 800	2 000	2 300
FZ	130	200	260	460	700	1 000	1 200	1 300	1 500
F _R	290	430	570	1 010	1 560	2 200	2 600	2 900	3 300
Each end nozzle									
F_{X}	200	300	400	700	1 100	1 500	1 800	2 000	2 300
FY	160	240	320	560	850	1 200	1 500	1 600	1 900
FZ	130	200	260	460	700	1 000	1 200	1 300	1 500
F _R	290	430	570	1 010	1 560	2 200	2 600	2 900	3 300
				M	oments (ft	lbf)			
Each nozzle									
M _X	340	700	980	1 700	2 600	3 700	4 500	4 700	5 400
M _Y	170	350	500	870	1 300	1 800	2 200	2 300	2 700
MZ	260	530	740	1 300	1 900	2 800	3 400	3 500	4 000
M_{R}	460	950	1 330	2 310	3 500	5 000	6 100	6 300	7 200
NOTE 1 See Figures	20 through 2	24 for orient	ation of noz	zle loads (X	, Y and Z).				
NOTE 2 Each value s from -160 to +160.	hown above	indicates r	ange from r	ninus that v	alue to plus	that value;	for example	160 indicat	es a range


Table 4 — Nozzle loadings (continued)

The coordinate systems and nozzle orientations for various pump configurations are shown next.

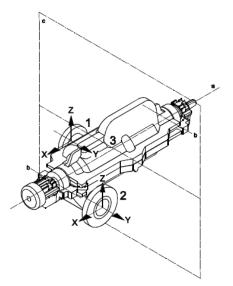

- ^a Shaft centreline.
- ^b Discharge.
- Suction.

Figure 21 — Coordinate system for the forces and moments in Table 5 — Vertical in-line pumps

- a Shaft centreline.
- ^b Discharge.
- ° Suction.

Figure 22 — Coordinate system for the forces and moments in Table 5 — Vertically suspended, double-casing pumps

Key

- 1 discharge nozzle
- 2 suction nozzle
- 3 centre of pump
- ^a Shaft centreline.
- ^b Pedestal centreline.

Key

2

3

ь

с

Vertical plane.

Figure 23 — Coordinate system for the forces and moments in Table 5 — Horizontal pumps with side suction and side discharge nozzles

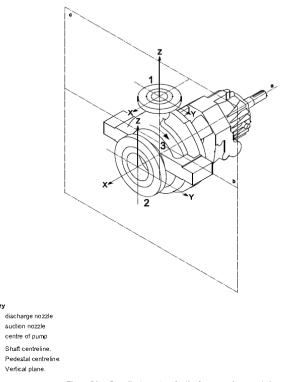
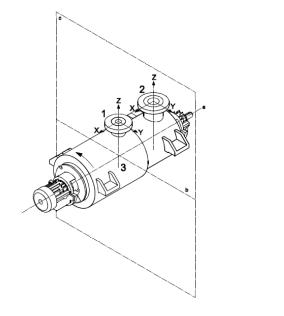



Figure 24 — Coordinate system for the forces and moments in Table 5 — Horizontal pumps with end suction and top discharge nozzles

- Key 1 discharge nozzle
- 2 suction nozzle
- 3 centre of pump
- Shaft centreline. а ь
- Pedestal centreline. c Vertical plane.

Figure 25 — Coordinate system for the forces and moments in Table 5 — Horizontal pumps with top nozzles

Criteria for Piping Design

The criteria for piping design are taken from Appendix F of the API 610.

F.1 Horizontal pumps

F.1.1 Acceptable piping configurations should not cause excessive misalignment between the pump and driver. Piping configurations that produce component nozzle loads lying within the ranges specified in Table 5 limit casing distortion to one-half the pump vendor's design criterion (see 6.3.3) and ensure pump shaft displacement of less than 250 µm (0,010 in).

F.1.2 Piping configurations that produce loads outside the ranges specified in Table 5 are also acceptable without consultation with the pump vendor if the conditions specified in F.1.2 a) through F.1.2 c) as follows are satisfied. Satisfying these conditions ensures that any pump casing distortion is within the vendor's design criteria (see 6.3.3) and that the displacement of the pump shaft is less than 380 μ m (0,015 in).

- a) The individual component forces and moments acting on each pump nozzle flange shall not exceed the range specified in Table 5 (T4) by a factor of more than 2.
- b) The resultant applied force (*F*_{RSA}, *F*_{RDA}) and the resultant applied moment (*M*_{RSA}, *M*_{RDA}) acting on each pump-nozzle flange shall satisfy the appropriate interaction equations as given in Equations (F.1) and (F.2):

$$[F_{RSA}/(1,5 \times F_{RST4})] + [M_{RSA}/(1,5 \times M_{RST4})] < 2$$

$$[F_{RDA}/(1,5 \times F_{RDT4})] + [M_{RDA}/(1,5 \times M_{RDT4})] < 2$$
(F.2)

c) The applied component forces and moments acting on each pump nozzle flange shall be translated to the centre of the pump. The magnitude of the resultant applied force, *F*_{RCA}, the resultant applied moment, *M*_{RCA}, and the applied moment shall be limited by Equations (F.3) to (F.5). (The sign convention shown in Figures 21 through 25 and the right-hand rule should be used in evaluating these equations.)

$F_{\text{RCA}} < 1,5(F_{\text{RST4}} + F_{\text{RDT4}})$	(F.3)
$ M_{YCA} < 2.0(M_{YST4} + M_{YDT4})$	(F.4)
$M_{\text{RCA}} < 1.5(M_{\text{RST4}} + M_{\text{RDT4}})$	(F.5)

where

 $F_{\rm RCA} = [(F_{\rm XCA})^2 + (F_{\rm YCA})^2 + (F_{\rm ZCA})^2]^{0.5}$

where

 $F_{XCA} = F_{XSA} + F_{XDA}$

 $F_{YCA} = F_{YSA} + F_{YDA}$

 $F_{ZCA} = F_{ZSA} + F_{ZDA}$

 $M_{\rm RCA} = [(M_{\rm XCA})^2 + (M_{\rm YCA})^2 + (M_{\rm ZCA})^2]^{0.5}$

where

 $M_{\rm XCA} = M_{\rm XSA} + M_{\rm XDA} - [(F_{\rm YSA})(zS) + (F_{\rm YDA})(zD) - (F_{\rm ZSA})(yS) - (F_{\rm ZDA})(yD)]/1 \ 000$

$$M_{YCA} = M_{YSA} + M_{YDA} + [(F_{XSA})(zS) + (F_{XDA})(zD) - (F_{ZSA})(xS) - (F_{ZDA})(xD)]/1 000$$

 $\mathcal{M}_{\mathsf{ZCA}} = \mathcal{M}_{\mathsf{ZSA}} + \mathcal{M}_{\mathsf{ZDA}} - [(\mathcal{F}_{\mathsf{XSA}})(\mathcal{VS}) + (\mathcal{F}_{\mathsf{XDA}})(\mathcal{VD}) - (\mathcal{F}_{\mathsf{YSA}})(\mathcal{xS}) - (\mathcal{F}_{\mathsf{YDA}})(\mathcal{xD})]/1 \ 000$

In USC units, the constant 1 000 shall be changed to 12. This constant is the conversion factor to change millimetres to metres or inches to feet.

F.1.3 Piping configurations that produce loads greater than those allowed in F.1.2 shall be approved by the purchaser and the vendor.

NOTE In order to evaluate the actual machine distortion (at ambient conditions), the piping alignment checks required in API RP 686, Chapter 6, should be performed. API RP 686 allows only a small fraction of the permitted distortion resulting from use of the values from this annex.

F.2 Vertical in-line pumps

Vertical in-line pumps that are supported only by the attached piping may be subjected to component piping loads that are more than double the values shown in Table 4 if these loads do not cause a principal stress greater than 41 N/mm² (5 950 psi) in either nozzle. For calculation purposes, the section properties of the pump nozzles shall be based on Schedule 40 pipe whose nominal size is equal to that of the appropriate pump nozzle. Equation (F.6), Equation (F.7), and Equation (F.8) can be used to evaluate principal stress, longitudinal stress and shear stress, respectively, in the nozzles.

For SI units, the following equations apply:

$$\sigma_{\rm p} = (\sigma/2) + (\sigma^2/4 + t^2)^{0.5} < 41 \tag{F.6}$$

$$\sigma_{\rm I} = [1,27 \times F_{\rm Y} / (D_0^2 - D_1^2)] + [10\ 200 \times D_0 (M_{\rm X}^2 + M_{\rm Z}^2)^{0.5}] / (D_0^4 - D_1^4)$$
(F.7)

$$\tau = [1,27 \times (F_{\chi}^{2} + F_{Z}^{2})^{0.5}] / (D_{o}^{2} - D_{i}^{2}) + [5\ 100 \times D_{o}(|M_{Y}|)] / (D_{o}^{4} - D_{i}^{4})$$
(F.8)

For USC units, the following equations apply:

$$\sigma_{\rm p} = (\sigma/2) + (\sigma^2/4 + \tau^2)^{0.5} < 5.950 \tag{F.9}$$

$$\sigma_{\rm I} = [1,27 \times F_{\rm Y} / (D_0^2 - D_{\rm i}^2)] + [122 \times D_0 (M_{\rm X}^2 + M_{\rm Z}^2)^{0.5}] / (D_0^4 - D_{\rm i}^4)$$
(F.10)

$$\tau = [1,27 \times (F_{\chi}^{2} + F_{Z}^{2})^{0.5}] / (D_{o}^{2} - D_{i}^{2}) + [61 \times D_{o}(|M_{Y}|)] / (D_{o}^{4} - D_{i}^{4})$$
(F.11)

where

- σ_p is the principal stress, expressed in MPa (lbf/in²);
- σ₁ is the longitudinal stress, expressed in MPa (lbf/in²);
- is the shear stress, expressed in MPa (lbf/in²);
- F_X is the applied force on the X axis;
- F_Y is the applied force on the Y axis;
- F_Z is the applied force on the Z axis;
- M_X is the applied moment on the X axis;
- M_Y is the applied moment on the Y axis;
- M₇ is the applied moment on the Z axis;
- Di, Do are the inner and outer diameters of the nozzles, expressed in millimetres (inches).

 F_{X} , F_{Y} , F_{Z} , M_{X} , M_{Y} , and M_{Z} represent the applied loads acting on the suction or discharge nozzles; thus, subscripts S_A and D_A have been omitted to simplify the equations. The sign of F_Y is positive if the load puts the nozzle in tension; the sign is negative if the load puts the nozzle in compression. One should refer to Figure 20 and the applied nozzle loads to determine whether the nozzle is in tension or compression. The absolute value of M_Y should be used in Equations (F.8) to (F.11).

F.3 Nomenclature

The following definitions apply to the sample problems in F.4

where

- C is the centre of the pump. For pump types OH2 and BB2 with two support pedestals, the centre is defined by the intersection of the pump shaft centreline and a vertical plane passing through the centre of the two pedestals (see Figure 23 and Figure 24). For pump types BB1, BB3, BB4 and BB5 with four support pedestals, the centre is defined by the intersection of the pump shaft centreline and a vertical plane passing midway between the four pedestals (see Figure 22);
- D is the discharge nozzle;
- D_i is the inside diameter of Schedule 40 pipe whose nominal size is equal to that of the pump nozzle in question, expressed in millimetres (inches);
- D_o is the outside diameter of Schedule 40 pipe whose nominal size is equal to that of the pump nozzle in question, expressed in millimetres (inches);
- F is the force, expressed in newtons (pounds force);
- F_R is the resultant force. (F_{RSA} and F_{RDA} are calculated by the square root of the sum of the squares method using the applied component forces acting on the nozzle flange. F_{RST4} and F_{RDT4} are extracted from Table 4, using the appropriate nozzle size);
- M is the moment, expressed in newton metres (foot-pounds force);
- M_R is the resultant moment. (M_{RSA} and M_{RDA} are calculated by the square root of the squares method using the applied component moments acting on the nozzle flange. M_{RST4} and M_{RDT4} are extracted from Table 4 using the appropriate nozzle size);
- $\sigma_{\rm p}$ is the principal stress, expressed in megapascals (pounds force per square inch);
- σ_i is the longitudinal stress, expressed in newtons per square millimetre (pounds per square inch);
- is the shear stress, expressed in newtons per square millimetre (pounds per square inch);
- S is the suction nozzle;
- x, y, z are the location coordinates of the nozzle flanges with respect to the centre of the pump, expressed in millimetres (inches);
- X, Y, Z are the directions of the load (see Figures 20 to 24);
- Subscript A is an applied load;
- Subscript T4 is a load extracted from Table 4.

Verification of API 610 Pump Compliance

Implementation of API 610 Pump Compliance in CAEPIPE is verified using the sample provided in API Standard 610, 11th Edition and presented in this section.

F.4.3 Example 1B — USC units

F.4.3.1 Problem

For an overhung end-suction process pump (OH2), the nozzle sizes and location coordinates are as given in Table F.4. The applied nozzle loadings are as given in Table F.5. The problem is to determine whether the conditions specified in F.1.2 a), F.1.2 b), and F.1.2 c) are satisfied.

Table F.4 — Nozzle sizes and location coordinates for Example 1B

Dimensions in inches

Nozzle	Size	x	у	z
Suction	10	+10,50	0	0
Discharge	8	0	-12,25	+15

Force	Value Ibf	Moment	Value ft-Ibf
_	_	Suction	_
FXSA	+2 900	M _{XSA}	-1 000
<i>R</i>YSA	0	MYSA	-3 700ª
F _{ZSA}	-1 990	M_{ZSA}	-5 500
_	-	Discharge	_
F _{XDA}	+1 600	M _{XDA}	+500
<i>P</i> YDA	-100	MYDA	-2 500
F_{ZDA}	+1 950	M_{ZDA}	-3 600
^a See F.4.1.2.1.	•	_	_

Table F.5 — Applied nozzle loadings for Example 1B

CAEPIPE model corresponding to the above API Publication sample

비며 Caepipe : Layout (8) - [API610_Example_1B.mod (D:\KPDevelopm – ロ ×												
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>O</u> pt	tions <u>L</u> oad	s <u>M</u> isc <u>V</u>	<u>V</u> indow <u>H</u>	elp						
🗋 🚔 🖶 🖶 🗐 🔟 🚳 🔍												
#	Node	Туре	DX (ft'in")	DY (ft'in")	DZ (ft'in")	Matl	Sect	Load	Data			
1												
2	Examp	ole 1B of Al	PI 610, 11th	Edition Pu	blication							
3	10	From	0'10-1/2"						Anchor			
4	10	Location							Force			
5	20		1'0"			1	10	1				
6	50	From		-1'0-1/4"	1'3"				Anchor			
7	50	Location							Force			
8	60				1'0"	1	8	1				
9												

ÞЙH	Caepipe	: Pipe S	ections	; (2) -	[API610_	Example	_18.mo	od (l	D:\KPDev	elopment	t\Ve	_		×
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>Option</u>	s <u>M</u> is	c <u>W</u> ind	low <u>H</u> e	alp							
+			f ô	ð 🛯	2									
#	Name	Nom Dia	Sch	OD (inch)	Thk (inch)	Cor.Al (inch)	М.Тс (%)			Ins.Thl (inch)			Lin.Thk (inch)	Soil
1	10	10"	STD	10.75	0.365									
2	8	8"	STD	8.625	0.322									
3														
	E. Edit View Options Miss Window Help Image: State of the state of the													
<u>F</u> ile							U. (KPD	ever	opment(v	enneation	(venn			
			B êt	\sim										
	Nome			~ \ 					, , , , , , , , , , , , , , , , , , , ,	E	Alaba			
*	Name	Desi	chpuon					*						
1	1	A53	Grade I	B CS	0.0	0.3	1.00	1	-100	30.2E+6	5.65E-6	150	100	
2								2	70		6.07E-6	150	00	
								3	-			-		
									-			-		
								<u> </u>	-			-		
\vdash								<u> </u>	-			-		
\vdash		_						<u> </u>	-					
\vdash								-	-					
								<u> </u>	-			-		
								11	800		7.65E-6	108	00	
Forc	e at node	10		1		×						1	×	
EV.		EV.					EV.		EV.		-			
_					(lb)		_					(15)	
м×	:	MY		мZ			мΧ		MY	h	٨Z			
-10	000	-3700		-5500	(ft-lb)	500		-250	0	-3600	(ft	·lb)	
œ	Add to W	+P C	Add to	T1			ΘA	dd to	oW+P	C Add to	T1			
	OK	Can	cel				(ЭК	Ca	ancel				
Image Nom Nom Cor Mit Cor Ins. Dens Ins. Thik Lin. Thik Soi (inch) 1 10 10" STD 10.75 0.365 Image: Structure Structu														
		ole 1B	•	Horizonta	I O Vertica	al inline C	ANSI/HI	9.6.2	2					
	-													
					<u> </u>	ouniing iype	1			<u> </u>				
	emperature		(F)											
<u>S</u>	uction Node	10	Local	tion	⊂ Тор	C	Side		End					
Disc	harge Node	50	Local	tion	⊙ Top	C	Side		○ End					
			Zo	omp										
1.	000													
	ation of the c		mp Z											
					(ft'in'')									
	ОК	Cancel												

API 610 (11th Edition, 2010) / ISO 13709:2009

Results from API 610, 11th Edition

F.4.3.2 Solution

F.4.3.2.1 A check of condition of F.1.2 a) is as follows:

For the 10 in end suction nozzle:

$$\begin{vmatrix} F_{XSA}/F_{XST4} &| = | +2 \ 900/1 \ 500 &| = 1,93 < 2,00 \\ | F_{YSA}/F_{YST4} &| = | \ 0/1 \ 200 &| = 0 < 2,00 \\ | F_{ZSA}/F_{ZST4} &| = | -1 \ 990/1 \ 000 &| = 1,99 < 2,00 \\ | M_{XSA}/M_{XST4} &| = | -1 \ 000/3 \ 700 &| = 0,27 < 2,00 \\ | M_{YSA}/M_{YST4} &| = | -3 \ 700/1 \ 800 &| = 2,06 > 2,00 \\ | M_{ZSA}/M_{ZST4} &| = | -5 \ 500/2 \ 800 &| = 1,96 < 2,00 \\ \end{vmatrix}$$

For the 8 in top discharge nozzle:

$$|F_{XDA}/F_{XDT}| = |+1\ 600/850| = 1,88 < 2,00$$
$$|F_{YDA}/F_{YDT}| = |-100/700| = 0,14 < 2,00$$
$$|F_{ZDA}/F_{ZDT4}| = |+1\ 950/1\ 100| = 1,77 < 2,00$$
$$|M_{XDA}/M_{XDT4}| = |+500/2\ 600| = 0,19 < 2,00$$
$$|M_{YDA}/M_{YDT4}| = |-2\ 500/1\ 300| = 1,93 < 2,00$$
$$|M_{ZDA}/M_{ZDT4}| = |-3\ 600/1\ 900| = 1,89 < 2,00$$

F.4.3.2.2 A check of condition F.1.2 b) is as follows:

For the suction nozzle, F_{RSA} and M_{RSA} are determined using the square root of the sum of the squares method:

$$F_{\text{RSA}} = [(F_{\text{XSA}})^2 + (F_{\text{YSA}})^2 + (F_{\text{ZSA}})^2]^{0.5} = [(+2\ 900)^2 + (0)^2 + (-1\ 990)^2]^{0.5} = 3\ 517$$

$$\mathcal{M}_{\mathsf{RSA}} = [(\mathcal{M}_{\mathsf{XSA}})^2 + (\mathcal{M}_{\mathsf{YSA}})^2 + (\mathcal{M}_{\mathsf{ZSA}})^2]^{0,5} = [(-1\ 000)^2 + (-3\ 599)^2 + (-5\ 500)^2]^{0,5} = 6\ 649$$

Referring to Equation (F.1),

 $F_{RSA}/(1,5 \times F_{RST4}) + M_{RSA}/(1,5 \times M_{RST4}) < 2$ 3 517/(1,5 × 2 200) + 6 649/(1,5 × 5 000) < 2 1,95 < 2 For the discharge nozzle, F_{RDA} and M_{RDA} are determined by the same method used to find F_{RSA} and M_{RSA} :

$$F_{\mathsf{RDA}} = [(F_{\mathsf{XDA}})^2 + (F_{\mathsf{YDA}})^2 + (F_{\mathsf{ZDA}})^2]^{0,5} = [(+1\ 600)^2 + (-100)^2 + (+1\ 950)^2]^{0,5} = 2\ 524$$

$$\mathcal{M}_{\mathsf{RDA}} = [\mathcal{M}_{\mathsf{XDA}})^2 + (\mathcal{M}_{\mathsf{YDA}})^2 + (\mathcal{M}_{\mathsf{ZDA}})^2]^{0,5} = [(+500)^2 + (-2\ 500)^2 + (-3\ 600)^2]^{0,5} = 4\ 411$$

Referring to Equation (F.2),

 $F_{\mathsf{RDA}}/(1,5\times F_{\mathsf{RDT4}}) + \mathcal{M}_{\mathsf{RDA}}/(1,5\times \mathcal{M}_{\mathsf{RDT4}}) < 2$

2 524/(1,5 × 1 560) + 4 411/(1,5 × 3 500) < 2

1,92 < 2

The loads acting on each nozzle satisfy the appropriate interaction equation, so the condition specified in F.1.2 b) is satisfied.

Results from CAEPIPE Rotating Equipment Report

비비 Caepipo File Result			t - [API610_E w <u>H</u> elp	kample_1B.res (D:\KPDeve	lop	-	×
] 📸 (Q E	<- →			
API 610 (11	1th ed.), Sep 2	010/ISO 13	709 report fo	r pump : Example 1B			
Load case	e: Operating (V	V+P1+T1)					
Shaft axis:	Xcomp = 1.00	0, Ycomp = I	0.000, Zcom	o = 0.000			
Center loc	ation: X = 0, Y	= 0.001, Z = 0) (ft'in")				
	ide:10, Locat	, ,					
	m center: dx =			= 0 (ft'in")			
Check of c	condition F.1.1						
	Calculated	Allowed	Ratio	Status			
FX (lb)	2900	1500	1.933	-			
FY (lb)	0	1200	0.000	ОК			
FZ (lb)	-1990	1000	1.990	—			
FR (lb)	3517	2200	1.599	_			
MX (ft-lb)	-1000	3700	0.270	ОК			
MY (ft-lb)	-3700	1800	2.056	Failed			
MZ (ft-lb)	-5500	2800	1.964	—			
MR (ft-lb)	6704	5000	1.341	_			
Condition I	F.1.2.a for suct	tion node 10	failed 🚧				
Discharge	node: 50, Lo	cation: (Top), Size: 8.00) (inch)			
Offsets fro	m center: dx =	0, dy = -1.02	18, dz = 1'3"	(ft'in")			
Check of c	condition F.1.1	for discharg	e node 50:				
	Calculated	Allowed	Ratio	Status			
FX (lb)	1600	850	1.882	_			
FY (lb)	-100	700	0.143	ОК			
FZ (lb)	1950	1100	1.773	_			
FR (lb)	2524	1560	1.618	_			
MX (ft-lb)	500	2600	0.192	ОК			
MY (ft-lb)	-2500	1300	1.923	-			
MZ (ft-lb)	-3600	1900	1.895	_			
MR (ft-lb)	4411	3500	1.260	_			
(FR/1.5FR	(T4) + (MR/1.5)	MRT4) =	1.919	OK			

Coordinate System for ASME B73.1, B73.3 and B73.5M horizontal end suction pumps

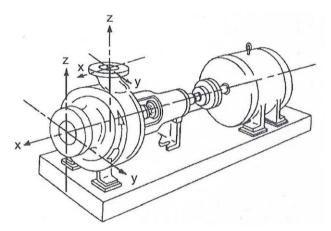


Figure 1 – Coordinate system for ASME B73.1, B73.3 and B73.5M horizontal end suction pumps

A1.0 Definitions (refer to Figure above)

 F_{ss} = applied force on X-axis on suction nozzle, to be assessed using equation sets 1-5 F_{ys} = applied force on Y-axis on suction nozzle, to be assessed using equation sets 1-5 F_{zs} = applied force on Z-axis on suction nozzle, to be assessed using equation sets 1-5 M_{xs} = applied moment about X-axis on suction nozzle, to be assessed using equation sets 1-5 M_{ys} = applied moment about Y-axis on suction nozzle, to be assessed using equation sets 1-5 M_{zs} = applied moment about Z-axis on suction nozzle, to be assessed using equation sets 1-5 M_{zs} = applied force on X-axis on discharge nozzle, to be assessed using equation sets 1-5 F_{xd} = applied force on X-axis on discharge nozzle, to be assessed using equation sets 1-5 F_{yd} = applied force on Y-axis on discharge nozzle, to be assessed using equation sets 1-5 F_{zd} = applied force on Z-axis on discharge nozzle, to be assessed using equation sets 1-5 F_{zd} = applied force on Z-axis on discharge nozzle, to be assessed using equation sets 1-5 F_{zd} = applied moment about X-axis on discharge nozzle, to be assessed using equation sets 1-5 M_{sd} = applied moment about X-axis on discharge nozzle, to be assessed using equation sets 1-5 M_{sd} = applied moment about X-axis on discharge nozzle, to be assessed using equation sets 1-5 M_{sd} = applied moment about X-axis on discharge nozzle, to be assessed using equation sets 1-5 M_{sd} = applied moment about X-axis on discharge nozzle, to be assessed using equation sets 1-5 M_{sd} = applied moment about X-axis on discharge nozzle, to be assessed using equation sets 1-5

 $F_{xs max}$ = maximum value of force on X-axis on suction nozzle, to be used with equation sets 1-5

 $F_{ys max}$ = maximum value of force on Y-axis on suction nozzle, to be used with equation sets 1-5

 $F_{zs max}$ = maximum value of force on Z-axis on suction nozzle, to be used with equation sets 1-5

 $\rm M_{xs\ max}$ = maximum value of moment about X-axis on suction nozzle, to be used with equation sets 1-5

 $\rm M_{ys\ max}$ = maximum value of moment about Y-axis on suction nozzle, to be used with equation sets 1-5

 $M_{zs max}$ = maximum value of moment about Z-axis on suction nozzle, to be used with equation sets 1-5

 $F_{xd\ max}$ = maximum value of force on X-axis on discharge nozzle, to be used with equation sets 1-5

 $F_{yd max}$ = maximum value of force on Y-axis on discharge nozzle, to be used with equation sets 1-5

 $F_{zd\ max}$ = maximum value of force on Z-axis on discharge nozzle, to be used with equation sets 1-5

 $\rm M_{xd\ max}$ = maximum value of moment about X-axis on discharge nozzle, to be used with equation sets 1-5

 $\rm M_{yd\ max}$ = maximum value of moment about Y-axis on discharge nozzle, to be used with equation sets 1-5

 $\rm M_{zd\ max}$ = maximum value of moment about Z-axis on discharge nozzle, to be used with equation sets 1-5

Group 1 is defined as ASME B73.1, B73.3 and B73.5M sizes AA and AB. Two/four-pole, 60 cycle speed and up to 20/10 hp, respectively.

Group 2 is defined as ASME B73.1, B73.3 and B73.5M sizes A05, A10, A20, A30, A40, A50, A60, A70 and A80. Two/four-pole, 60-cycle speed and up to 130/65 hp, respectively.

Group 3 is defined as ASME B73.1, B73.3 and B73.5M sizes A90, A100, A110 and A120. Four/six-pole, 60-cycle speed and up to 220/146 hp, respectively.

A1.1 ASME B73.1 pump assessment of applied nozzle loads

Loads given in Tables B through E are applicable for ASME B73.1 pumps constructed of ASTM A351/A351M – Grade CF8M (Type 316SS) operated between 20 and 1000 F and mounted on a grouted metal baseplate with anchor bolts.

For an individual force or moment, pumps must be capable of satisfactory operation when subjected to loads shown in Table B while meeting the criteria of equation set 1 provided in Table A below.

For a combination of more than one force and/or moment, pumps must be capable of satisfactory operation when subjected to the loads in Tables C through E while meeting the criteria of equation sets 2 - 5 of Table A given below. When combining loads, the absolute value of any individual load must not exceed the value given in Table B.

Adjustment of the tabulated maximum forces and moments are performed if any of the following occur.

- a. Temperature is above 100° F.
- b. The pump material construction is not ASTM A351/A351M Grade CF8M.
- c. The base is not a fully grouted metal baseplate with anchor bolts.

Table A – Equation sets 1 through 5 (using the maximum forces and moments of the referenced tables, applied loads shall satisfy the criteria defined by these equations)

Set	Equation	Reference	Remarks
1	$\left \frac{F_{XS}}{F_{XSmax}}\right \le 1.0, \left \frac{F_{YS}}{F_{YSmax}}\right \le 1.0, \left \frac{F_{ZS}}{F_{ZSmax}}\right \le 1.0, \left \frac{M_{XS}}{M_{XSmax}}\right \le 1.0, \left \frac{M_{YS}}{M_{YSmax}}\right \le 1.0, \left \frac{M_{ZS}}{M_{ZSmax}}\right \le 1.0$	Table B	Individual loading
2	$\begin{aligned} \left \frac{F_{Xd}}{F_{Xdmax}} \right &\leq 1.0, \left \frac{F_{Yd}}{F_{Ydmax}} \right \leq 1.0, \left \frac{F_{Zd}}{F_{Zdmax}} \right \leq 1.0, \left \frac{M_{Xd}}{M_{Xdmax}} \right \leq 1.0, \left \frac{M_{Yd}}{M_{Ydmax}} \right \leq 1.0, \left \frac{M_{Zd}}{M_{Zdmax}} \right \leq 1.0 \end{aligned} \right \\ \frac{1}{2} x \begin{bmatrix} \left \frac{F_{XS}}{F_{XSmax}} \right + \left \frac{F_{YS}}{F_{YSmax}} \right + \left \frac{F_{ZS}}{F_{ZSmax}} \right + \left \frac{M_{XS}}{M_{XSmax}} \right + \left \frac{M_{Yd}}{M_{YSmax}} \right + \left \frac{M_{ZS}}{M_{ZSmax}} \right + \\ \frac{F_{Xd}}{F_{XSmax}} \right + \left \frac{F_{Yd}}{F_{YSmax}} \right + \left \frac{F_{Zd}}{F_{ZSmax}} \right + \left \frac{M_{Xd}}{M_{Xdmax}} \right + \left \frac{M_{Yd}}{M_{Ydmax}} \right + \\ \end{bmatrix} \\ \frac{1}{2} x \begin{bmatrix} \left \frac{F_{Xd}}{F_{XSmax}} \right + \left \frac{F_{Yd}}{F_{YSmax}} \right + \left \frac{F_{Zd}}{F_{ZSmax}} \right + \left \frac{M_{Xd}}{M_{Xdmax}} \right + \\ \frac{M_{Yd}}{M_{Ydmax}} \right + \\ \frac{M_{Zd}}{M_{Zdmax}} \right \\ \frac{1}{2} \end{bmatrix} \\ \leq 1.0 \end{aligned}$	Table C	Nozzle stress, hold- down bolt stress,
3	$ -1.0 \leq a = \frac{F_{YS}}{F_{YSmax}} + \frac{M_{XS}}{M_{XSmax}} + \frac{M_{YS}}{M_{YSmax}} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{F_{Yd}}{F_{Ydmax}} + \frac{M_{Xd}}{M_{Yd}max} + \frac{M_{Zd}}{M_{Yd}max} + \frac{M_{Zd}}{M_{Zdmax}} \leq 1.0 $ $ -1.0 \leq b = \frac{F_{XS}}{F_{YSmax}} + \frac{F_{ZS}}{F_{ZS}max} + \frac{M_{XS}}{M_{YSmax}} + \frac{M_{YS}}{M_{YSmax}} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{M_{ZS}}{M_{ZS}max} + \frac{M_{ZS}}{M_{ZS}max} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{M_{ZS}}{M_{ZSmax}} + \frac{M_{ZS}}{M_{ZS}max} + \frac{M_{ZS}}{M_{ZS}max} + \frac{M_{ZS}}{M_{ZSmax}}$	Table D	pumps slippage y-axis movement
4	$-1.0 \leq b = \frac{F_{XS}}{F_{XS max}} + \frac{F_{ZS}}{F_{ZS max}} + \frac{M_{XS}}{M_{XS max}} + \frac{M_{YS}}{M_{YS max}} + \frac{M_{ZS}}{M_{ZS m$	Table E	z-axis movement
	$\frac{F_{Xd}}{F_{Xd \max}} + \frac{F_{Yd}}{F_{Yd \max}} + \frac{F_{Zd}}{F_{Zd \max}} + \frac{M_{Xd}}{M_{Xd \max}} + \frac{M_{Yd}}{M_{Yd \max}} + \frac{M_{Zd}}{M_{Zd \max}} \le 1.0$		
5	$\sqrt{a^2 + b^2} \le 1.0$	Equation sets 3 and 4	Combined axis movement

	2****			Su	ction					Disc	harge		
		F	orces (II	o)	Мо	ments (II	b∙ft)	F	orces (It)	Мо	ments (I	o∙ft)
ASME B73 Designation	Pump Size	F _{xs max}	F _{ys max}	F _{zs max}	M _{xs max}	M _{ys max}	M _{zs max}	F _{xd max}	F _{yd max}	F _{zd max}	M _{xd max}	M _{yd max}	M _{zd ma}
AA	$1.5 \times 1 \times 6$	1050	750	750	720	170	170	800	1350	3000	410	410	410
AB	3 × 1.5 × 6	1050	1240	1250	900	490	490	800	1350	3000	500	550	510
A10	3×2×6	1050	1050	1050	900	220	220	800	1350	3000	500	1000	510
AA	1.5 × 1 × 8	1050	1210	1210	720	190	190	800	1350	3000	360	360	360
	$3 \times 1.5 \times 8^{a}$	1050	1240	1250	900	490	490	800	1350	3000	440	440	440
A50	3×1.5×8	2700	1350	1500	1300	370	370	1400	1350	3250	460	460	460
A60	3×2×8	2700	1350	1500	1300	600	600	1400	1350	3250	660	660	660
A70	4 × 3 × 8	2700	1350	1500	1300	350	350	1400	1350	3250	1200	1460	690
A05	2 × 1 × 10	2340	960	960	1270	220	220	1400	1350	3250	660	660	660
A50	3 × 1.5 × 10	2700	1350	1500	1300	420	420	1400	1350	3250	370	370	370
A60	3 × 2 × 10	2700	1350	1480	1300	310	310	1400	1350	3250	560	560	560
A70	$4 \times 3 \times 10$	2300	1350	1500	1300	310	310	1400	1350	3250	1200	1460	690
A80	6 × 4 × 10	2700	1350	1500	1300	1100	1100	1400	1350	3250	1200	1500	690
A20	3 × 1.5 × 13	2700	1350	1500	1300	670	670	1400	1350	3250	530	530	530
A30	3 × 2 × 13	1920	1230	1230	1300	350	350	1400	1350	3250	1200	1270	690
A40	4 × 3 × 13	2700	1350	1500	1300	400	400	1400	1350	3250	1200	1500	690
A80	6 × 4 × 13	2700	1350	1500	1300	1300	1100	1400	1350	3250	1200	1500	690
A90	8 × 6 × 13	3500	3180	2000	1500	1170	1170	1500	3000	3500	1250	2840	2840
A100	10 × 8 × 13	3500	3180	2000	1500	2000	2150	1500	3000	3500	1250	2840	2840
A110	8 × 6 × 15	3500	3180	2000	1500	1480	1480	1500	3000	3500	1250	2840	2840
A120	$10 \times 8 \times 15$	3500	3180	2000	1500	1130	1130	1500	3000	3500	1250	2840	2840

Table B – Maximum forces and moments for use with equation set 1 to assess applied loads

				Su	ction		·			Disc	harge		
		F	orces (II	o)	Мо	ments (II	o∙ft)	F	orces (II	o)	Мо	ments (II	b∙ft)
ASME B73 Designation	Pump Size	F _{xs max}	F _{ys max}	F _{zs max}	M _{xs max}	M _{ys max}	M _{zs max}	F _{xd max}	F _{yd max}	F _{zd max}	M _{xd max}	M _{yd max}	M _{zd max}
AA	$1.5 \times 1 \times 6$	2020	750	750	1830	170	170	2020	1350	6240	410	410	410
AB	3 × 1.5 × 6	2020	1240	2110	2290	490	490	2020	1350	6240	550	550	510
A10	$3 \times 2 \times 6$	2020	1050	1050	2290	220	220	2020	1350	6240	1030	1030	510
AA	$1.5 \times 1 \times 8$	2020	1210	1210	1830	190	190	2020	1350	6240	360	360	360
	$3 \times 1.5 \times 8^{a}$	2020	1240	1640	2290	490	490	2020	1350	6240	440	440	440
A50	3 × 1.5 × 8	2700	1350	1820	3730	370	370	2020	1350	6240	460	460	460
A60	3×2×8	2700	1350	2490	3730	600	600	1970	1350	6240	660	660	660
A70	$4 \times 3 \times 8$	2700	1350	1840	3730	350	350	2020	1350	6240	1460	1460	690
A05	$2 \times 1 \times 10$	2340	960	960	3640	220	220	2020	1350	6240	660	660	660
A50	3 × 1.5 × 10	2700	1350	1910	3730	420	420	1940	1350	6240	370	370	370
A60	3 × 2 × 10	2700	1350	1480	3730	310	310	2020	1350	6240	560	560	560
A70	$4 \times 3 \times 10$	2300	1350	1640	3730	310	310	2020	1350	6240	1460	1460	690
A80	6 × 4 × 10	2700	1350	6240	3730	1100	1100	2020	1350	6240	3100	3100	690
A20	3 × 1.5 × 13	2700	1350	3060	3730	670	670	2020	1350	6240	530	530	530
A30	3 × 2 × 13	1920	1230	1230	3730	350	350	2020	1350	6240	1460	1460	690
A40	4 × 3 × 13	2700	1350	2390	3730	400	400	2020	1350	6240	1730	1730	690
A80	6 × 4 × 13	2700	1350	6240	3730	4980	1100	2020	1350	6240	2150	2150	690
A90	8 × 6 × 13	6360	3180	5080	8970	1170	1170	6360	3180	13,460	6780	3850	2840
A100	10 × 8 × 13	6360	3180	13,460	8970	2450	2150	6360	3180	13,460	8970	7220	2840
A110	8×6×15	6360	3180	6680	8970	1480	1480	6360	3180	13,460	6560	3720	2840
A120	10 × 8 × 15	6360	3180	5130	8970	1130	1130	6360	3180	13,460	8970	9060	2840

Table C- Maximum forces and moments for use with equation set 2 to assess applied loads

Table D – Maximum forces and moments for use with equation set 3 to assess applied loads

		Suction			Discharge					
	Forces (lb)	Mo	ments (Ib	•ft)	Forces (lb)	Moments (lb•ft)				
Pump Group	F _{ys max}	M _{xs max}	M _{ys max}	M _{zs max}	F _{yd max}	M _{xd max}	M _{yd max}	M _{zd max}		
Group 1	-2000	900	1200	1250	1500	-500	1500	1250		
Group 2	-3500	1300	1300	3000	2500	-1200	1500	3000		
Group 3	-5000	1500	2000	4000	3000	-1250	5000	4000		

		Suc	tion			Discharge						
	Force	s (lb)	Мо	ments (Ib	•ft)	I	Forces (Ib)	Mo	ments (Ib	•ft)	
Pump Group	F _{xs max}	F _{zs max}	M _{xs max}	M _{ys max}	M _{zs max}	F _{xd max}	F _{yd max}	F _{zd max}	M _{xd max}	M _{yd max}	M _{zd max}	
Group 1	1050	-1250	1500	1200	-2500	800	2000	-3000	-1500	1000	-2500	
Group 2	3500	-1500	1500	1300	-3500	1400	2500	-3250	-1500	2150	-3500	
Group 3	3500	-2000	1500	4100	-4000	1500	4000	-3500	-1500	5000	-4000	

Table E – Maximum forces and moments for use with equation set 4 to assess applied loads

A1.2 Nozzle loads and adjustment factors

The loads in the tables are multiplied by adjustment factors when applicable. The lowest correction factor is applied when more than one adjustment factor is involved. For instance, if the pump is an ASME B73.5 pump (90% reduction factor) mounted on a fully grouted nonmetallic baseplate (80% reduction factor), then the reduction factor for Tables B through E is 80%

A1.2.1 Alternate pump mounting

For alternate mounting conditions, the pump must be mounted on a base that can, as a minimum, withstand the applied nozzle loads combined with normal operating loads.

A1.2.1.1 Still-mounted metal baseplate

100% of the values in Table C and 90% of values in Table D and Table E are used. If after adjusting the value for a particular load in Tables D and E, the absolute value of any adjusted value is lower than the corresponding load in Table B, then the lower value is substituted into Table B.

A1.2.1.2 Ungrouted metal baseplate that is anchored down

100% of the values in Table C and 80% of the values in Tables D and E are used. If after adjusting the value for a particular load in Tables D and E, the absolute value of any adjusted value is lower than the corresponding load in Table B, then the lower value is substituted into Table B.

A1.2.1.3 Grouted nonmetal baseplate with anchor bolts

80% of the values in Tables B through E are used.

A1.2.1.4 Ungrouted nonmetal baseplate that is anchored down

70% of the values in Tables B through E are used.

A1.2.2 Temperature and material adjustment factors for ASME B73.1 and ASME B73.3 pumps

A1.2.2.1 Adjustment factors

For temperatures above 100° F and/or the use of a material other than ASTM A351/351M – Grade CF8M, the loads in Table C are reduced by multiplying the proper adjustment factor from Table A1.2.2b.

If after adjusting the value for a particular load in Table C, any adjusted value is lower than the corresponding load in Table B, then the lower value is substituted in Table B.

Material group numbers used in Table A1.2.2b are defined in Table A1.2.2a

Mater	rial Groups		Castings
Material Group No.	Nominal Designation	Spec. No.	Grade(s)
1.0	Ductile Iron	A395	
1.1	Carbon Steel	A216	WCB
2.1	Type 304	A744	CF-8
2.2	Type 316	A744	CF-8M
2.3	Type 304L Type 316L	A744	CF-3 CF-3M
2.4	Type 321		
2.8	CD-4MCu CD-4MCu	A744 A890	CD-4MCu CD-4MCu Grade 1A, 1B
3.1	Alloy 20	A744	CN-7M
3.2	Nickel	A494	CZ-100
3.4	Monel	A744	M-35-1 M-30C M-35-2
3.5	Inconel 600 Inconel 625 Inconel 825	A744 A744 A744	CY-40 CW-6MC Cu-5MCuC
3.7	Hastelloy B	A494	N-12MV N-7M
3.8	Hastelloy C	A494	CW-6M CW-2M CW-12MW CX-2MW

Table A1.2.2a – List of material specifications as used in Table B

Table A1.2.2b – ASME B73.1 metallic pump temperature and material adjustment values used on Table C values

							Material G	oup No.	:		n seen as	and Thoreas	nie bywne
	1.0	1.1	2.1	2.2	2.3	2.4	2.8	3.1	3.2	3.4	3.5	3.7	3.8
				Au	stenitic	Steels				Nickel an	d Nickel A	lloys	
Temp, °F	Ductile Iron	Carbon Steel	Туре 304	Type 316	Type 304L Type 316L	Type 321	CD-4M Cu	Alloy 20	Nickel	Monel	Inconel	Hast. B	Hast. C
-20 to 100	0.89	1.00	1.00	1.00	0.83	1.00	1.00	0.83	0.50	0.83	1.00	1.00	1.00
200	0.83	0.94	0.83	0.86	0.70	0.98	1.00	0.77	0.50	0.74	0.93	1.00	1.00
300	0.78	0.91	0.74	0.78	0.63	0.83	1.00	0.73	0.50	0.69	0.89	1.00	1.00
400	0.73	0.88	0.65	0.72	0.58	0.69	0.98	0.67	0.50	0.67	0.85	0.98	0.98
500	0.69	0.83	0.60	0.67	0.53	0.64	0.92	0.65	0.50	0.66	0.83	0.92	0.92
600	0.65	0.76	0.58	0.63	0.50	0.60	0.84	0.63	0.50	0.66	0.80	0.84	0.84
650	0.63	0.74	0.57	0.62	0.49	0.60	0.82	0.63		0.66	0.78	0.82	0.82
700		0.74	0.56	0.60	0.48	0.58	0.79	0.62		0.66	0.77	0.79	0.79

Coordinate System for ASME B73.2 vertical in-line pumps



Figure 2 – Coordinate system for ASME B73.2 vertical in-line pumps

A2.0 Definitions (refer to Figure above)

 F_{xs} = applied force on X-axis on suction nozzle, to be assessed using equation set 6 F_{ys} = applied force on Y-axis on suction nozzle, to be assessed using equation set 6 F_{zs} = applied force on Z-axis on suction nozzle, to be assessed using equation set 6 M_{xs} = applied moment about X-axis on suction nozzle, to be assessed using equation set 6 M_{ys} = applied moment about Y-axis on suction nozzle, to be assessed using equation set 6 M_{zs} = applied moment about Z-axis on suction nozzle, to be assessed using equation set 6 F_{xd} = applied force on X-axis on discharge nozzle, to be assessed using equation set 6 F_{yd} = applied force on Y-axis on discharge nozzle, to be assessed using equation set 6 F_{zd} = applied force on Z-axis on discharge nozzle, to be assessed using equation set 6 F_{zd} = applied force on Z-axis on discharge nozzle, to be assessed using equation set 6 F_{zd} = applied moment about X-axis on discharge nozzle, to be assessed using equation set 6 M_{xd} = applied moment about X-axis on discharge nozzle, to be assessed using equation set 6 M_{xd} = applied moment about X-axis on discharge nozzle, to be assessed using equation set 6 M_{xd} = applied moment about X-axis on discharge nozzle, to be assessed using equation set 6 M_{xd} = applied moment about Z-axis on discharge nozzle, to be assessed using equation set 6 M_{xd} = applied moment about Z-axis on discharge nozzle, to be assessed using equation set 6 M_{zd} = applied moment about Z-axis on discharge nozzle, to be assessed using equation set 6 M_{xd} = applied moment about Z-axis on discharge nozzle, to be assessed using equation set 6 M_{xd} = applied moment about Z-axis on discharge nozzle, to be assessed using equation set 6 $F_{x max}$ = maximum value of force on X-axis on suction or discharge nozzles, to be used with equation set 6

 $F_{y_{max}}$ = maximum value of force on Y-axis on suction or discharge nozzles, to be used with equation set 6

 $F_{z max}$ = maximum value of force on Z-axis on suction or discharge nozzles, to be used with equation set 6

 $\dot{M_{x max}}$ = maximum value of moment about X-axis on either nozzle, to be used with equation set 6

 $M_{y max}$ = maximum value of moment about Y-axis on either nozzle, to be used with equation set 6

 $M_{z max}$ = maximum value of moment about Z-axis on either nozzle, to be used with equation set 6

A2.1 ANSI/ASME B73.2 pump assessment of applied nozzle loads

Loads given in Table B above are applicable for ASME B73.2 pumps constructed of ASTM A351/A351M – Grade CF8M (Type 316SS) operated between -20 and 100° F.

For an individual force or moment or for a combination of more than one force and/or moment, pumps should be capable of satisfactory operation when subjected to loads shown in Table A2.1b (adjusted if applicable) while meeting the criteria of equation set 6 in Table A2.1a.

Table A2.1a – Equation set 6

Set	Equation	Reference	Remarks
6	$\left \frac{F_{XS}}{F_{Xmax}}\right \le 1.0, \left \frac{F_{YS}}{F_{Ymax}}\right \le 1.0, \left \frac{F_{ZS}}{F_{Zmax}}\right \le 1.0, \left \frac{M_{XS}}{M_{Xmax}}\right \le 1.0, \left \frac{M_{YS}}{M_{Ymax}}\right \le 1.0, \left \frac{M_{ZS}}{M_{Zmax}}\right \le 1.0$	-	Individual loading
	$\left \frac{F_{Xd}}{F_{Xmax}}\right \le 1.0, \left \frac{F_{Yd}}{F_{Ymax}}\right \le 1.0, \left \frac{F_{Zd}}{F_{Zmax}}\right \le 1.0, \left \frac{M_{Xd}}{M_{Xmax}}\right \le 1.0, \left \frac{M_{Yd}}{M_{Ymax}}\right \le 1.0, \left \frac{M_{Zd}}{M_{Zmax}}\right \le 1.0$		0

Table A2.1b – Maximum forces and moments for use with equation set 6 to assess applied loads

Discharge	Nominal	Nominal overall		Forces (Ib))	Mo	oments (lb	•ft)
Nozzle Size (in)	Impeller Diameter (in)	length, flange face to flange face (in)	F _{x max}	F _{y max}	F _{z max}	M _{x max}	M _{y max}	M _{z max}
1.5	6	15	410	3976	410	510	720	510
1.5	8	17	360	3976	360	510	720	510
1.5	10	19	320	3976	320	510	720	510
1.5	13	24	255	3976	255	510	720	510
2	6	17	635	6328	635	900	1270	900
2	8 & 10	20	540	6328	540	900	1270	900
2	13	24	450	6328	450	900	1270	900
3	8	22	725	6328	725	1330	1880	1330
3	10	25	638	6328	638	1330	1880	1330
3	13	28	570	6328	570	1330	1880	1330
4	10	28	700	18,704	700	1630	2300	1630
4	13	30	650	18,704	650	1630	2300	1630

A2.1.1 Temperature and material adjustment factors

Adjustments of allowable load values are performed when any of the following occurs:

a. Temperature is above 100° F

b. The pump material construction is not ASTM A351/A351M - Grade CF8M

A2.1.2 Adjustment factors

For temperatures above 100° F and/or the use of a material other than ASTM A351/A351M – Grade CF8M, the loads in Table A2.1b are reduced by multiplying them by the proper adjustment factor from Table A2.1d. Material group numbers used in Table A2.1d are defined in Table A2.1c.

Material Groups (See NOTE 1)			Castings	-
Material Group No.	Nominal Designation	Spec. No.	Grade(s)	Notes
1.0	Ductile Iron	A395		(2)
1.1	Carbon Steel	A216	WCB	
2.1	Type 304	A744	CF-8	
2.2	Type 316	A744	CF-8M	
2.3	Type 304L Type 316L	A744	CF-3 CF-3M	÷.
2.4	Type 321			
2.8	CD-4MCu CD-4MCu	A744 A890	CD-4MCu CD-4MCu Grade 1A, 1B	
3.1	Alloy 20	A744	CN-7M	
3.2	Nickel	A494	CZ-100	(3)
3.4	Monel	A744	M-35-1 M-30C M-35-2	
3.5	Inconel 600 Inconel 625 Inconel 825	A744 A744 A744	CY-40 CW-6MC Cu-5MCuC	
3.7	Hastelloy B	A494	N-12MV N-7M	
3.8	Hastelloy C	A494	CW-6M CW-2M CW-12MW CX-2MW	

Table A2.1c – List of materials specifications as used in Table A2.1d

(3) Operating temperature range is -20 °F to 600 °F for nickel.

Table A2.1d – ASME B73.2 metallic pump temperature and material adjustment values used

						Mate	rial Group	No.:					
	1.0	1.1	2.1	2.2	2.3	2.4	2.8	3.1	3.2	3.4	3.5	3.7	3.8
				Austenitic Steels					Nic	kel and l	Nickel All	oys	
Temp, °F	Ductile Iron	Carbon Steel	Туре 304	Туре 316	Type 304L Type 316L	Type 321	CD-4M Cu	Alloy 20	Nickel	Monel	Inconel	Hast. B	Hast. C
-20 to 100	0.89	1.00	1.00	1.00	0.83	1.00	1.00	0.83	0.50	0.83	1.00	1.00	1.00
200	0.83	0.94	0.83	0.86	0.70	0.98	1.00	0.77	0.50	0.74	0.93	1.00	1.00
300	0.78	0.91	0.74	0.78	0.63	0.83	1.00	0.73	0.50	0.69	0.89	1.00	1.00
400	0.73	0.88	0.65	0.72	0.58	0.69	0.98	0.67	0.50	0.67	0.85	0.98	0.98
500	0.69	0.83	0.60	0.67	0.53	0.64	0.92	0.65	0.50	0.66	0.83	0.92	0.92

Coordinate System for Axial split case pumps (single-stage double suction and two-stage single suction)

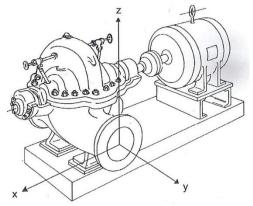


Figure 3 – Coordinate system for axial split case pumps **A3.0 Definitions (refer to Figure above)**

 F_{xs} = applied force on X-axis on suction nozzle, to be assessed using equation 1 F_{vs} = applied force on Y-axis on suction nozzle, to be assessed using equation 1 F_{zs} = applied force on Z-axis on suction nozzle, to be assessed using equation 1 M_{xs} = applied moment about X-axis on suction nozzle, to be assessed using equation 1 M_{yz} = applied moment about Y-axis on suction nozzle, to be assessed using equation 1 M_{zs} = applied moment about Z-axis on suction nozzle, to be assessed using equation 1 F_{xd} = applied force on X-axis on discharge nozzle, to be assessed using equation 1 F_{vd} = applied force on Y-axis on discharge nozzle, to be assessed using equation 1 F_{zd} = applied force on Z-axis on discharge nozzle, to be assessed using equation 1 M_{xd} = applied moment about X-axis on discharge nozzle, to be assessed using equation 1 M_{vd} = applied moment about Y-axis on discharge nozzle, to be assessed using equation 1 M_{zd} = applied moment about Z-axis on discharge nozzle, to be assessed using equation 1 $F_{x max}$ = maximum value of force on X-axis on either nozzle, to be used with equation1 $F_{v_{max}}$ = maximum value of force on Y-axis on either nozzle, to be used with equation 1 $F_{z max}$ = maximum value of force on Z-axis on either nozzle, to be used with equation 1 $M_{x max}$ = maximum value of moment about X-axis on either nozzle, to be used with equation $M_{y_{max}}$ = maximum value of moment about Y-axis on either nozzle, to be used with equation

1 $M_{z max}$ = maximum value of moment about Z-axis on on either nozzle, to be used with

equation 1

A3.1 Axial split case pumps assessment of applied loads

The lowest values of maximum forces and moments from Tables A3.1a and A3.1b are used. The combined applied loads should satisfy the criteria defined by equation 1 below.

$$\begin{cases} \left(\frac{F_{xs}}{F_{x \max}}\right)^{2} + \left(\frac{F_{ys}}{F_{y \max}}\right)^{2} + \left(\frac{F_{zs}}{F_{z \max}}\right)^{2} + \left(\frac{M_{xs}}{M_{x \max}}\right)^{2} + \left(\frac{M_{ys}}{M_{y \max}}\right)^{2} + \left(\frac{M_{zs}}{M_{z \max}}\right)^{2} + \left(\frac{F_{zd}}{F_{x \max}}\right)^{2} + \left(\frac{F_{zd}}{F_{x \max}}\right)^{2} + \left(\frac{M_{xd}}{M_{x \max}}\right)^{2} + \left(\frac{M_{yd}}{M_{y \max}}\right)^{2} + \left(\frac{M_{zd}}{M_{z \max}}\right)^{2} \end{cases} \right\}^{0.5}$$

$$= 1 \qquad (Eq. 1)$$

Table A3.1a – Maximum forces and moments for use with equation 1 to assess applied loads based on the hold-down bolts

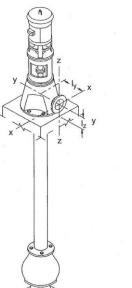
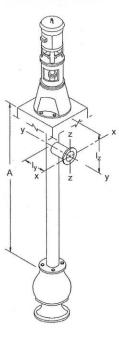

Nominal	Forces (lb)		Moments (Ib•ft)		
Bolt Diameter (in)	$F_{x max}$ and $F_{y max}$	F _{z max}	$M_{x max}$ and $M_{y max}$	M _{z max}	
0.625	600	4000	6000	450	
0.75	800	6000	12,000	800	
0.875	1200	8000	17,000	1500	
1.00	5000	11,000	22,000	2400	

Table A3.1b – Maximum forces and moments for use with equation 1 to assess applied loads based on the nozzle stress

Nozzle size		Force (lb)		Moment (lb•ft)				
(in)	F _{x max}	F _{y max}	F _{z max}	M _{x max}	M _{y max}	M _{z max}		
2	1800	1400	1800	600	720	600		
3	2400	2700	2400	734	900	734		
4	3300	2700	3300	1200	1300	1200		
6	4400	2700	4400	2400	1300	2400		
8	6500	3500	6500	3800	1500	3800		
10	8200	3500	8200	5400	1500	5400		


Category	Configuration	Flange Position		Application Limit	s
Shaft-driven, suspended	Submerged	Discharge above	Max. Pressure (psi)	Max. Temp. (°F)	Max. Nozzle Size (in)
pump, for water	suction	base	300	100	36

Coordinate System for Vertical turbine short set pumps

Nozzle Size	Nozzle Material: Steel						
Dia (in)	Forces (lb)			Moments (lb•ft)			
	Fx	Fy	Fz	M _x	My	Mz	
2	202	182	225	302	409	260	
3	323	291	360	474	619	407	
4	404	364	450	588	753	506	
6	606	546	674	892	1099	770	
8	808	728	899	1244	1499	1076	
10	1010	910	1124	1667	1994	1445	
12	1212	1092	1349	2178	2613	1890	
14	1414	1274	1574	2790	3372	2422	
16	1616	1456	1798	3507	4272	3043	
18	1818	1638	2023	4329	5306	3753	
20	2020	1820	2248	5251	6450	4545	
22	2222	2002	2473	6260	7669	5406	
24	2424	2184	2698	7338	8916	6319	
30	3079	2774	3426	10,980	12,343	9327	
36	3694	3329	4111	13,691	15,528	11,367	

Category	Configuration	Flange Position	Application Limits			
Shaft-driven, suspended pump, for water	Submerged suction	Discharge below base	Max. Pressure (psi)	Max. Temp. (°F)	Max. Nozzle Size (in)	
			300	100	36	

	Fz
	Mz
Mx	M.
Ĵ	Je C' My
Fx	Fv
~	· y

Nozzle Size	Nozzle Material: Steel					
Dia (in)	Forces (lb)			Moments (lb+ft)		
	Fx	Fy	Fz	M _x	My	Mz
2	67	60	75	122	150	106
3	108	97	119	183	223	159
4	134	121	149	220	269	191
6	202	181	224	314	383	272
8	269	242	299	420	513	363
10	336	302	373	551	672	476
12	403	363	448	715	873	619
14	470	423 .	523	918	1121	796
16	538	484	567	1161	1419	1008
18	605	544	672	1442	1762	1252
20	672	605	747	1755	2142	1524
22	739	665	822	2091	2548	1815
24	806	726	896	2435	2962	2112
30	1024	922	1138	3378	4061	2908
36	1229	1106	1366	4029	4920	3523

A4.0 Definitions

fx, fy and fz are the actual applied nozzle forces in their respective coordinate direction

mx, my and mz are actual applied nozzle moments in their respective coordinate direction

Fx, Fy and Fz are tabulated maximum permissible nozzle forces in their respective coordinate direction

Mx, My and Mz are tabulated maximum permissible nozzle moments in their respective coordinate direction

A4.1 Vertical turbine short set pumps assessment of applied loads

The tables above show maximum permissible forces and moments for each coordinate direction of each flange. Each value in the tables represents the maximum allowable load in a particular direction acting alone. For cases in which more than one load is applied simultaneously, the following formula should be satisfied.

$$\frac{f_x}{F_x} + \frac{f_y}{F_y} + \frac{f_z}{F_z} + \frac{m_x}{M_x} + \frac{m_y}{M_Y} + \frac{m_z}{M_z} \le 1$$

NEMA SM-23 (1991) for Turbines

There are two types of allowables.

- 1. Allowables for each nozzle and
- 2. Combined allowables for each turbine.

1. Allowables for each Nozzle

The resultant force and the resultant moment at any connection must not exceed

$$3F_R + M_R \leq 500D_e$$

where

 F_R = resultant force at the nozzle (lb)

 M_R = resultant moment at the nozzle (ft.-lb)

 D_e = nominal pipe size (inches) of the connection up to 8" in diameter

= $(16 + D_{nom})/3$ If the size is greater than 8"

2. Combined Allowables for the Turbine

The combined resultants of the forces and moments at the inlet, exhaust and extraction nozzles resolved at the centerline of the exhaust nozzle must not exceed the following two conditions:

(a) These resultant should not exceed:

$$2F_C + M_C \le 250D_C$$

where

 F_C = combined resultant of inlet, exhaust and extraction forces (lb)

 M_C = combined resultant of inlet, exhaust and extraction moments (ft.-lb.)

 D_C = diameter (in inches) of a circular opening equal to the total areas of the inlet, exhaust and extraction nozzles up to a value of 9" in diameter

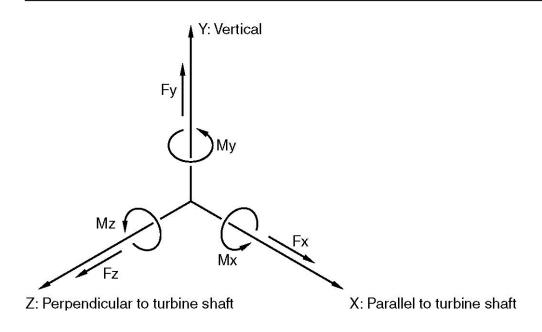
= (18 + Equivalent diameter) / 3 (in.) For values > 9"

(b) The components of these resultants shall not exceed:

$$F_X = 50D_C M_X = 250D_C$$

 $F_Y = 125D_C M_Y = 125D_C$
 $F_Z = 100D_C M_Z = 125D_C$

where


 F_X = horizontal component of F_R parallel to the turbine shaft

 F_Y = vertical component of F_R

 F_Z = horizontal component of F_R at right angles to the turbine shaft

- M_X = horizontal component of M_R parallel to the turbine shaft
- M_Y = vertical component of M_R

 M_Z = horizontal component of M_R at right angles to the turbine shaft

API 617 (Seventh edition, June 2003) for Compressors

1. Allowables for each Nozzle

The total resultant force and resultant moment imposed on the compressor at any connection should not exceed

$$3F_r + M_r \le 927D_e$$

Where

 F_r = resultant force at the Nozzle (lb)

 M_r = resultant moment at the Nozzle (ft.-lb)

 D_e = nominal pipe size (inches) of the connection up to 8" in diameter = $(16 + D_{nom})/3$ If the size is greater than 8"

2. Combined Allowables for Compressors

The combined resultants of the forces and moments of the inlet, sidestream, and discharge connections resolved at the centerlines of the largest connection should not exceed the following two conditions:

(a) The resultant should not exceed:

$$2F_c + M_c \le 462D_c$$

Where

 F_c = combined resultant of inlet, sidestream, and discharge forces (lb)

 M_c = combined resultant of inlet, sidestream, and discharge moments, and moments resulting from forces (ft.-lb)

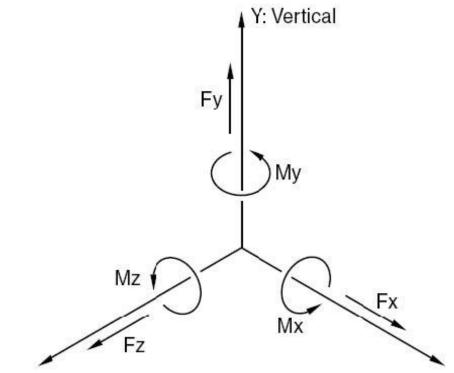
 D_c = diameter of one circular opening equal to the total areas of the inlet, sidestream, and discharge openings. If the equivalent nozzle diameter is greater than 9", use a value of D_c equal to (18 + Equivalent Diameter) / 3

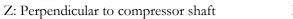
(b) The components of these resultants shall not exceed:

$$F_x = 92D_c \qquad M_x = 462D_c$$
$$F_y = 231D_c \qquad M_y = 231D_c$$
$$F_z = 185D_c \qquad M_z = 231D_c$$

Where

 F_x = horizontal component of F parallel to the compressor shaft (lb)


 F_y = vertical component of F_c (lb)


 F_z = horizontal component of F at right angles to be compressor shaft (lb)

 M_x = component of M_c around the horizontal axis (ft-lb)

 M_{γ} = component of M_a around the vertical axis (ft-lb)

 M_z = component of M_c around the horizontal axis at right angles to the compressor (ft-lb)

X: Parallel to compressor shaft

Flange Qualification

Notation based on ASME Section VIII, Division 1, Appendix 2 (2013)

The symbols described below are used in the formulas for the design of flanges

- = outside diameter of flange Α
- A_{b} = cross-sectional area of the bolts using the root diameter of the thread
- A_m = total required cross-sectional area of bolts taken as greater of A_{m1} and A_{m2}
- A_{m1} = total cross-sectional area of bolts at root of thread or section of least diameter under stress, required for the operating conditions

$$=\frac{W_{m1}}{S_b}$$

 A_{m2} = total cross-sectional area of bolts at root of thread or section of least diameter under stress

$$=\frac{W_{m2}}{S_a}$$

- = inside diameter of flange В
- R'= inside diameter of reverse flange
- b = effective gasket or joint-contact-surface seating width
- = basic gasket seating width (from Table 2-5.2) b_0
- С = bolt-circle diameter
- = basic dimension used for the minimum sizing of welds С

$$e = factor = \frac{F}{h_o}$$

- d
- = factor = $\frac{U}{V}h_o g_0^2$ for integral type flanges = factor = $\frac{U}{V_L}h_o g_0^2$ for loose type flanges d
- = factor = $\frac{F}{h_0}$ for integral type flanges е

$$c = \text{factor} = \frac{F_L}{h_L} \text{ for loose type flanges}$$

- = factor for integral type flanges (from Fig. 2-7.2) F
- = factor for loose type flanges (from Fig. 2-7.4) F_{I}
- f = hub stress correction for integral flanges from Fig. 2-7.6 (when greater than one, this is the ratio of the stress in the small end of hub to the stress in the large end), (for values below limit of figure, use f = 1.)
- G = diameter at location of gasket load reaction
- g0 = thickness of hub at small end
- g1 = thickness of hub at back of flange
- = total hydrostatic end force = $0.785G^2P$ Η
- H_D = hydrostatic end force on area inside of flange =0.785 B^2P
- H_G = gasket load (difference between flange design bolt load and total hydrostatic end force) = W - H
- H_P = total joint-contact surface compression load = 2b x 3.14 $G_m P$
- H_T = difference between total hydrostatic end force and the hydrostatic end force on area inside of flange = $H - H_D$
- h = hub length

- h_D = radial distance from the bolt circle, to the circle on which HD acts, as prescribed in Table 2-6
- h_G = radial distance from gasket load reaction to the bolt circle = $\frac{C-G}{2}$
- $h_0 = \text{factor} = \sqrt{B_{g0}}$
- h_T = distance from the bolt circle, to the circle on which H_T acts, as prescribed in Table 2-6
- K = ratio of outside diameter of flange to inside diameter of flange = A / B
- $L = \text{factor} = \frac{(t_e+1)}{T} + \frac{t^3}{d}$
- M_D = component of moment due to $H_D = H_D h_D$
- M_G = component of moment due to $H_G = H_G h_G$
- M_T = component of moment due to $H_T = H_T h_T$
- M_0 = total moment acting upon the flange for the operating conditions or gasket seating as may apply
- $M_0 = W \frac{(c-G)}{2}$ for gasket seating condition

$$M_0 = H_D h_D + H_G h_G + H_T h_T$$
 for operating condition

- N = width used to determine the basic gasket seating with b_0 , based upon the possible contact width of the gasket (see Table 2-5.2)
- P = internal design pressure
- R = radial distance from bolt circle to point of intersection of hub and back of flange. For integral and hub flanges, R = (C-B / 2) g1
- S_a = allowable bolt stress at reference temperature
- S_b = allowable bolt stress at design temperature
- S_f = allowable stress for material of flange at design temperature (operating condition)
- S_H = calculated longitudinal stress in hub
- S_R = calculated radial stress in flange
- S_T = calculated tangential stress in flange
- T = factor involving K (from Fig. 2-7.1)
- t = flange thickness
- U = factor involving K (from Fig. 2-7.1)
- V = factor for integral type flanges (from Fig. 2-7.3)
- V_L = factor for loose type flanges (from Fig. 2-7.5)
- W = flange design bolt load, for the operating condition or gasket seating
 - $= W_{m1}$ for operating condition
 - $=\frac{(A_m+A_b)S_a}{2}$ for gasket seating condition
- W_{m1} = minimum required bolt load for the operating conditions
- W_{m1} = minimum required bolt load for gasket seating
- w = nubbin width used to determine the basic gasket seating width b_0 , based on contact width between the flange and the gasket (see Table 2-5.2)11
- Y = factor involving K (from Fig. 2-7.1)
- y = gasket or joint-contact-surface unit seating load
- Z = factor involving K (from Fig. 2-7.1)

Calculation of Flange Stresses

The stresses in the flange shall be determined for both the operating conditions and gasket seating condition, in accordance with the following formulas:

(1) Integral type flanges

Longitudinal hub stress $S_H = \frac{fM_O}{Lg_1^2B} < 1.5S_f$ Radial flange stress $S_R = \frac{(1.33te+1)M_O}{Lt^2B} < S_f$ Tangential flange stress $S_T = \frac{YM_O}{t^2B} - ZS_R < S_f$ Combined stress

 $\frac{S_H + S_R}{2} < S_f \text{ and}$ $\frac{S_H + S_T}{2} < S_f$

(2) Loose type flanges with hubs

Longitudinal hub stress $S_H = \frac{fM_0}{Lg_1^2B} < 1.5S_f$ Radial flange stress $S_R = \frac{(1.33te+1)M_0}{Lt^2B} < S_f$ Tangential flange stress $S_T = \frac{YM_0}{t^2B} - ZS_R < S_f$ Combined stress $\frac{S_H + S_R}{2} < S_f$ and $\frac{S_H + S_T}{2} < S_f$

where,

 $L = \text{factor} = \frac{(te+1)}{T} + \frac{t^3}{d}$ $d = \text{factor} = \frac{U}{V_L} h_o g_0^2 \text{ for integral type flanges}$ $e = \text{factor} = \frac{F_L}{h_o}$

 V_L = factor for loose type flanges (from Fig. 2-7.5) F_L = factor for loose type flanges (from Fig. 2-7.4)

(3) Loose type flanges without hubs

Longitudinal hub stress $S_H = 0$ Radial flange stress $S_R = 0$ Tangential flange stress $S_T = \frac{YM_0}{t^2B} < S_f$ Combined stress

$$\frac{S_H + S_R}{2} < S_f \text{ and}$$
$$\frac{S_H + S_T}{2} < S_f$$

where,

$$L = \text{factor} = \frac{(te+1)}{T} + \frac{t^3}{d}$$
$$d = \text{factor} = \frac{U}{V_L} h_0 g_0^2$$
$$e = \text{factor} = \frac{F_L}{h_0}$$

 V_L = factor for loose type flanges (from Fig. 2-7.5) F_L = factor for loose type flanges (from Fig. 2-7.4)

(4) Optional type flanges (calculated as loose flanges without hubs)

Longitudinal hub stress $S_H = 0$ Radial flange stress $S_R = 0$ Tangential flange stress $S_T = \frac{YM_O}{t^2B} < S_f$

Combined stress

$$\frac{S_H + S_R}{2} < S_f \text{ and}$$
$$\frac{S_H + S_T}{2} < S_f$$

where,

$$L = \text{factor} = \frac{(te+1)}{T} + \frac{t^3}{d}$$
$$d = \text{factor} = \frac{U}{V_L} h_0 g_0^2$$
$$e = \text{factor} = \frac{F_L}{h_0}$$
$$V_L = \text{factor for loose type flanged}$$

 V_L = factor for loose type flanges (from Fig. 2-7.5) F_L = factor for loose type flanges (from Fig. 2-7.4)

(5) <u>Reverse type flanges</u>

Longitudinal hub stress $S_H = \frac{fM_O}{L_r g_1^2 B'} < 1.5S_f$ Radial flange stress $S_R = \frac{(1.33te_r+1)M_O}{L_r t^2 B'} < S_f$ Tangential flange stress $S_r = \frac{YM_O}{t^2 B} - ZS_R \frac{0.67te_r+1}{1.33te_r+1} < S_f$ Combined stress

$$\frac{S_H + S_R}{2} < S_f \text{ and }$$
$$\frac{S_H + S_T}{2} < S_f$$

where,

$$L_r = factor = \frac{(te_r+1)}{r} + \frac{t^3}{d_r}$$

$$d_r = factor = \frac{U_r}{V}h_0g_0^2$$

$$e_r = factor = \frac{F}{h_0}$$

$$h_o = factor = \sqrt{Ag_0}$$

$$\alpha_r = \frac{1+0.668\frac{(K+1)}{Y}}{K^2}$$

$$T_r = \frac{Z+0.3}{Z-0.3}\alpha_r T$$

$$U_r = \alpha_Y U$$

$$Y_r = \alpha_Y Y$$

TABLE 2-5.1 GASKET MATERIALS AND CONTACT FACINGS¹ Gasket Factors *m* for Operating Conditions and Minimum Design Seating Stress *y*

Facing Sketch Gasket Min. Design Factor Seating Stress y, and Column in Table 2-5.2 Gasket Material т psi (MPa) Sketches 0 0(0) Self-energizing types (0 rings, metallic, elastomer, other gasket types considered as self-sealing) Elastomers without fabric or high percent of asbestos fiber: Below 75A Shore Durometer 0.50 0(0) (la),(lb),(lc),(ld), 75A or higher Shore Durometer (4),(5); Column II 1.00 200 (1.4) Asbestos with suitable binder for operating conditions: $\frac{1}{8}$ in. (3.2 mm) thick 2.00 1,600 (11) (la),(lb),(lc),(ld), $\frac{1}{16}$ in. (1.6 mm) thick 2.75 3,700 (26) (4),(5); Column II $\frac{1}{32}$ in. (0.8 mm) thick 3.50 6,500 (45) Elastomers with cotton fabric insertion (la),(lb),(lc),(ld), 1.25 400 (2.8) (4),(5); Column II Elastomers with asbestos fabric insertion (with or without wire reinforcement): 3-ply 2.25 2,200 (15) (la),(lb),(lc),(ld), 2-ply 2.50 2,900 (20) (4),(5); Column II 2.75 3,700 (26) 1-ply (la),(lb),(lc),(ld), Vegetable fiber 1.75 1,100 (7.6) (4)(5); Column II Spiral-wound metal, asbestos filled: 10,000 (69) Carbon 2.50 Stainless, Monel, and nickel-base 3.00 10,000 (69) (la),(lb); Column II alloys Corrugated metal, asbestos inserted, or corrugated metal, jacketed asbestos filled: Soft aluminum 2,900 (20) 2.50 Soft copper or brass 2.75 3,700 (26) Iron or soft steel 3.00 4,500 (31) (la),(lb); Column II Monel or 4%-6% chrome 3.25 5,500 (38) Stainless steels and nickel-base alloys 6,500 (45) 3.50

TABLE 2-5.1 GASKET MATERIALS AND CONTACT FACINGS¹ (CONT'D) Gasket Factors *m* for Operating Conditions and Minimum Design Seating Stress *y*

Gasket Material	Gasket Factor <i>m</i>	Min. Design Seating Stress <i>y</i> , psi (MPa)	Sketches	Facing Sketch and Column in Table 2-5.2
Corrugated metal:				
Soft aluminum	2.75	3,700 (26)		
Soft copper or brass	3.00	4,500 (31)		
Iron or soft steel	3.25	, 5,500 (38)		(la),(lb),(lc),(ld);
Monel or 4%–6% chrome	3.50	6,500 (45)		Column II
Stainless steels and nickel-base alloys	3.75	7,600 (52)		
Flat metal, jacketed asbestos filled:				
Soft aluminum	3.25	5,500 (38)		
Soft copper or brass	3.50	6,500 (45)		$(1 - 1) (1 + 1) (1 - 1)^{2}$
Iron or soft steel	3.75	7,600 (52)	B	(la),(lb),(lc), ² (ld) ² ;(2) ² ;
Monel	3.50	8,000 (55)	17	Column II
4%–6% chrome	3.75	9,000 (62)		
Stainless steels and nickel-base alloys	3.75	9,000 (62)		
Grooved metal:			M	
Soft aluminum	3.25	5,500 (38)		
Soft copper or brass	3.50	6,500 (45)		(la),(lb),(lc),(ld),
Iron or soft metal	3.75	7,600 (52)		(2),(3); Column II
Monel or 4%–6% chrome	3.75	9,000 (62)		(2),(3), 60101111 11
Stainless steels and nickel-base alloys	4.25	10,100 (70)		
Solid flat metal:				
Soft aluminum	4.00	8,800 (61)		
Soft copper or brass	4.75	13,000 (90)		(la),(lb),(lc),(ld),
Iron or soft steel	5.50	18,000 (124)		(2),(3),(4),(5);
Monel or 4%–6% chrome	6.00	21,800 (150)		Column I
Stainless steels and nickel-base alloys	6.50	26,000 (180)		
Ring joint:				
Iron or soft steel	5.50	18,000 (124)		
Monel or 4%–6% chrome	6.00	21,800 (150)		(6); Column I
Stainless steels and nickel-base alloys	6.50	26,000 (180)		

NOTES:

⁽¹⁾ This Table gives a list of many commonly used gasket materials and contact facings with suggested design values of *m* and *y* that have generally proved satisfactory in actual service when using effective gasket seating width *b* given in Table 2-5.2. The design values and other details given in this Table are suggested only and are not mandatory.

⁽²⁾ The surface of a gasket having a lap should not be against the nubbin.

TABLE 2-5.2EFFECTIVE GASKET WIDTH2

	Basic Gasket Seating Width b _o			
Facing Sketch (Exaggerated)	Column I	Column II		
$(1a) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	-			
(1b) $(1b)$ $(1$	<u>N</u> 2	<u>N</u> 2		
(1c) $w \leftarrow T$ T T T $W \leq N$	w + T (w + N)	w + T (w + N)		
(1d) See Note (1) W W V V V V V V V V	$\frac{w+T}{2}; \left(\frac{w+N}{4}\max\right)$	$\frac{w+T}{2}; \left(\frac{w+N}{4}\right) \max$		
(2) $1/_{64}$ in. (0.4 mm) nubbin $\frac{1}{\sqrt{1/64}}$ $\frac{1}{\sqrt{1/64}}$ $w \le N/2$	$\frac{w+N}{4}$	$\frac{w+3N}{8}$		
(3) $1/_{64}$ in. (0.4 mm) nubbin $\frac{1}{1/_{64}}$ $\frac{1}{1/_{64}}$ $\frac{1}{1/_$	<u>N</u> 4	<u>3 N</u> 8		
(4) (1) See Note (1) (1)	<u>3 N</u> 8	7 <i>N</i> 16		
(5)	$\frac{N}{4}$	<u>3 N</u> 8		
	<u>w</u> 8			

TABLE 2-6 MOMENT ARMS FOR FLANGE LOADS UNDER OPERATING CONDITIONS

	h _D	h _T	h _G
Integral type flanges [see Fig. 2–4 sketches (5), (6), (6a), (6b), and (7)]; and optional type flanges calculated as integral type [see Fig. 2-4 sketches (8), (8a), (9), (9a), (10), (10a), and (11)]	<i>R</i> + 0.5 <i>g</i> ₁	$\frac{R+g_1+h_G}{2}$	$\frac{C-G}{2}$
Loose type, except lap- joint flanges [see Fig. 2-4 sketches (2), (2a), (3), (3a), (4), and (4a)]; and optional type flanges calculated as loose type [see Fig. 2-4 sketches (8), (8a), (9), (9a), (10), (10a), and (11)]	<u>C – B</u> 2	$\frac{h_D + h_G}{2}$	<u>C – G</u> 2
Lap-type flanges [see Fig. 2-4 sketches (1) and (1a)]	$\frac{C-B}{2}$	$\frac{C-G}{2}$	$\frac{C-G}{2}$

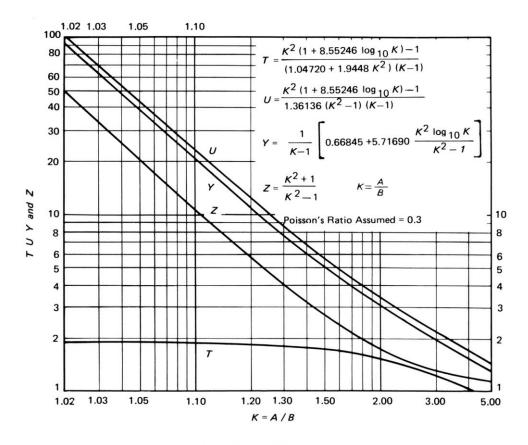


FIG. 2-7.1 VALUES OF *T, U, Y,* AND *Z* (Terms Involving K)

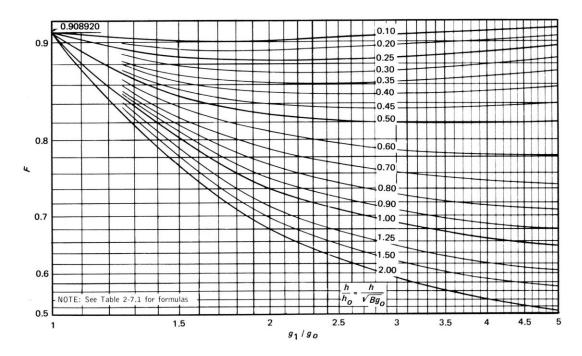


FIG. 2-7.2 VALUES OF F (Integral Flange Factors) 693

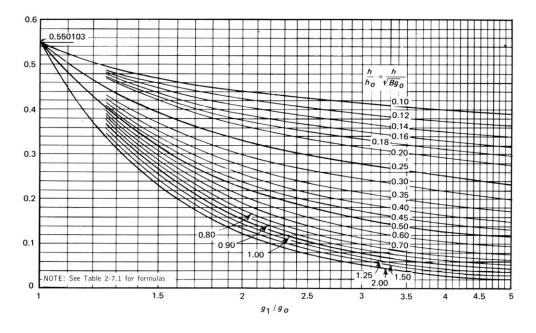


FIG. 2-7.3 VALUES OF V (Integral Flange Factors)

Flange Qualification

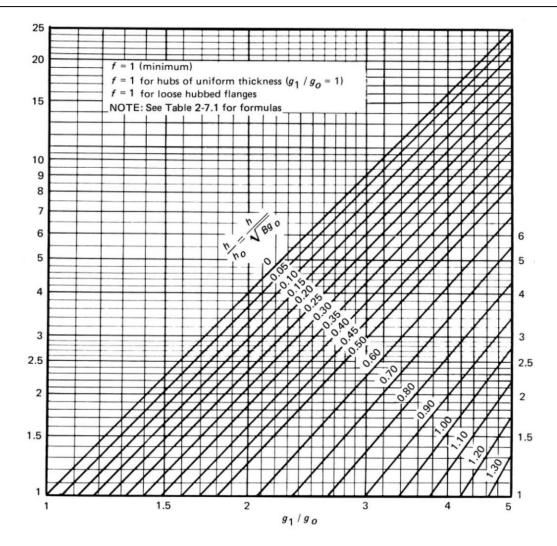


FIG. 2-7.6 VALUES OF *f* (Hub Stress Correction Factor)

Problem 1:

(Example from "Taylor Forge & Pipe Works, 1961")

Flange Details:

Flange Type : Loose Flanges with Hubs Flange Outside Diameter [A] = 40.375 (inch) Flange Inside Diameter [B] = 33.25 (inch) Inside Diameter of Reverse Flange [B'] = 20 (inch) Flange Thickness [t] = 2.125 (inch) Small End Hub Thickness [g0] = 0.875 (inch) Large End Hub Thickness [g1] = 1.125 (inch) Hub Length [h] = 2.5 (inch) All. Stress @ Design Temp [sf] = 17500 (psi) All. Stress @ Ref. Temp [sfa] = 17500 (psi) Modulus @ Design Temp [E] = 2.7E+7 (psi) Modulus @ Ref. Temp [Ea] = 2.92E+7 (psi)

Bolting Information:

Bolt Circle Diameter = 38.25 (inch) Number of Bolts = 44 Bolt Diameter = 1 (inch) All. Stress @ Ref. Temp [sa] = 20000 (psi) All. Stress @ Design Temp [sb] = 20000 (psi)

Gasket Information:

Gasket Outside Diameter = 35.75 (inch) Gasket Inner Diameter = 34.25 (inch) Leak Pressure Ratio [m] = 2.75 Gasket Seating Stress [y] = 3700 (psi) Facing Sketch = 1 Facing Column = 1

Load Data:

Design Pressure = 400 (psi) Design Temperature = 500 (F) Axial Force = 1000 (lb) Bending Moment = 200 (ft-lb) Allowable Pressure = 665 (psi)

Flange Stresses	Text Book Results	CAEPIPE	CAESAR II
	(psi)	(psi)	(psi)
Operating condition			
Longitudinal Hub (SH)	20800	21153	21214
Radial Flange (SR)	11100	11110	11155
Tangential Flange (ST)	13800	13826	13797
0.5(SH + SR)	15950	16132	16185
0.5(SH + ST)	17300	17489	17506
Gasket Seating Condition			
Longitudinal Hub (SH)	14400	14623	15095
Radial Flange (SR)	7660	7681	7938
Tangential Flange (ST)	9500	9558	9818
0.5(SH + SR)	11030	11152	11517
0.5(SH + ST)	11950	12091	12457

Comparison of Results:

Problem 2:

(Example 10.5 on page 209 Chapter 10 on "CASTI Guidebook to ASME Section VIII Div.1 – Pressure Vessels – Third Edition")

Flange Details:

Flange Type : Reverse Flanges Flange Outside Diameter [A] = 49 (inch) Flange Inside Diameter [B] = 48.25 (inch) Inside Diameter of Reverse Flange [B'] = 20.25 (inch) Flange Thickness [t] = 5.25 (inch) Small End Hub Thickness [g0] = 0.375 (inch) Large End Hub Thickness [g1] = 1.375 (inch) Hub Length [h] = 6 (inch) All. Stress @ Design Temp [sf] = 12000 (psi) All. Stress @ Ref. Temp [sfa] = 20000 (psi) Modulus @ Design Temp [E] = 2.7E+7 (psi) Modulus @ Ref. Temp [Ea] = 2.92E+7 (psi)

Bolting Information:

Bolt Circle Diameter = 44 (inch) Number of Bolts = 32 Bolt Diameter = 1.25 (inch) All. Stress @ Ref. Temp [sa] = 25000 (psi) All. Stress @ Design Temp [sb] = 21000 (psi)

Gasket Information:

Gasket Outside Diameter = 24 (inch) Gasket Inner Diameter = 22 (inch) Leak Pressure Ratio [m] = 2.50 Gasket Seating Stress [y] = 10000 (psi) Facing Sketch = 1 Facing Column = 1

Load Data:

Design Pressure = 150 (psi) Design Temperature = 800 (F) Axial Force = 1000 (lb) Bending Moment = 200 (ft-lb) Allowable Pressure = 665 (psi)

Comparison of Results:

Flange Stresses	Text Book Results	CAEPIPE	CAESAR II
_	(psi)	(psi)	(psi)
Operating condition			
Longitudinal Hub (SH)	2060	2257	2055
Radial Flange (SR)	280	307	280
Tangential Flange (ST)	1340	1314	1336
0.5(SH + SR)	1170	1282	1168
0.5(SH + ST)	1700	1785	1695
Gasket Seating Condition			
Longitudinal Hub (SH)	9220	10082	9220
Radial Flange (SR)	1260	1372	1257
Tangential Flange (ST)	6000	7004	5997
0.5(SH + SR)	5240	5727	5239
0.5(SH + ST)	7610	8543	8703

Problem 3:

(Example from KEDKEP CONSULTING, INC. dated May 27, 2008)

Flange Details:

Flange Type : Loose Flanges without Hubs / Optional Flanges Flange Outside Diameter [A] = 38.4 (inch) Flange Inside Diameter [B] = 32 (inch) Inside Diameter of Reverse Flange [B'] = 32 (inch) Flange Thickness [t] = 4 (inch) Small End Hub Thickness [g0] = 0.001 (inch) Large End Hub Thickness [g1] = 0.001 (inch) Hub Length [h] = 0.001 (inch) All. Stress @ Design Temp [sf] = 20000 (psi) All. Stress @ Ref. Temp [sfa] = 20000 (psi) Modulus @ Design Temp [E] = 2.7E+7 (psi) Modulus @ Ref. Temp [Ea] = 2.92E+7 (psi)

Bolting Information:

Bolt Circle Diameter = 36 (inch) Number of Bolts = 28 Bolt Diameter = 1 (inch) All. Stress @ Ref. Temp [sa] = 25000 (psi) All. Stress @ Design Temp [sb] = 25000 (psi)

Gasket Information:

Gasket Outside Diameter = 32.75 (inch) Gasket Inner Diameter = 32 (inch) Leak Pressure Ratio [m] = 0.50 Gasket Seating Stress [y] = 0 (psi) Facing Sketch = 2 Facing Column = 2

Load Data:

Design Pressure = 300 (psi) Design Temperature = 295 (F) Axial Force = 1000 (lb) Bending Moment = 200 (ft-lb) Allowable Pressure = 665 (psi)

Comparison of Results:

Flange Stresses	Text Book Results	CAEPIPE	CAESAR
	(psi)	(psi)	II
			(psi)
Operating Condition			
Longitudinal Hub (SH)	0	0	3
Radial Flange (SR)	0	0	0
Tangential Flange (ST)	10577	10569	10618
0.5(SH + SR)	0	0	1.5
0.5(SH + ST)	0	0	5310.5
Bolt Stress	16378	16371	16445
Gasket Seating Condition			
Longitudinal Hub (SH)	0	0	3
Radial Flange (SR)	0	0	0
Tangential Flange (ST)	12147	11987	12166
0.5(SH + SR)	0	0	1.5
0.5(SH + ST)	0	0	6085
Bolt Stress	0	0	124

This page is blank

Pressure Design of Pipe & Pipe Fittings as per EN 13480-3 (2017)

Internal pressure according to SS EN 13480-3 (2017)

Straight Pipes

The minimum required wall thickness for a straight pipe without allowances and tolerances, ep, is calculated from equation 6.1-1 and 6.1-3 depending on the ratio between inner and outer diameter as follows:

For $D_0/D_i \le 1.7$

$$ep = \frac{P_c D_0}{2fz + P_c}$$

For $D_0/D_i > 1.7$

$$ep = \frac{D_o}{2} \left[1 - \sqrt{\frac{fz - p_c}{fz + p_c}} \right]$$

where,

 D_{o} = outside diameter of pipe

 D_i = inside diameter of pipe = $Do - 2 \ge e_n$

 $e_n = nominal$ wall thickness of pipe

f = Allowable stress for material at maximum temperature

z = weld efficiency factor = 1.0

 p_c = maximum internal pressure = maximum of CAEPIPE input pressures P1 through P10

ep = minimum required wall thickness

Elbows

The minimum required wall thickness of the intrados and the extrados of the elbow without allowances and tolerances, ep1 / ep2, is calculated from equation B.4.1-3

ep1 = ep2 = e.B

$$B = \frac{D_0}{2e} - \frac{R}{e} + \sqrt{\left[\frac{D_0}{2e} - \frac{R}{e}\right]^2 + 2\frac{R}{e} - \frac{D_0}{2e}}$$

where

 $D_0 =$ outside diameter of elbow

e = minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3

R = radius of the elbow

ep1 = ep2 = minimum required wall thickness of the elbow

Bends (formed by cold bending of straight pipes)

Wall thickness of the intrados of the bend

The minimum required wall thickness of the intrados of the bend without allowances and tolerances, ep1, is calculated from equation B.4.1-1

ep1 = e.Bint

$$B_{int} = \frac{D_0}{2e} + \frac{r}{e} - \left[\frac{D_0}{2e} + \frac{r}{e} - 1\right] \sqrt{\frac{\left(\frac{r}{e}\right)^2 - \left(\frac{D_0}{2e}\right)^2}{\sqrt{\frac{r}{e}^2 - \frac{D_0}{2e}\left(\frac{D_0}{2e} - 1\right)}}}$$

r/e is calculated from

$$\frac{\mathbf{r}}{\mathbf{e}} = \sqrt{\frac{1}{2} \left\{ \left(\frac{\mathbf{D}_{o}}{2\mathbf{e}}\right)^{2} + \left(\frac{\mathbf{R}}{\mathbf{e}}\right)^{2} \right\}} + \sqrt{\frac{1}{4} \left(\left(\frac{\mathbf{D}_{o}}{2\mathbf{e}}\right)^{2} + \left(\frac{\mathbf{R}}{\mathbf{e}}\right)^{2} \right)^{2} - \frac{\mathbf{D}_{o}}{2\mathbf{e}} \left(\frac{\mathbf{D}_{o}}{2\mathbf{e}} - 1\right) \left(\frac{\mathbf{R}}{\mathbf{e}}\right)^{2}}$$

where

 $D_o =$ outside diameter of bend

 D_i = inside diameter of bend = $D_o - 2 \ge e_n$

e = minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3

R = radius of the bend

ep1 = minimum required wall thickness of the intrados

Wall thickness of the extrados of the bend

The minimum required wall thickness of the extrados of the bend without allowances and tolerances, ep2, is calculated from equation B.4.1-8

ep2 = e.Bext

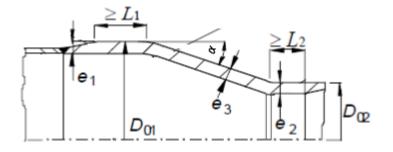
$$B_{ext} = \frac{D_0}{2e} - \frac{r}{e} - \left[\frac{D_0}{2e} - \frac{r}{e} - 1\right] \sqrt{\frac{\left(\frac{r}{e}\right)^2 - \left(\frac{D_0}{2e}\right)^2}{\sqrt{\left(\frac{r}{e}\right)^2 - \frac{D_0}{2e}\left(\frac{D_0}{2e} - 1\right)}}}$$

r/e is calculated from

$$\frac{\mathrm{r}}{\mathrm{e}} = \sqrt{\frac{1}{2} \left\{ \left(\frac{\mathrm{D}_{\mathrm{o}}}{2\mathrm{e}}\right)^{2} + \left(\frac{\mathrm{R}}{\mathrm{e}}\right)^{2} \right\}} + \sqrt{\frac{1}{4} \left(\left(\frac{\mathrm{D}_{\mathrm{o}}}{2\mathrm{e}}\right)^{2} + \left(\frac{\mathrm{R}}{\mathrm{e}}\right)^{2} \right)^{2} - \frac{\mathrm{D}_{\mathrm{o}}}{2\mathrm{e}} \left(\frac{\mathrm{D}_{\mathrm{o}}}{2\mathrm{e}} - 1\right) \left(\frac{\mathrm{R}}{\mathrm{e}}\right)^{2}}$$

where

 $D_0 =$ outside diameter of bend


 D_i = inside diameter of bend = $Do - 2 \ge e_n$

e = minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3

R = radius of the bend

ep2 = minimum required wall thickness of the extrados

Reducers

Junction between the large end of a cone and a cylinder without a knuckle

The minimum required wall thickness (e1) of the larger cylinder adjacent to the junction is calculated from Subsection 6.4.6.2 as the greater of ecyl and ej where ej is determined from

$$\beta = \frac{1}{3} \sqrt{\frac{D_c}{e_j} \frac{\tan \alpha}{1 + \frac{1}{\sqrt{\cos \alpha}}}} - 0.15$$
(Eq. 6.4.6 - 2)
$$e_j = \frac{p_{c\beta D_c}}{2f}$$
(Eq. 6.4.6 - 1)

The value of ej is acceptable, if the value given by Eq. 6.4.6-1 is not less than that assumed in Eq. 6.4.6-2

$$e_{con} = \frac{p_c D_e}{2fZ + p_c} \frac{1}{COS(\alpha)}$$

$$e_{cyl} = \frac{p_c D_{01}}{2fZ + p_c}$$
(Eq. 6.4.4 - 2)

 e_1 = thickness of larger cylinder = max(e_j , e_{cyl})

$$e_3 =$$
thickness of cone shell $= max(e_i, e_{con})$

where

 $D_e = outside diameter of the cone$

 D_{01} = outside diameter of the larger cylinder

 D_{02} = outside diameter of the small cylinder

 D_c = mean diameter of the larger cylinder at the junction with the cone = D_{01} - e_n

- e_n = nominal wall thickness of the larger cylinder at the junction with the cone
- \propto = cone angle

e1 = minimum required wall thickness for larger cylinder adjacent to the junction.

 $e_3 = minimum$ required wall thickness at cone.

f = Allowable stress for material at maximum temperature

 p_c = maximum internal pressure = maximum of CAEPIPE input pressures P1 through P10

Z = weld efficiency factor = 1.0

Junction between the small end of a cone and a cylinder without a knuckle

The minimum required wall thickness (e2) of the small cylinder adjacent to the junction is calculated according to Subsection 6.4.8.2 as follows.

$$s = \frac{e_3}{e_{j2}}$$

With e3 already determined in the earlier section, assume value of ej2 and calculate the values of s, τ and β_H

When s < 1.0, then

$$\tau = s \sqrt{\frac{s}{\cos \alpha}} + \sqrt{\frac{1 + s^2}{2}}$$

When $s \ge 1.0$, then

$$\tau = 1 + \sqrt{s \frac{1 + s^2}{2\cos\alpha}}$$

$$\beta_{\rm H} = 0.4 \sqrt{\frac{D_c}{e_{j2}} \frac{\tan \alpha}{\tau}} + 0.5 \qquad (Eq. \ 6.4.8 - 4)$$
$$e_{j2} = \frac{p_c D_c \beta_{\rm H}}{2fZ} \qquad (Eq. \ 6.4.8 - 5)$$

The value of ej2 is acceptable, if the value given by Eq. 6.4.8-5 is not less than that assumed for Eq. 6.4.8-4

$$e_{cyl} = \frac{p_c D_{02}}{2fZ + p_c}$$
$$e_2 = \max(e_{j2}, e_{cyl})$$

where

 D_{02} = outside diameter of the small cylinder at the junction with the cone

 D_c = mean diameter of the small cylinder at the junction with the cone = D_{02} - e_n

 e_n = nominal wall thickness of the small cylinder at the junction with the cone

 \propto = cone angle

e2 = minimum required wall thickness of the small cylinder at the junction with the cone

f = Allowable stress for material at maximum temperature

 p_c = maximum internal pressure = maximum of CAEPIPE input pressures P1 through P10 Z = weld efficiency factor = 1.0

External Pressure Design according to SS EN 13480-3 (2017)

Pipes, Elbows, Mitre Bends and Reducers

Interstiffener collapse

The thickness of the pipe within the unstiffened length L shall not be less than that determined by the following.

$$\begin{split} P_{r} &\geq k. P_{c} \\ P_{y} &= \frac{Se_{a}}{R_{m}} \\ P_{m} &= \frac{E_{t}e_{a}\epsilon}{R_{m}} \\ \epsilon &= \frac{1}{n_{cyl}^{2}-1+\frac{Z^{2}}{2}} \Biggl\{ \frac{1}{\left(\frac{n_{cyl}^{2}}{Z^{2}}+1\right)^{2}} + \frac{e_{a^{2}}}{12R_{m^{2}(1-v^{2})}} \left(n_{cyl}^{2}-1+Z^{2}\right)^{2} \Biggr\} \\ Z &= \frac{\pi R_{m}}{L} \end{split}$$

using the calculated value of Pm/Py, Pr/Py is determined from Table 9.3.2.1 of Subsection 9.3.2

where

 n_{cvl} = integer >= 2 to minimize the value of P_{m} .

CAEPIPE goes through an iterative routine by increasing the value of ncyl from 2 and above until the minimum collapse pressure (pm) is reached.

 R_m = mean radius of the pipe

L = length between the stiffener, is calculated from CAEPIPE input as follows

for Pipe, L = length of pipe (= distance between the "From" and "To" node of CAEPIPE)

for Elbow and Miter bend, L = arc length measured on extrados of elbow and miter bend

for Reducer, L = Length of the reducer

 E_t = Young's modulus of material at design temperature (max of CAEPIPE Temperature T1 through T10)

 e_a = analysis thickness of reducer at smaller end = en - corr.all - mill tolerance

 e_n = nominal thickness of reducer at smaller end

k = factor = 1.5

Pc = external pressure = maximum negative CAEPIPE input pressures P1 through P10

S = elastic stress limits for pipe and stiffener for External Pressure Design

= "Rp0.2t" for non-austenitic steels

= "Rp0.2t/1.25" for austenitic steels

Note:

Generally, allowable stress is (2/3) x Yield. So, for Piping code = EN 13480-3, the value of Rp0.2t is computed as "Rp0.2t = f x 1.5"

For all other Piping Codes, the value of Rp0.2t is computed as "Rp0.2t = allowable stress x 1.5".

Additional check for Reducers

In addition to the above, as stated in Subsection 9.4.2 of EN 13480-3, the moment of inertia, Ix taken parallel to the axis of the cylinder, of the part of the cone and cylinder with a distance of $\sqrt{D_{eq} \cdot e}$ on either side of the junction is not less than:

$$I_{x} = 0.18D_{eq}LD_{s}^{2}\frac{p_{c}}{E_{t}} \le I_{xa}$$

where

 $D_{eq} = equivalent diameter = \frac{\frac{D_1 + D_2}{2}}{\cos(\alpha)}$

 D_1 = outside diameter of larger end of reducer

 D_2 = outside diameter of smaller end of reducer

 α =cone angle of reducer input in CAEPIPE

Ixa = moment of inertia of reducer at smaller end

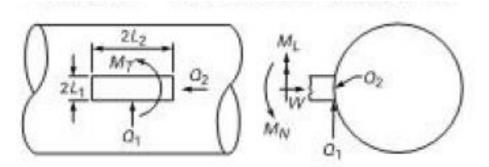
Ds = diameter of the centroid of the moment of inertia of the stiffening cross section calculated as shown below

$$I_{\text{cone}} = \left(\sqrt{D_{\text{eq}}e_1} \cdot e_1\right) \left(\frac{D_{\text{mcon}}}{2}\right)^2 = (A_{\text{cone}}) \left(\frac{D_{\text{mcon}}}{2}\right)^2$$
$$I_{\text{Cyl}} = \left(\sqrt{D_{\text{eq}}e_2} \cdot e_2\right) \left(\frac{D_{\text{mcyl}}}{2}\right)^2 = (A_{\text{cyl}}) \left(\frac{D_{\text{mcyl}}}{2}\right)^2$$
$$I_{\text{stiff}} = \left(A_{\text{cone}} + A_{\text{cyl}}\right) \left(\frac{D_s}{2}\right)^2$$

From the above,

 $I_{cone} + I_{Cyl} = I_{stiff}$ and

$$D_{s} = 2 \sqrt{\frac{I_{stiff}}{(A_{cone} + A_{cyl})}}$$


 e_1 = analysis thickness of reducer at larger end = en1 – corr.all – mill tolerance

 e_2 = analysis thickness of reducer at smaller end = en2 - corr.all - mill tolerance

 e_{n1} & e_{n2} = nominal thickness of reducer at larger end and smaller end respectively

Lug Evaluation

Rectangular Cross-section Welded Attachments

The notations described below are used in the formulas for the design.

L1=half length of attachment in circumferential direction of the run pipe

*L*2= half length of attachment in longitudinal direction of the run pipe

R = mean pipe radius

- D_o =outside diameter of run pipe
- T = nominal run pipe wall thickness
- L_a = lesser of L_2 and T
- L_b = lesser of L_1 and T

$$L_c = \text{lesser of } L_1 \text{ and } L_2$$

$$L_d$$
 = greater of L₁ and L₂

 $A_T = 4. L_1. L_2 =$ cross-sectional area of the rectangular attachment

$$Z_{tL} = \left(\frac{4}{3}\right) \cdot L_1 \cdot L_2^2$$
$$Z_{tN} = \left(\frac{4}{3}\right) \cdot L_1^2 \cdot L_2$$
$$\beta_1 = \frac{L_1}{R}$$
$$\beta_2 = \frac{L_2}{R}$$
$$\gamma = \frac{R}{T}$$

Limits of Applicability

 $eta_1 \leq 0.5$ $eta_2 \leq 0.5$

$$\beta_1$$
. $\beta_2 \leq 0.75$

 M_L = bending moment applied to the attachment as shown in figure above

- M_N = bending moment applied to the attachment as shown in figure above
- M_T = torsional moment applied to the attachment as shown in figure above
- Q_1 = shear load applied to the attachment as shown in figure above.
- Q_2 = shear load applied to the attachment as shown in figure above
- W = thrust load applied to the attachment as shown in figure above

 M_L , M_N , M_T , Q_1 , Q_2 and W are determined at the surface of the pipe. The values of attachment loads used in the stress calculation are based on the loads used in the different code equations.

 M_L^{**} , M_N^{**} , M_T^{**} , Q_1^{**} , Q_2^{**} and W^{**} are absolute values of maximum loads occurring simultaneously under all service loading conditions.

Calculate η , X_1 and Y_1 using the factors listed in Table below.

Load	Index	A	θ	X_{o}	Y_o	
Thrust (W)	C_{W}	2.2	40°	0	0.05	
Longitudinal Moment (M_L)	C _L	2.0	50°_{\circ}	-0.45	-0.55	
Circumferential Moment (M_N)	C _N	1.8	40^{0}	-0.75	-0.60	
	$X_1 = X_1$	$X_o + log_1$	$_{10}\beta_1$			
	$Y_1 = 1$	$Y_o + log_1$	$_0\beta_2$			
$\eta = -(X_1 Cos$	$s\theta + Y_1 Sin$	$(n\theta) - \frac{1}{A_o}$	$(X_1Sin\theta -$	$Y_1 Cos \theta)^2$		
$C_W = 3.82(\gamma)^{1.64} \beta_1 \beta_2 \eta^{1.54}$ but no	ot less than	1.0				
$C_L = 0.26(\gamma)^{1.74} \beta_1 {\beta_2}^2 \eta^{4.74}$ but no	ot less that	n 1.0				
$C_N = 0.38(\gamma)^{1.90} {\beta_1}^2 \beta_2 \eta^{3.40}$ but n	ot less that	n 1.0				
$B_L = (2/3) C_L$ but not less than 1	.0					
$B_N = (2/3) C_N$ but not less than 2	1.0					
$B_W = (2/3) C_w$ but not less than	1.0					
$K_T = 2.0$ for full penetration weld	sandfillet	or partial j	penetration	welds welde	d on 4 sides	
= 3.6 for fillet or partial penet						
$S_A = f(1.25S_c + 0.25S_h)$ as defined in						
S_c = allowable stress at ambient term		-	-		,)
S_h = allowable stress at Max. Tempo				nent materia	l allowable)	
S_y = yield stress (lesser of pipe or at	tachment	material yi	eia stress)			
(A) Calculate Pipe Stress S _{MTS} du	ie to Sust	ained Lo	ads on Atta	achment		

(A) Calculate Pipe Stress S_{MTS} due to Sustained Loads on Attachment

$$M_{TTS} = max \left(\frac{M_{TS}}{L_c L_d T \left[1 + \left(\frac{L_c}{L_d} \right) \right]}; \frac{M_{TS}}{\left[0.8 + 0.05 \left(\frac{L_d}{L_c} \right) \right] L_c^2 L_d} \right)$$
$$S_{MTS} = \frac{B_W W_S}{A_T} + \frac{B_N M_{NS}}{Z_{tN}} + \frac{B_L M_{LS}}{Z_{tL}} + \frac{Q_{1S}}{2L_1 L_a} + \frac{Q_{2S}}{2L_2 L_b} + M_{TTS}$$

where

 W_s , Q_{1s} and Q_{2s} are the thrust load and shear forces applied at the attachment due to Weight and Other Sustained Loads

 M_{TS} , M_{LS} and M_{NS} are the torsional moment and bending moments applied at the attachment due to Weight and Other Sustained Loads

Note: Absolute values of Forces and Moments are used while calculating S_{MTS} Stresses.

(B) Calculate PipeStress S_{MTO} due to Occasional Loads on Attachment

$$M_{TTO} = max \left(\frac{M_{TO}}{L_c L_d T \left[1 + \left(\frac{L_c}{L_d} \right) \right]}; \frac{M_{TO}}{\left[0.8 + 0.05 \left(\frac{L_d}{L_c} \right) \right] L_c^2 L_d} \right)$$
$$S_{MTO} = \frac{B_W W_o}{A_T} + \frac{B_N M_{NO}}{Z_{tN}} + \frac{B_L M_{LO}}{Z_{tL}} + \frac{Q_{1O}}{2L_1 L_a} + \frac{Q_{2O}}{2L_2 L_b} + M_{TTO}$$

where

 W_0 , Q_{10} and Q_{20} are the thrust load and shear forces applied at the attachment due to Occasional Loads such as Wind or Seismic

 M_{TO} , M_{LO} and M_{NO} are the torsional moment and bending moments applied at the attachment due to Occasional Loads such as Wind or Seismic

Note: Absolute values of Forces and Moments are used while calculating S_{MTO} Stresses.

(C) Calculate PipeStresses S_{NTE} and S_{PTE} due to Thermal Loads on Attachment

$$M_{TTE} = max \left(\frac{M_{TE}}{L_c L_d T \left[1 + \left(\frac{L_c}{L_d} \right) \right]}; \frac{M_{TE}}{\left[0.8 + 0.05 \left(\frac{L_d}{L_c} \right) \right] L_c^2 L_d} \right)$$
$$S_{NTE} = \frac{C_W W_E}{A_T} + \frac{C_N M_{NE}}{Z_{tN}} + \frac{C_L M_{LE}}{Z_{tL}} + \frac{Q_{1E}}{2L_1 L_a} + \frac{Q_{2E}}{2L_2 L_b} + M_{TTE}$$

 $S_{PTE} = K_T \cdot S_{NTE}$

where

 $W_{\text{E}},\,Q_{1\text{E}}$ and $Q_{2\text{E}}$ are the thrust load and shear forces applied at the attachment due to Thermal Loads

 $M_{TE}\text{, }M_{LE}$ and M_{NE} are the torsional moment and bending moments applied at the attachment due to Thermal Loads

Note: Absolute values of Forces and Moments are used while calculating S_{NTE} Stresses.

(D) Calculate PipeStresses S_{NTD} and S_{PTD} due to Settlement Loads on Attachment

$$M_{TTD} = max \left(\frac{M_{TD}}{L_c L_d T \left[1 + \left(\frac{L_c}{L_d} \right) \right]}; \frac{M_{TD}}{\left[0.8 + 0.05 \left(\frac{L_d}{L_c} \right) \right] L_c^2 L_d} \right)$$
$$S_{NTD} = \frac{C_W W_D}{A_T} + \frac{C_N M_{ND}}{Z_{tN}} + \frac{C_L M_{LD}}{Z_{tL}} + \frac{Q_{1D}}{2L_1 L_a} + \frac{Q_{2D}}{2L_2 L_b} + M_{TTD}$$
$$S_{PTD} = K_T S_{NTD}$$

where

 $W_{\rm D}\text{, }Q_{1\rm D}$ and $Q_{2\rm D}$ are the thrust load and shear forces applied at the attachment due to Settlement Loads

 $M_{\rm TD},~M_{\rm LD}$ and $M_{\rm ND}$ are the torsional moment and bending moments applied at the attachment due to Settlement Loads

Note: Absolute values of Forces and Moments are used while calculating S_{NTD} Stresses.

(E) Calculate PipeStresses S_{MTR} and S_{PTR} due to Sustained + Thermal Loads

 $S_{MTR} = Stress S_{MTS}$ calculated in Subsection A above

 S_{PTR} = Stress S_{PTE} calculated in Subsection C above

(F) Calculate Attachment Stresses: S_{NT}** due to Abs. Max. Loads

$$M_{TT}^{**} = max \left(\frac{M_T^{**}}{L_c L_d T \left[1 + \left(\frac{L_c}{L_d} \right) \right]}; \frac{M_T^{**}}{\left[0.8 + 0.05 \left(\frac{L_d}{L_c} \right) \right] L_c^2 L_d} \right)$$
$$S_{NT}^{**} = \frac{C_W W^{**}}{A_T} + \frac{C_N M_N^{**}}{Z_{tN}} + \frac{C_L M_L^{**}}{Z_{tL}} + \frac{Q_1^{**}}{2L_1 L_a} + \frac{Q_2^{**}}{2L_2 L_b} + M_{TT}^{**}$$

Analysis of Attachment Welded to Pipe with a Full Penetration Weld

Sustained Stress $(S_{SL}) = S_L + S_{MTS} \le 1.5S_h$ Occasional Stress $(S_{SO}) = S_{LO} + S_{MTS} + S_{MTO} \le k.S_y$ Thermal Stress $(S_{SE}) = S_E + (S_{PTE} / 2.0) \le S_A$ Settlement Stress $(S_{SD}) = S_D + (S_{PTD} / 2.0) \le 3.0S_h$ Sustained + Thermal Stress $(S_{SR}) = S_{TE} + S_{MTR} + (S_{PTR} / 2.0) \le (S_h + S_A)$ <u>Additional Check</u>

$$S_{NT}^{**} \le 2.S_{Y}$$

 $\left| \frac{Q_{1}^{**}}{2L_{1}L_{a}} + \frac{Q_{2}^{**}}{2L_{2}L_{b}} + M_{TT}^{**} \right| \le S_{Y}$

Analysis of Attachment Welded to Pipe with a Fillet or Partial Penetration Weld

Sustained Stress $(S_{SL}) = S_L + S_{MTS} \le 1.5S_h$ Occasional Stress $(S_{SO}) = S_{LO} + S_{MTS} + S_{MTO} \le k.S_y$ Thermal Stress $(S_{SE}) = S_E + (S_{PTE} / 2.0) \le S_A$ Settlement Stress $(S_{SD}) = S_D + (S_{PTD} / 2.0) \le 3.0S_h$ Sustained + Thermal Stress $(S_{SR}) = S_{TE} + S_{MTR} + (S_{PTR} / 2.0) \le (S_h + S_A)$

Additional Check

$$\left| S_{\rm NT}^{**} \right| \le 2.Sy$$
$$\left| \frac{Q_1^{**}}{2L_1L_a} + \frac{Q_2^{**}}{2L_2L_b} + M_{TT}^{**} \right| \le S_Y$$

Note: Additional compliance check as per Eq. 7 and Eq. 8 of Y-3420 (b) are not performed in CAEPIPE at this time

where,

 S_L = Sustained Stress on Run Pipe as per NC-3652 Eq. (8)

 S_{LO} = Sustained + Occasional Stress on Run Pipe as per NC-3653.1 Eq. (9)

 S_E = Thermal Stress on Run Pipe as per NC-3653.2 Eq. (10)

 S_D = Settlement Stress on Run Pipe as per NC-3653.2 Eq. (10a)

 S_{TE} = Sustained + Thermal Stress on Run Pipe as per NC-3653.2 Eq. (11)

 S_{MTS} = Pipe Stress S_{MTS} computed in Subsection A above

 S_{MTO} = Pipe Stress S_{MTO} computed in Subsection B above

 S_{PTE} = Pipe Stress S_{PTE} computed in Subsection C above

 S_{PTD} = Pipe Stress S_{PTD} computed in Subsection D above

 S_{MTR} = Pipe Stress S_{MTR} computed in Subsection E above

 S_{PTR} = Pipe Stress S_{PTR} computed in Subsection E above

 S_{NT}^{**} = Pipe Stress S_{NT}^{**} computed in Subsection F above

HollowCircular Cross-section Welded Attachments

The notations described below are used in the formulas for the design.

R = mean run pipe radius

 R_o = run pipe outside radius

 r_o = attachment outside radius

 r_i = attachment inside radius

 D_o = outside diameter of run pipe

 d_o = outside diameter of attachment

T = nominal run pipe wall thickness

t = nominal attachment wall thickness

 $A_T = \pi (r_o^2 - r_i^2)$ = cross-sectional area of the circular attachment

$$I_T = \frac{\pi}{4} (r_o{}^4 - r_i{}^4)$$
$$Z_T = \frac{I_T}{r_o}$$
$$J = \min(\pi r_o{}^2 T, \ Z_T)$$
$$\gamma = \frac{R_o}{T}$$
$$\beta = \frac{d_o}{D_o}$$
$$\tau = \frac{t}{T}$$

Limits of Applicability

 $4.0 \leq \gamma \leq 50$

$$0.2 \le \tau \le 1.0$$
$$0.3 \le \beta \le 1.0$$

- M_L = bending moment applied to the attachment as shown in figure above
- M_N = bending moment applied to the attachment as shown in figure above
- M_T = torsional moment applied to the attachment as shown in figure above
- Q_1 = shear load applied to the attachment as shown in figure above.
- Q_2 = shear load applied to the attachment as shown in figure above
- W = thrust load applied to the attachment as shown in figure above

 M_L , M_N , M_T , Q_1 , Q_2 and W are determined at the surface of the pipe. The values of attachment loads used in the stress calculation are based on the loads used in the different code equations.

 M_L^{**} , M_N^{**} , M_T^{**} , Q_1^{**} , Q_2^{**} and W^{**} are absolute values of maximum loads occurring simultaneously under all service loading conditions.

 $C = A_o (2\gamma)^{n1} \beta^{n2} \tau^{n3}$ but not less than 1.0

Equation for C is used to determine C_w , C_L and C_N based on the following Table. Maximum values of C_w , C_L and C_N among the values calculated for the pipe and the attachment are used subsequently.

Load	Index	Part	β range	A	n1	n2	n3		
Thrust (W)	C_{W}	Pipe	0.3 to1.0	1.40	0.81	(a)	1.33		
		Attachment	0.3 to1.0	4.00	0.55	(b)	1.00		
Longitudinal	C_{L}	Pipe	0.3 to1.0	0.46	0.60	-0.04	0.86		
Moment (M_L)		Attachment	0.3 to1.0	1.10	0.23	-0.38	0.38		
Circumferential	C _N	Pipe	0.3 to 0.55	0.51	1.01	0.79	0.89		
Moment (M_N)		Attachment	0.3 to 0.55	0.84	0.85	0.80	0.54		
Circumferential	C_N	Pipe	>0.55 to 1.0	0.23	1.01	-0.62	0.89		
Moment (M_N)		Attachment	>0.55 to 1.0	0.44	0.85	-0.28	0.54		
(a) \mathbf{D} and \mathbf{D}	(a) Barris ρn^2 with $\rho^{-1.2\beta^3}$								

- (a) Replace β^{n_2} with $e^{-1.2\beta^3}$
- (b) Replace β^{n2} with $e^{-1.35\beta^3}$
- $C_T = 1.0 \text{ for } \beta \le 0.55$

= C_N for β = 1.0, but not less than 1.0;

 C_{T} should be linearly interpolated for 0.55 <= β < 1.0, but not less than 1.0

- $B_W = 0.5 C_w$ but not less than 1.0
- $B_L = 0.5 C_L$ but not less than 1.0
- $B_N = 0.5 C_N$ but not less than 1.0

 $B_T = 0.5 C_T$ but not less than 1.0

- $K_T = 1.8$ for full penetration welds
 - = 2.0 for fillet or partial penetration welds
- $S_A = f(1.25S_c + 0.25S_h)$ as defined in NC/ND-3611.2 (lesser of pipe or attachment material allowable)
- S_c = allowable stress at ambient temperature (lesser of pipe or attachment material allowable)
- S_h = allowable stress at maximum temperature (lesser of pipe or attachment material allowable)
- S_v = yield stress (lesser of pipe or attachment material yield stress)

 M_L , M_N , M_T , Q_1 , Q_2 and W are determined at the surface of the pipe. The values of attachment loads used in the stress calculation are based on the loads used in the different code equations.

 M_L^{**} , M_N^{**} , M_T^{**} , Q_1^{**} , Q_2^{**} and W^{**} are absolute values of maximum loads occurring simultaneously under all service loading conditions.

(A) Calculate PipeStress S_{MTS} due to Sustained Loads on Attachment

$$S_{MTS} = \frac{B_W W_S}{A_T} + \frac{B_N M_{NS}}{Z_T} + \frac{B_L M_{LS}}{Z_T} + \frac{2Q_{1S}}{A_T} + \frac{2Q_{2S}}{A_T} + \frac{B_T M_{TS}}{J}$$

where

 W_s , Q_{1s} and Q_{2s} are the thrust load and shear forces applied at the attachment due to Weight and Other Sustained Loads

 M_{TS} , M_{LS} and M_{NS} are the torsional moment and bending moments applied at the attachment due to Weight and Other Sustained Loads

Note: Absolute values of Forces and Moments are used while calculating S_{MTS} Stresses.

(B) Calculate PipeStress S_{MTO} due to Occasional Loads on Attachment

$$S_{MTO} = \frac{B_W W_O}{A_T} + \frac{B_N M_{NO}}{Z_T} + \frac{B_L M_{LO}}{Z_T} + \frac{2Q_{1O}}{A_T} + \frac{2Q_{2O}}{A_T} + \frac{B_T M_{TO}}{J}$$

where

 $W_{\rm O}\!\!,\,Q_{\rm 1O}$ and $Q_{\rm 2O}$ are the thrust load and shear forces applied at the attachment due to Occasional Loads such as Wind or Seismic

 $\rm M_{TO},~M_{LO}$ and $\rm M_{NO}$ are the torsional moment and bending moments applied at the attachment due to Occasional Loads such as Wind or Seismic

Note: Absolute values of Forces and Moments are used while calculating S_{MTO} Stresses.

(C) Calculate PipeStresses S_{NTE} and S_{PTE} due to Thermal Loads on Attachment

$$S_{NTE} = \frac{C_W W_E}{A_T} + \frac{C_N M_{NE}}{Z_T} + \frac{C_L M_{LE}}{Z_T} + \frac{2Q_{1E}}{A_T} + \frac{2Q_{2E}}{A_T} + \frac{C_T M_{TE}}{J}$$

 $S_{PTE} = K_T \cdot S_{NTE}$

where

 $W_{\rm E},\,Q_{\rm 1E}$ and $Q_{\rm 2E}$ are the thrust load and shear forces applied at the attachment due to Thermal Loads

 $M_{\rm TE},~M_{\rm LE}$ and $M_{\rm NE}$ are the torsional moment and bending moments applied at the attachment due to Thermal Loads

Note: Absolute values of Forces and Moments are used while calculating S_{NTE} Stresses.

(D) Calculate PipeStresses S_{NTD} and S_{PTD} due to Settlement Loads on Attachment

$$S_{NTD} = \frac{C_W W_D}{A_T} + \frac{C_N M_{ND}}{Z_T} + \frac{C_L M_{LD}}{Z_T} + \frac{2Q_{1D}}{A_T} + \frac{2Q_{2D}}{A_T} + \frac{C_T M_{TD}}{J}$$

 $S_{PTD} = K_T \cdot S_{NTD}$

where

 $W_{\rm D},\,Q_{\rm 1D}$ and $Q_{\rm 2D}$ are the thrust load and shear forces applied at the attachment due to Settlement Loads

 $M_{\rm TD}\text{,}~M_{\rm LD}$ and $M_{\rm ND}$ are the torsional moment and bending moments applied at the attachment due to SettlementLoads

Note: Absolute values of Forces and Moments are used while calculating S_{NTD} Stresses.

(E) Calculate PipeStresses S_{MTR} and S_{PTR} due to Sustained + Thermal Loads on Attachment

 $S_{MTR} = Stress S_{MTS}$ calculated in Subsection A above

 S_{PTR} = Stress S_{PTE} calculated in Subsection C above

(F) Calculate Attachment Stresses: S_{NT}** due to Abs. Max. Loads

$$S_{NT}^{**} = \frac{C_W W^{**}}{A_T} + \frac{C_N M_N^{**}}{Z_T} + \frac{C_L M_L^{**}}{Z_T} + \frac{2Q_1^{**}}{A_T} + \frac{2Q_2^{**}}{A_T} + \frac{C_T M_T^{**}}{J}$$

Analysis of Attachment Welded to Pipe with a Full Penetration Weld

Sustained Stress $(S_{SL}) = S_L + S_{MTS} \le 1.5S_h$ Occasional Stress $(S_{SO}) = S_{LO} + S_{MTS} + S_{MTO} \le k.S_y$ Thermal Stress $(S_{SE}) = S_E + (S_{PTE} / 2.0) \le S_A$ Settlement Stress $(S_{SD}) = S_D + (S_{PTD} / 2.0) \le 3.0S_h$ Sustained + Thermal Stress $(S_{SR}) = S_{TE} + S_{MTR} + (S_{PTR} / 2.0) \le (S_h + S_A)$

Additional Check

$$\left|\frac{S_{\text{NT}}^{**}}{A_{T}}\right| \le 2.Sy$$

$$\left|\frac{2Q_{1}^{**}}{A_{T}} + \frac{2Q_{2}^{**}}{A_{T}} + \frac{M_{T}^{**}}{J}\right| \le S_{Y}$$

Analysis of Attachment Welded to Pipe with a Fillet or Partial Penetration Weld

Sustained Stress $(S_{SI}) = S_L + S_{MTS} \le 1.5S_h$ Occasional Stress $(S_{SO}) = S_{LO} + S_{MTS} + S_{MTO} \le k.S_y$ Thermal Stress $(S_{SE}) = S_E + (S_{PTE} / 2.0) \le S_A$ Settlement Stress $(S_{SD}) = S_D + (S_{PTD} / 2.0) \le 3.0S_h$ Sustained + Thermal Stress $(S_{SR}) = S_{TE} + S_{MTR} + (S_{PTR} / 2.0) \le (S_h + S_A)$

Additional Check

$$\left|\frac{S_{NT}^{**}}{A_{T}}\right| \le 2.Sy$$

$$\left|\frac{2Q_{1}^{**}}{A_{T}} + \frac{2Q_{2}^{**}}{A_{T}} + \frac{M_{T}^{**}}{J}\right| \le S_{Y}$$

Note: Additional compliance checks as per Eq. 7 and Eq. 8 of Y-5420 (b) are not performed in CAEPIPE at this time

where,

- k = 1.5 for Level A& B Loadings, 1.8 for Level C loadings and 2.0 for Level D loadings
- S_L = Sustained Stress on Run Pipe as per NC-3652 Eq. (8)
- S_{LO} = Sustained + Occasional Stress on Run Pipe as per NC-3653.1 Eq. (9)

 S_E = Thermal Stress on Run Pipe as per NC-3653.2 Eq. (10)

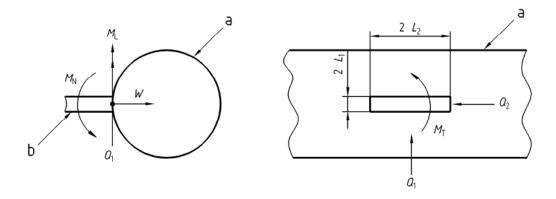
 S_D = Settlement Stress on Run Pipe as per NC-3653.2 Eq. (10a)

 S_{TE} = Sustained + Thermal Stress on Run Pipe as per NC-3653.2 Eq. (11)

 S_{MTS} = Pipe Stress S_{MTS} computed in Subsection A above

 S_{MTO} = Pipe Stress S_{MTO} computed in Subsection B above

 S_{PTE} = Pipe Stress S_{PTE} computed in Subsection C above


 S_{PTD} = Pipe Stress S_{PTD} computed in Subsection D above

 S_{MTR} = Pipe Stress S_{MTR} computed in Subsection E above

 S_{PTR} = Pipe Stress S_{PTR} computed in Subsection E above

 S_{NT}^{**} = Pipe Stress S_{NT}^{**} computed in Subsection F above

Rectangular Cross-section Welded Attachments

The notations described below are used in the formulas for the design.

L1= half length of attachment in circumferential direction of the run pipe

L2 = half length of attachment in longitudinal direction of the run pipe

R = mean pipe radius

 D_o = outside diameter of run pipe

- T = nominal run pipe wall thickness
- L_a = lesser of L_2 and T
- L_b = lesser of L₁ and T

$$L_c$$
 = lesser of L_1 and L_2

 L_d = greater of L₁ and L₂

 $A_T = 4. L_1. L_2 =$ cross-sectional area of the rectangular attachment

$$Z_{tL} = \left(\frac{4}{3}\right) \cdot L_1 \cdot L_2^2$$
$$Z_{tN} = \left(\frac{4}{3}\right) \cdot L_1^2 \cdot L_2$$
$$\beta_1 = \frac{L_1}{R}$$
$$\beta_2 = \frac{L_2}{R}$$
$$\gamma = \frac{R}{T}$$

Limits of Applicability

 $\beta_1 \le 0.5$ $\beta_2 \le 0.5$

$\beta_1 . \beta_2 \le 0.75$

- M_L = bending moment applied to the attachment as shown in figure above
- M_N = bending moment applied to the attachment as shown in figure above
- M_T = torsional moment applied to the attachment as shown in figure above
- Q_1 = shear load applied to the attachment as shown in figure above.
- Q_2 = shear load applied to the attachment as shown in figure above
- W = thrust load applied to the attachment as shown in figure above

 M_L , M_N , M_T , Q_1 , Q_2 and W are determined at the surface of the pipe. The values of attachment loads used in the stress calculation are based on the loads used in the different code equations.

 M_L^{**} , M_N^{**} , M_T^{**} , Q_1^{**} , Q_2^{**} and W^{**} are absolute values of maximum loads occurring simultaneously under all service loading conditions.

Calculate η , X_1 and Y_1 using the factors listed in Table below.

Load	Index	A	θ	Xo	Y_o		
Thrust (W)	C_{W}	2.2	40^{0}	0	0.05		
Longitudinal Moment (M_L)	CL	2.0	50^{0}	-0.45	-0.55		
Circumferential Moment (M_N)	C_{N}	1.8	40^{0}	-0.75	-0.60		
	$X_1 = X_1$	$X_o + log_1$	$_{0}eta_{1}$				
$Y_1 = Y_o + \log_{10}\beta_2$							
$\eta = -(X_1 Cos\theta + Y_1 Sin\theta) - \frac{1}{A_o}(X_1 Sin\theta - Y_1 Cos\theta)^2$							
$C_W = 3.82(\gamma)^{1.64} \beta_1 \beta_2 \eta^{1.54}$ but no	ot less than	1.0					
$C_L = 0.26(\gamma)^{1.74} \beta_1 \beta_2^2 \eta^{4.74}$ but not less than 1.0							
$C_N = 0.38(\gamma)^{1.90} \beta_1^{\ 2} \beta_2 \eta^{3.40}$ but n	ot less that	n 1.0					
$B_L = (2/3) C_L$ but not less than 1	.0						

- $B_N = (2/3) C_N$ but not less than 1.0
- $B_W = (2/3) C_W$ but not less than 1.0
- $K_T = 2.0$ for full penetration welds and fillet or partial penetration welds welded on 4 sides = 3.6 for fillet or partial penetration welds welded on 2 or 3 sides
- f_a = allowable stress range as defined in Clause 12.1.3 of EN 13480-3 (2017)
- S_c = allowable stress at ambient temperature
- f_h = allowable stress at max temperature as provided in Clause 12.1.3 of EN 13480-3 (2017)
- f_{cr} = design stress in the creep range as defined in Clause 5.3 of EN 13480-3 (2017)

$$R_{eHt}$$
 = yield stress

Pipe Stresses are calculated using the equations 11.5.3-1, 11.5.3-2, 11.5.3-3 and 11.5.3-4 provided in Clause 11.5.3.

(A) Calculate PipeStress S_{MTS} due to Sustained Loads on Attachment

$$M_{TTS} = max \left(\frac{M_{TS}}{L_c L_d T \left[1 + \left(\frac{L_c}{L_d} \right) \right]}; \frac{M_{TS}}{\left[0.8 + 0.05 \left(\frac{L_d}{L_c} \right) \right] L_c^2 L_d} \right)$$
$$S_{MTS} = \frac{B_W W_S}{A_T} + \frac{B_N M_{NS}}{Z_{tN}} + \frac{B_L M_{LS}}{Z_{tL}} + \frac{Q_{1S}}{2L_1 L_a} + \frac{Q_{2S}}{2L_2 L_b} + M_{TTS}$$

where

 W_s , Q_{1s} and Q_{2s} are the thrust load and shear forces applied at the attachment due to Weight and Other Sustained Loads

 M_{TS} , M_{LS} and M_{NS} are the torsional moment and bending moments applied at the attachment due to Weight and Other Sustained Loads

Note: Absolute values of Forces and Moments are used while calculating S_{MTS} Stresses.

(B) Calculate PipeStress S_{MTO} due to Occasional Loads on Attachment

$$M_{TTO} = max \left(\frac{M_{TO}}{L_c L_d T \left[1 + \left(\frac{L_c}{L_d} \right) \right]}; \frac{M_{TO}}{\left[0.8 + 0.05 \left(\frac{L_d}{L_c} \right) \right] L_c^2 L_d} \right)$$
$$S_{MTO} = \frac{B_W W_o}{A_T} + \frac{B_N M_{NO}}{Z_{tN}} + \frac{B_L M_{LO}}{Z_{tL}} + \frac{Q_{1O}}{2L_1 L_a} + \frac{Q_{2O}}{2L_2 L_b} + M_{TTO}$$

where

 W_0 , Q_{10} and Q_{20} are the thrust load and shear forces applied at the attachment due to Occasional Loads such as Wind or Seismic

 M_{TO} , M_{LO} and M_{NO} are the torsional moment and bending moments applied at the attachment due to Occasional Loads such as Wind or Seismic

Note: Absolute values of Forces and Moments are used while calculating S_{MTO} Stresses.

(C) Calculate Attachment Stresses: S_{NTE} and S_{PTE} due to Thermal Loads

$$M_{TTE} = max \left(\frac{M_{TE}}{L_c L_d T \left[1 + \left(\frac{L_c}{L_d} \right) \right]}; \frac{M_{TE}}{\left[0.8 + 0.05 \left(\frac{L_d}{L_c} \right) \right] L_c^2 L_d} \right)$$
$$S_{NTE} = \frac{C_W W_E}{A_T} + \frac{C_N M_{NE}}{Z_{tN}} + \frac{C_L M_{LE}}{Z_{tL}} + \frac{Q_{1E}}{2L_1 L_a} + \frac{Q_{2E}}{2L_2 L_b} + M_{TTE}$$
$$S_{PTE} = K_T \cdot S_{NTE}$$

where

 $W_{\text{E}},\,Q_{1\text{E}}$ and $Q_{2\text{E}}$ are the thrust load and shear forces applied at the attachment due to Thermal Loads

 $M_{\rm TE},~M_{\rm LE}$ and $M_{\rm NE}$ are the torsional moment and bending moments applied at the attachment due to Thermal Loads

Note: Absolute values of Forces and Moments are used while calculating S_{NTE} Stresses.

(D) Calculate PipeStresses S_{MTR} and S_{PTR} due to Sustained + Thermal Loads on Attachment

 S_{MTR} = additional stress resulting from sustained loads = S_{MTS} calculated in Subsection A above

 S_{PTR} = additional stress resulting from restrained thermal loads = S_{PTE} calculated in Subsection C above

(E) Calculate PipeStresses $S_{\mbox{\scriptsize MTC}}$ and $S_{\mbox{\scriptsize PTC}}$ due to Creep on Attachment

 S_{MTC} = additional stress resulting from sustained loads = S_{MTS} calculated in Subsection A above

 $S_{\mbox{\tiny PTC}}$ = additional stress resulting from restrained thermal loads = $S_{\mbox{\tiny PTE}}$ calculated in Subsection C above

(F) Calculate PipeStress S_{NT}** due to Abs. Max. Loads

$$M_{TT}^{**} = max \left(\frac{M_T^{**}}{L_c L_d T \left[1 + \left(\frac{L_c}{L_d} \right) \right]}; \frac{M_T^{**}}{\left[0.8 + 0.05 \left(\frac{L_d}{L_c} \right) \right] L_c^2 L_d} \right)$$
$$S_{NT}^{**} = \frac{C_W W^{**}}{A_T} + \frac{C_N M_N^{**}}{Z_T} + \frac{C_L M_L^{**}}{Z_T} + \frac{Q_1^{**}}{2L_1 L_a} + \frac{Q_2^{**}}{2L_2 L_b} + M_{TT}^{**}$$

Analysis of Attachment Welded to Pipe with a Full Penetration Weld

Sustained Stress $(S_{SL}) = S_1 + S_{MTS} \le 1.5 f_h$ Occasional Stress $(S_{SO}) = S_2 + S_{MTS} + S_{MTO} \le 1.8 f_h$ Thermal Stress $(S_{SE}) = S_3 + (S_{PTE} / 2.0) \le f_a$ Sustained + Thermal Stress $(S_{SR}) = S_4 + S_{MTR} + (S_{PTR} / 2.0) \le (f_h + f_a)$

Creep Stress (S_{SC}) = $S_4 + S_{MTC} + (S_{PTC} / 2.0) \le 1.25 f_{cr}$

Additional Check

$$S_{\rm NT}^{**} \le 2R_{\rm eHt} \\ \left| \frac{Q_1^{**}}{2L_1L_a} + \frac{Q_2^{**}}{2L_2L_b} + M_{TT}^{**} \right| \le R_{eHt}$$

Analysis of Attachment Welded to Pipe with a Fillet or Partial Penetration Weld

Sustained Stress $(S_{SL}) = S_1 + S_{MTS} \le 1.5 f_h$ Occasional Stress $(S_{SO}) = S_2 + S_{MTS} + S_{MTO} \le 1.8 f_h$ Thermal Stress $(S_{SE}) = S_3 + (S_{PTE} / 2.0) \le f_a$ Sustained + Thermal Stress $(S_{SR}) = S_4 + S_{MTR} + (S_{PTR} / 2.0) \le (f_h + f_a)$ Creep Stress $(S_{SC}) = S_4 + S_{MTC} + (S_{PTC} / 2.0) \le 1.25 f_{cr}$

Additional Check

$$S_{\rm NT}^{**} \leq 2R_{\rm eHt} \\ \left| \frac{Q_1^{**}}{2L_1 L_a} + \frac{Q_2^{**}}{2L_2 L_b} + M_{TT}^{**} \right| \leq R_{eHt}$$

Note: Additional compliance checks as per Eq. 11.5.4-1 and Eq. 11.5.4-2 of Clause 11.5.4 are not performed in CAEPIPE at this time.

where,

 S_1 = Sustained Stress on Run Pipe as per 12.3.2-1 of EN 13480-3 (2017)

 S_2 = Sustained + Occasional Stress on Run Pipe as per 12.3.3-1 of EN 13480-3 (2017)

 S_3 = Thermal Stress on Run Pipe as per 12.3.4-1 of EN 13480-3 (2017)

 S_4 = Sustained + Thermal Stress on Run Pipe as per 12.3.4-2 of EN 13480-3 (2017)

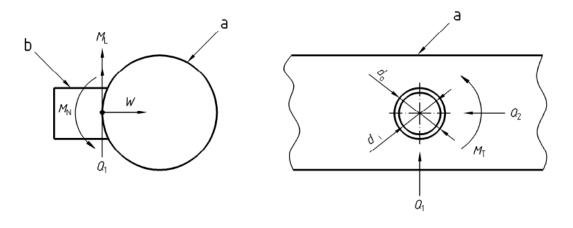
 S_5 = Settlement Stress on Run Pipe as per 12.3.5-1 of EN 13480-3 (2017)

 S_{MTS} = Pipe Stress S_{MTS} computed in Subsection A above

 S_{MTO} = Pipe Stress S_{MTO} computed in Subsection B above

 S_{PTE} = Pipe Stress S_{PTE} computed in Subsection C above

 S_{MTR} = Pipe Stress S_{MTR} computed in Subsection D above


 S_{PTR} = Pipe Stress S_{PTR} computed in Subsection D above

 S_{MTC} = Pipe Stress S_{MTR} computed in Subsection E above

 S_{PTC} = Pipe Stress S_{PTR} computed in Subsection E above

 S_{NT}^{**} = Pipe Stress S_{NT}^{**} computed in Subsection F above

HollowCircular Cross-section Welded Attachments

The symbols described below are used in the formulas for the design.

R = mean run pipe radius

 R_o = run pipe outside diameter

 r_o = attachment outside radius

 r_i = attachment inside radius

 D_o = outside diameter of run pipe

 d_o = outside diameter of attachment

T = nominal run pipe wall thickness

t = nominal attachment wall thickness

 $A_T = \pi (r_0^2 - r_i^2)$ = cross-sectional area of the circular attachment

$$I_T = \frac{\pi}{4} (r_o{}^4 - r_i{}^4)$$
$$Z_T = \frac{l_T}{r_o}$$
$$J = \min(\pi r_o{}^2 T, \ Z_T)$$
$$\gamma = \frac{R_o}{T}$$
$$\beta = \frac{d_o}{D_o}$$
$$\tau = \frac{t}{T}$$

Limits of Applicability

 $4.0 \le \gamma \le 50$

 $0.2 \le \tau \le 1.0$

$0.3 \le \beta \le 1.0$

 M_L = bending moment applied to the attachment as shown in figure above

 M_N = bending moment applied to the attachment as shown in figure above

 M_T = torsional moment applied to the attachment as shown in figure above

- Q_1 = shear load applied to the attachment as shown in figure above.
- Q_2 = shear load applied to the attachment as shown in figure above
- W = thrust load applied to the attachment as shown in figure above

 M_L , M_N , M_T , Q_1 , Q_2 and W are determined at the surface of the pipe. The values of attachment loads used in the stress calculation are based on the loads used in the different code equations.

 M_L^{**} , M_N^{**} , M_T^{**} , Q_1^{**} , Q_2^{**} and W^{**} are absolute values of maximum loads occurring simultaneously under all service loading conditions.

 $C = A_0 (2\gamma)^{n_1} \beta^{n_2} \tau^{n_3}$ but not less than 1.0

Equation for C is used to determine C_w , C_L and C_N based on the following Table. Maximum values of C_w , C_L and C_N among the values calculated for the pipe and the attachment are used subsequently.

Load	Index	Part	β range	A	n1	n2	n3
Thrust (W)	C_{W}	Pipe	0.3 to1.0	1.40	0.81	(a)	1.33
		Attachment	0.3 to1.0	4.00	0.55	(b)	1.00
Longitudinal	C _L	Pipe	0.3 to1.0	0.46	0.60	-0.04	0.86
Moment (M_{I})		Attachment	0.3 to1.0	1.10	0.23	-0.38	0.38
Circumferential	C_{N}	Pipe	0.3 to 0.55	0.51	1.01	0.79	0.89
Moment (M _N)		Attachment	0.3 to 0.55	0.84	0.85	0.80	0.54
Circumferential	C _N	Pipe	>0.55 to 1.0	0.23	1.01	-0.62	0.89
Moment (M _N)		Attachment	>0.55 to 1.0	0.44	0.85	-0.28	0.54
() - (O))		1 2 0 3					

- (a) Replace β^{n2} with $e^{-1.2\beta^3}$
- (b) Replace β^{n2} with $e^{-1.35\beta^3}$
- $C_T = 1.0 \text{ for } \beta \le 0.55$

= C_N for β = 1.0, but not less than 1.0;

 C_T should be linearly interpolated for 0.55 <= β < 1.0, but not less than 1.0

 $B_W = 0.5 C_w$ but not less than 1.0

 $B_L = 0.5 C_L$ but not less than 1.0

 $B_N = 0.5 C_N$ but not less than 1.0

- $B_T = 0.5 C_T$ but not less than 1.0
- $K_T = 1.8$ for full penetration welds
 - = 2.0 for fillet or partial penetration welds
- f_a = allowable stress range as defined in Clause 12.1.3 of EN 13480-3 (2017)
- S_c = allowable stress at ambient temperature
- f_h = allowable stress at max temperature as provided in Clause 12.1.3 of EN 13480-3 (2017)
- f_{cr} = design stress in the creep range as defined in Clause 5.3 of EN 13480-3 (2017)

 R_{eHt} = yield stress

(A) Calculate PipeStress S_{MTS} due to Sustained Loads on Attachment

$$S_{MTS} = \frac{B_W W_S}{A_T} + \frac{B_N M_{NS}}{Z_T} + \frac{B_L M_{LS}}{Z_T} + \frac{2Q_{1S}}{A_T} + \frac{2Q_{2S}}{A_T} + \frac{B_T M_{TS}}{J}$$

where

W_s, Q_{1s} and Q_{2s} are the thrust load and shear forces applied at the attachment due to Weight and Other Sustained Loads

M_{TS}, M_{LS} and M_{NS} are the torsional moment and bending moments applied at the attachment due to Weight and Other Sustained Loads

Note: Absolute values of Forces and Moments are used while calculating S_{MTS} Stresses.

(B) Calculate Pipe Stress S_{MTO} due to Occasional Loads on Attachment

$$S_{MTO} = \frac{B_W W_O}{A_T} + \frac{B_N M_{NO}}{Z_T} + \frac{B_L M_{LO}}{Z_T} + \frac{2Q_{1O}}{A_T} + \frac{2Q_{2O}}{A_T} + \frac{B_T M_{TO}}{J}$$

where

 W_0 , Q_{10} and Q_{20} are the thrust load and shear forces applied at the attachment due to Occasional Loads such as Wind or Seismic

M_{TO}, M_{LO} and M_{NO} are the torsional moment and bending moments applied at the attachment due to Occasional Loads such as Wind or Seismic

Note: Absolute values of Forces and Moments are used while calculating S_{MTO} Stresses.

(C) Calculate PipeStresses S_{NTE} and S_{PTE} due to Thermal Loads on Attachment

$$S_{NTE} = \frac{C_W W_E}{A_T} + \frac{C_N M_{NE}}{Z_T} + \frac{C_L M_{LE}}{Z_T} + \frac{2Q_{1E}}{A_T} + \frac{2Q_{2E}}{A_T} + \frac{C_T M_{TE}}{J}$$
$$S_{PTE} = K_T \cdot S_{NTE}$$

where

 W_E , Q_{1E} and Q_{2E} are the thrust load and shear forces applied at the attachment due to Thermal Loads

M_{TE}, M_{LE} and M_{NE} are the torsional moment and bending moments applied at the attachment due to Thermal Loads

Note: Absolute values of Forces and Moments are used while calculating S_{NTE} Stresses.

(D) Calculate PipeStresses S_{MTR} and S_{PTR} due to Sustained + Thermal Loads on Attachment

 S_{MTR} = Stress S_{MTS} calculated in Subsection A above

 S_{PTR} = Stress S_{PTE} calculated in Subsection C above

(E) Calculate PipeStresses S_{MTC} and S_{PTC} due to Creep on Attachment

 $S_{MTC} = Stress S_{MTS}$ calculated in Subsection A above

 S_{PTC} = Stress S_{PTE} calculated in Subsection C above

(F) Calculate PipeStress S_{NT}** due to Abs. Max. Loads on Attachment

$$S_{NT}^{**} = \frac{C_W W^{**}}{A_T} + \frac{C_N M_N^{**}}{Z_T} + \frac{C_L M_L^{**}}{Z_T} + \frac{2Q_1^{**}}{A_T} + \frac{2Q_2^{**}}{A_T} + \frac{C_T M_T^{**}}{J}$$

Analysis of Attachment Welded to Pipe with a Full Penetration Weld

Sustained Stress $(S_{SI}) = S_1 + S_{MTS} \le 1.5f_h$ Occasional Stress $(S_{SO}) = S_2 + S_{MTS} + S_{MTO} \le 1.8f_h$ Thermal Stress $(S_{SE}) = S_3 + (S_{PTE} / 2.0) \le f_a$ Sustained + Thermal Stress $(S_{SR}) = S_4 + S_{MTR} + (S_{PTR} / 2.0) \le (f_h + f_a)$ Creep Stress $(S_{SC}) = S_4 + S_{MTC} + (S_{PTC} / 2.0) \le 1.25f_{cr}$

Additional Check

$$\left|\frac{S_{NT}^{**}}{A_{T}}\right| \le 2.R_{eHt} \\ \left|\frac{2Q_{1}^{**}}{A_{T}} + \frac{2Q_{2}^{**}}{A_{T}} + \frac{M_{T}^{**}}{J}\right| \le R_{eHt}$$

Analysis of Attachment Welded to Pipe with a Fillet or Partial Penetration Weld

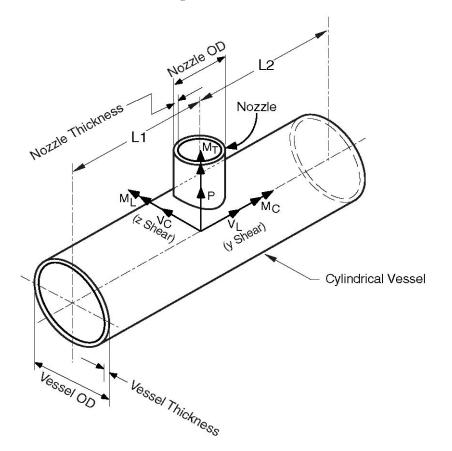
Sustained Stress $(S_{SL}) = S_1 + S_{MTS} \le 1.5 f_h$ Occasional Stress $(S_{SO}) = S_2 + S_{MTS} + S_{MTO} \le 1.8 f_h$ Thermal Stress $(S_{SE}) = S_3 + (S_{PTE} / 2.0) \le f_a$ Sustained + Thermal Stress $(S_{SR}) = S_4 + S_{MTR} + (S_{PTR} / 2.0) \le (f_h + f_a)$ Creep Stress $(S_{SC}) = S_4 + S_{MTC} + (S_{PTC} / 2.0) \le 1.25 f_{cr}$

Additional Check

$$\left| \frac{S_{\text{NT}}^{**}}{A_T} \right| \le 2.R_{eHt} \\ \left| \frac{2Q_1^{**}}{A_T} + \frac{2Q_2^{**}}{A_T} + \frac{M_T^{**}}{J} \right| \le R_{eHt}$$

Note: Additional compliance checks as perEq. 11.4.4-1 and Eq. 11.4.4-2 of Clause 11.4.4 are not performed in CAEPIPE at this time

where,


 S_1 = Sustained Stress on Run Pipe as per 12.3.2-1 of EN 13480-3 (2017)

- S_2 = Sustained + Occasional Stress on Run Pipe as per 12.3.3-1 of EN 13480-3 (2017)
- S_3 = Thermal Stress on Run Pipe as per 12.3.4-1 of EN 13480-3 (2017)
- S_4 = Sustained + Thermal Stress on Run Pipe as per 12.3.4-2 of EN 13480-3 (2017)

- S_5 = Settlement Stress on Run Pipe as per 12.3.5-1 of EN 13480-3 (2017)
- S_{MTS} = Pipe Stress S_{MTS} computed in Subsection A above
- S_{MTO} = Pipe Stress S_{MTO} computed in Subsection B above
- $S_{\mbox{\scriptsize PTE}} = \mbox{Pipe Stress } S_{\mbox{\scriptsize PTE}}$ computed in Subsection C above
- S_{MTR} = Pipe Stress S_{MTR} computed in Subsection D above
- $S_{\mbox{\tiny PTR}}$ = Pipe Stress $S_{\mbox{\tiny PTR}}$ computed in Subsection D above
- S_{MTC} = Pipe Stress S_{MTR} computed in Subsection E above
- S_{PTC} = Pipe Stress S_{PTR} computed in Subsection E above
- S_{NT}^{**} = Pipe Stress S_{NT}^{**} computed in Subsection F above

Nozzle Stiffness Calculations

Six stiffnesses are shown below at the nozzle-vessel interface - three are calculated and the other three are assumed rigid.

The coordinate system is as shown in the figure. The six components of the forces and moments at the nozzle-vessel interface are:

Р	= Radial load	M_{C} = Circumferential moment
V _C	= Circumferential load	$M_T = Torsional moment$
V _L	= Longitudinal load	$M_{L} = Longitudinal moment$

Of the six components of stiffnesses, only three stiffnesses, axial (K_x), circumferential (K_{yy}), and longitudinal (K_{zz}), are calculated. The remaining three are assumed to be rigid.

Several graphs are given at the end of this annexure. The stiffness coefficients are obtained by interpolating logarithmically from these graphs.

The first two, Figures D-1 and D-2, are used to calculate nozzle stiffness coefficients for Nozzles on cylindrical vessels. Figure D-1 is used to calculate the axial stiffness coefficient and Figure D-2 is used to calculate circumferential and longitudinal stiffness coefficients.

Nomenclature

- D = mean diameter of vessel
- *d* = outside diameter of nozzle
- T = thickness of vessel
- t =thickness of nozzle

$$\lambda = (d/D)\sqrt{D/T}$$

$$\Lambda = L/\sqrt{DT}$$

L = unsupported length of cylinder

$$= 8L_1L_2/(\sqrt{L_1} + \sqrt{L_2})^2$$

L1 = distance from nozzle center line to vessel end

- L2 = distance from nozzle center line to vessel end
- E =modulus of elasticity of vessel material

Axial Stiffness(K_x)

$$K_x = \alpha \times \frac{4.95ET^2}{D\sqrt{\Lambda}} \tag{1}$$

where

 α = stiffness coefficient read from Figure D-1

Circumferential Stiffness (K_{yy})

$$K_{yy} = \beta \times ET^3 \tag{2}$$

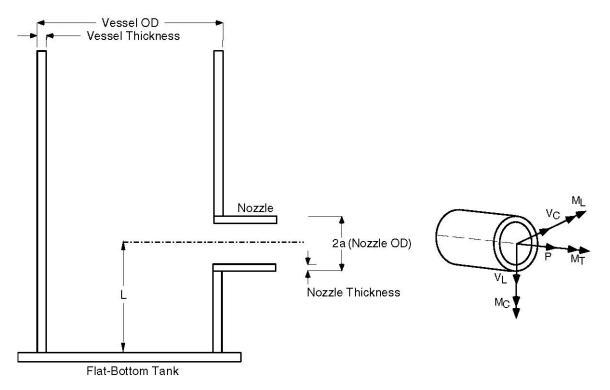
where

 β =1 stiffness coefficient read from Figure D-2.

The bottom three curves in Figure D-2, marked Circumferential moment M_{C} are used to find β .

Longitudinal Stiffness(K_{zz})

$$K_{zz} = \gamma \times ET^3 \tag{3}$$


where

 γ = stiffness coefficient read from Figure D-2.

The top two curves in Figure D-2, marked Longitudinal moment M_L are used to find γ .

Calculation of Nozzle stiffnesses for Nozzles on Flat-bottom tanks

This procedure is similar to the previous one.

As before, only three stiffnesses are calculated as the other three are assumed to be rigid. The ones that are calculated are axial(K_x), circumferential(K_{yy}), and longitudinal (K_{zz}).

For Nozzles on flat-bottom tanks, twelve graphs are given at the end of this annexure, Figures D-3 through D-14. Six are for "with reinforcing pad (on vessel)" with the other six for no reinforcing pad on the vessel. The stiffness coefficients are obtained using the appropriate graph.

Nomenclature

- R = Mean radius of vessel
- t =thickness of vessel
- 2a = outside diameter of nozzle

Axial Stiffness(K_x)

$$K_x = K_R \times E \times (2a) \tag{4}$$

where K_R = axial stiffness coefficient.

Circumferential Stiffness (K_{yy})

$$K_{yy} = K_C \times E \times (2a)^3 \tag{5}$$

where

 K_C = circumferential stiffness coefficient.

Longitudinal $Stiffness(K_{zz})$

$$K_{zz} = K_L \times E \times (2a)^3 \tag{6}$$

where

 K_L =longitudinal stiffness coefficient.

The graphs for stiffness coefficients follow:

Nozzle Stiffness Calculations

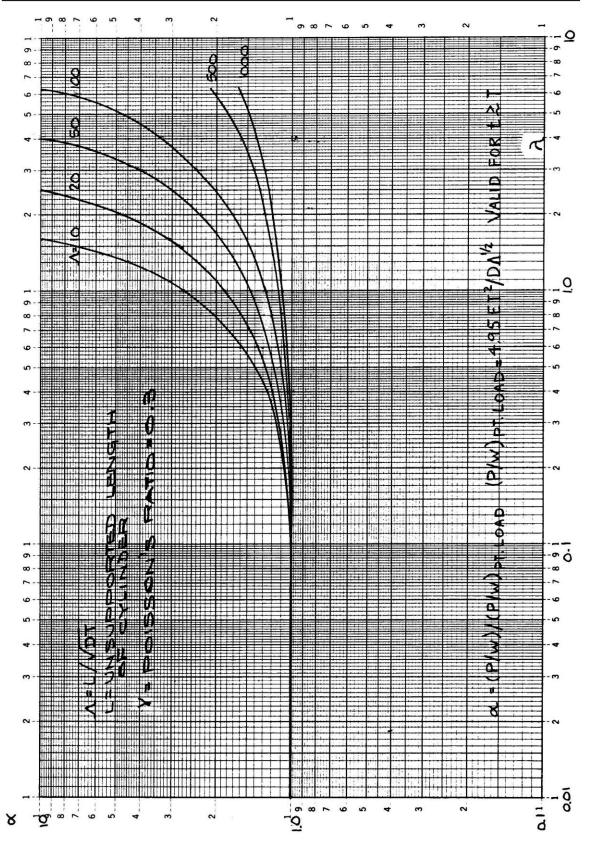


Figure D-1:Stiffness coefficient for axial load on nozzle

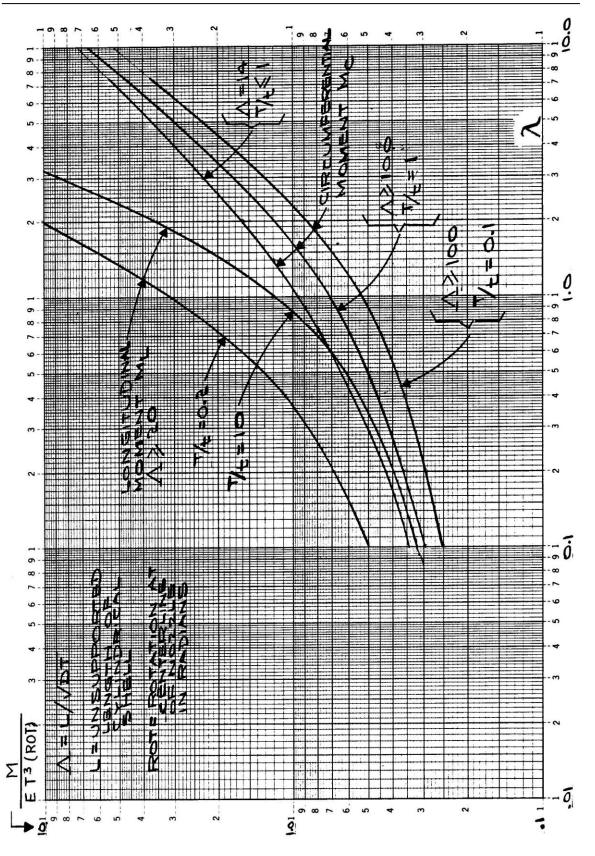
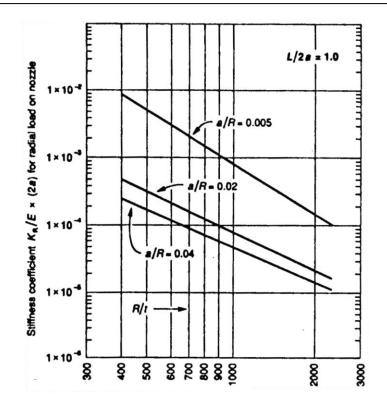
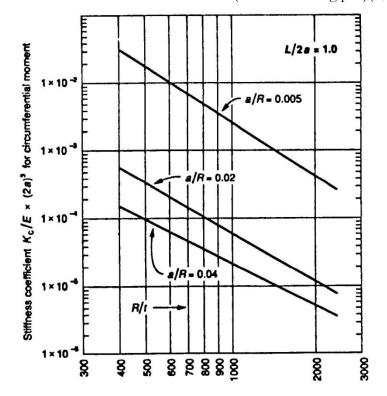


Figure D-2:Stiffness coefficients for moment loads on nozzle

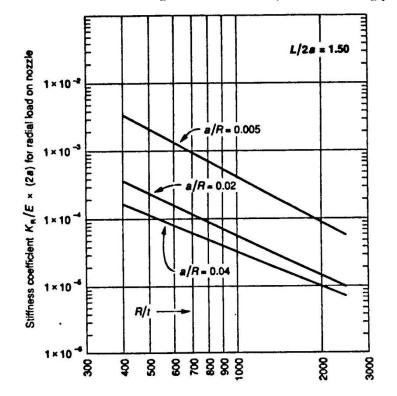

Figure D-3:Stiffness coefficient for axial load (with reinforcing pad)(L/2a = 1.0)

Figure D-4:Stiffness coefficient for circumferential moment (with reinforcing pad)(L/2a=1.0)

Figure D-5: Stiffness coefficient for longitudinal moment (with reinforcing pad)(L/2a = 1.0)

Figure D-6:Stiffness coefficient for axial load (with reinforcing pad)(L/2a = 1.5)

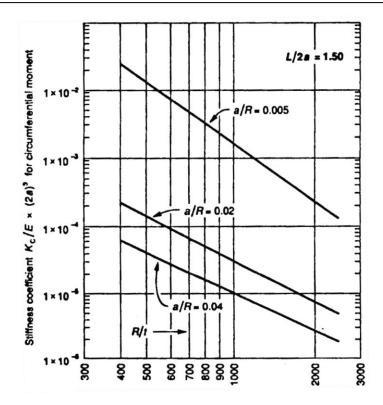
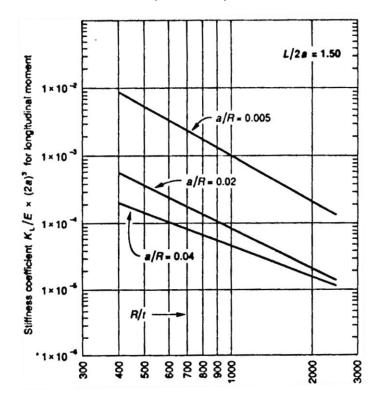
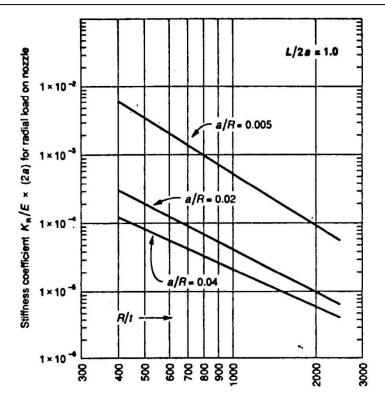
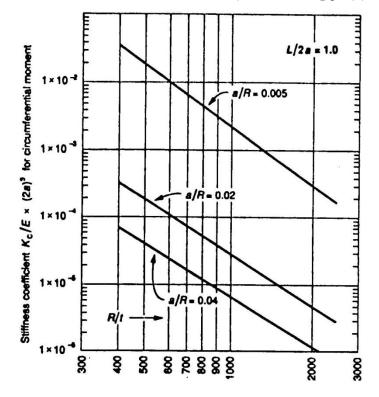
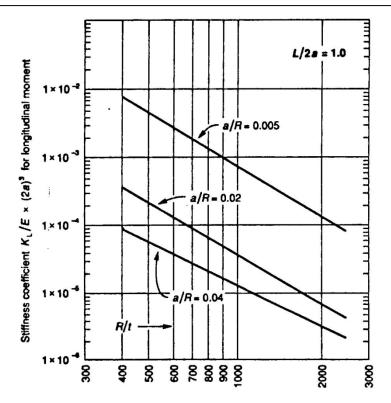


Figure D-7:Stiffness coefficient for circumferential moment (with reinforcing pad) (L/2a = 1.5)


Figure D-8:Stiffness coefficient for longitudinal moment (with reinforcing pad)(L/2a=1.5)

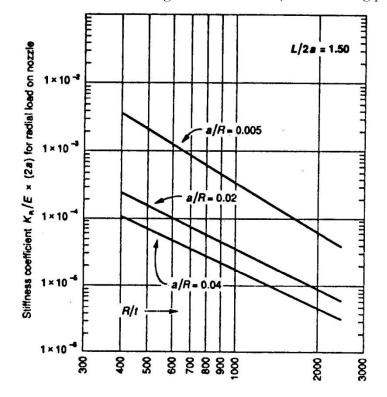

Figure D-9:Stiffness coefficient for axial load (no reinforcing pad)(L/2a = 1.0)

Figure D-10:Stiffness coefficient for circumferential moment (no reinforcing pad)(L/2a = 1.0)

Figure D-11:Stiffness coefficient for longitudinal moment (no reinforcing pad)(L/2a = 1.0)

Figure D-12:Stiffness coefficient for axial load (no reinforcing pad)(L/2a = 1.5)

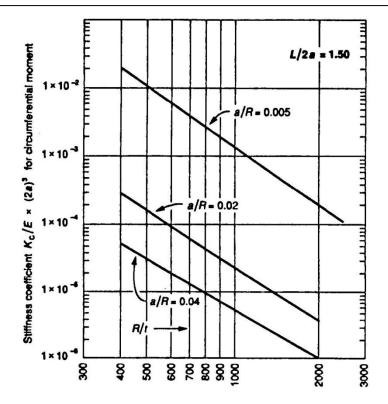
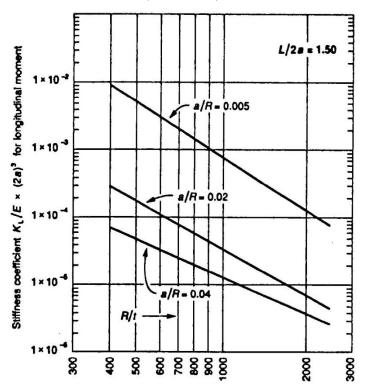
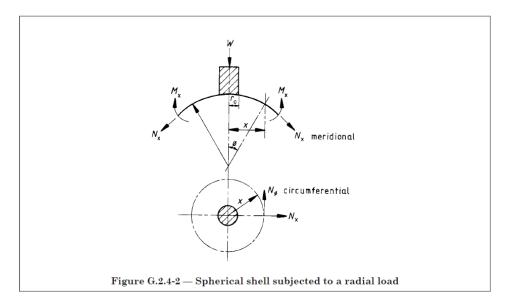
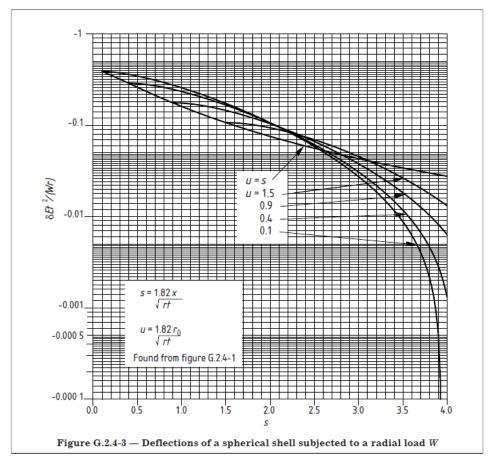
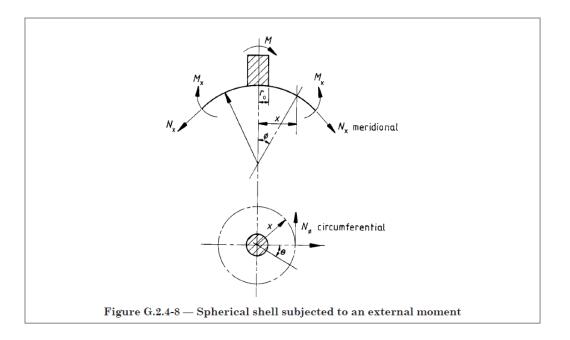
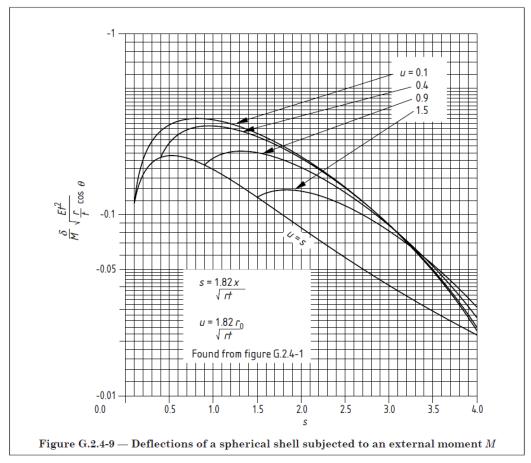


Figure D-13:Stiffness coefficient for circumferential moment (no reinforcing pad) (L/2a = 1.5)


Figure D-14:Stiffness coefficient for longitudinal moment (no reinforcing pad)(L/2a=1.5


Calculation of Nozzle stiffnesses on Spherical Vessels


As before, only three stiffnesses are calculated as the other three are assumed to be rigid. The ones that are calculated are axial(K_x), circumferential(K_{yy}), and longitudinal (K_{zz}).

For Nozzles on Spherical Vessels, Figures G.2.4.3 and G.2.4.9 from PD 5500 (2009) have been referred as given below.

Nozzle Evaluation

Local Loads on nozzles in spherical shells

Conditions of applicability

a) $0.001 \le e_a/R \le 0.1$

b) distances to any other local load in any direction shall be not less than $\sqrt{R.e_c}$

c) nozzle thickness shall be maintained over a distance of $L \ge \sqrt{d.e_b}$

where,

e = nominal shell thickness

 e_a = analysis shell thickness = e - corrosion allowance

 $e_b = nozzle thickness$

 e_c = analysis thickness of the combined shell and reinforcing plate

= $e_a + e_2 \cdot min(f_2/f;1)$ when a reinforcing plate is fitted

= e_a when no reinforcing plate is fitted

R = mean shell radius at the nozzle

 e_2 = reinforcing pad thickness

 f_2 = allowable design stress of reinforcing pad plate

f = allowable design stress of shell material

Maximum allowable individual loads

Allowable axial nozzle load

Allowable axial nozzle load F_{z.max} is computed using Eq. (16.4-7)

$$F_{z.max} = f.e_c^2 (1.82 + 2.4\sqrt{1+k}.\lambda_s + 0.91.k.\lambda_s^2)$$

where

$$k = \min\left(\frac{2f_b e_b}{f e_c} \sqrt{\frac{e_b}{d}}; 1.0\right)$$
$$\lambda_s = \frac{d}{\sqrt{Re_c}}$$

d = mean nozzle diameter

 f_b = allowable design stress of nozzle material

Allowable bending moment

Allowable bending moment $M_{B.max}$ is computed using Eq. (16.4-8)

$$M_{B.max} = f. e_c^2 \frac{d}{4} \left(4.90 + 2.0\sqrt{1+k} \cdot \lambda_s + 0.91 \cdot k \cdot \lambda_s^2 \right)$$

Local Loads on nozzles in cylindrical shells

Conditions of applicability

a) $0.001 \le e_a/D \le 0.1$

b)
$$\lambda_C = \frac{d}{\sqrt{De_c}}$$

b) distances to any other local load in any direction shall be not less than $\sqrt{D.e_c}$

c) nozzle thickness shall be maintained over a distance of $L \ge \sqrt{d.e_b}$

where,

e = nominal shell thickness

 e_a = analysis shell thickness = e - corrosion allowance

 $e_b = nozzle thickness$

 e_c = analysis thickness of the combined shell and reinforcing plate

= $e_a + e_2 \cdot min(f_2/f;1)$ when a reinforcing plate is fitted

= e_a when no reinforcing plate is fitted

D = mean shell diameter at the opening

 e_2 = reinforcing pad thickness

 f_2 = allowable design stress of reinforcing pad plate

f = allowable design stress of shell material

Maximum allowable individual loads

Allowable axial nozzle load

Allowable axial nozzle load $F_{z,max}$ is computed using Eq. (16.5-3)

$$F_{z.max} = f.e_c^2.C_1$$

where

 $C_1 = max[(a_o + a_1.\lambda_C + a_2.\lambda_C^2 + a_3.\lambda_C^3 + a_4.\lambda_C^4); 1.81]$ as per Eq. (16.5-4)

e _b / e _c	a ₀	a ₁	a ₂	a3	a 4
All	0,60072181	0,95196257	0,0051957881	-0,001406381	0

$$\lambda_C = \frac{d}{\sqrt{De_c}}$$

Allowable circumferential moment

Allowable bending moment $\rm M_{X.max}$ is computed using Eq. (16.5-5)

$$M_{X.max} = f \cdot e_c^2 \frac{d}{4} C_2$$

where,

$$C_2 = max[(a_o + a_1 \cdot \lambda_C + a_2 \cdot \lambda_C^2 + a_3 \cdot \lambda_C^3 + a_4 \cdot \lambda_C^4); 4.90] \text{ as per Eq. (16.5-6)}$$

Table 1	6.5-2 —	Coefficients	for	C_2
---------	---------	--------------	-----	-------

e _b /e _c	a ₀	a ₁	a ₂	a ₃	a ₄
All	4,526315	0,064021889	0,15887638	-0,021419298	0,0010350407

Allowable longitudinal moment

Allowable longitudinal moment $M_{\ensuremath{Y}\text{.max}}$ is computed using Eq. (16.5-7)

$$M_{Y.max} = f. e_c^2 \frac{d}{4} C_3$$

where,

 $C_3 = max[(a_o + a_1.\lambda_C + a_2.\lambda_C^2 + a_3.\lambda_C^3 + a_4.\lambda_C^4); 4.90] \text{ as per Eq. (16.5-8)}$

Table 16.5-3 — Coefficients for C_3

e _b /e _c	a ₀	a ₁	a ₂	a ₃	a ₄
≤0,2	4,8517511	0,0251012	0,7428624	- 0,0153153	0
≥ 0,5	4,8588639	2,1870887	1,4567053	- 0,3316430	0,0253850

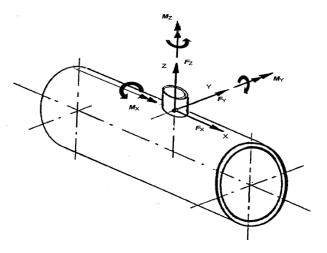
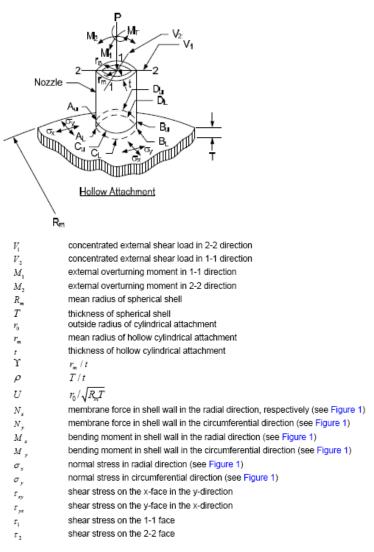


Figure 16.5-1 — Moment and Force Vectors


General

CAEPIPE computes Local Shell Stresses at Nozzles as per WRC Bulletin 537 (2013) and performs Stress Compliance as per ASME Section VIII Division 2 (2017).

As stated in ASME Section VIII Division 2 (2017) code, shell stresses computed for primary loads of Sustained and Sustained + Occasional should exclude the Radial and Tangential Bending Stresses. On the other hand, for Operating load which includes secondary loads due to temperature change and thermal anchor movements, Radial and Tangential Bending Stresses should be included for compliance as per ASME Section VIII Division 2 (2017). Refer to the extract from ASME Section VIII Division 2 (2017) provided at the end of this section for details on the implementation of Stress Compliance in CAEPIPE.

Local Stresses in Spherical Shells at Hollow Circular Attachments

As per Section 3.5.1 of WRC Bulletin 537, the below procedure provides one with a tool to compute <u>stresses in the shell, but not in the nozzle</u>. In some instances, stresses will be higher in the nozzle wall than they are in the vessel wall. This possibility is most likely if the nozzle opening is not reinforced, or if the reinforcement is placed on the vessel wall and not on the nozzle.

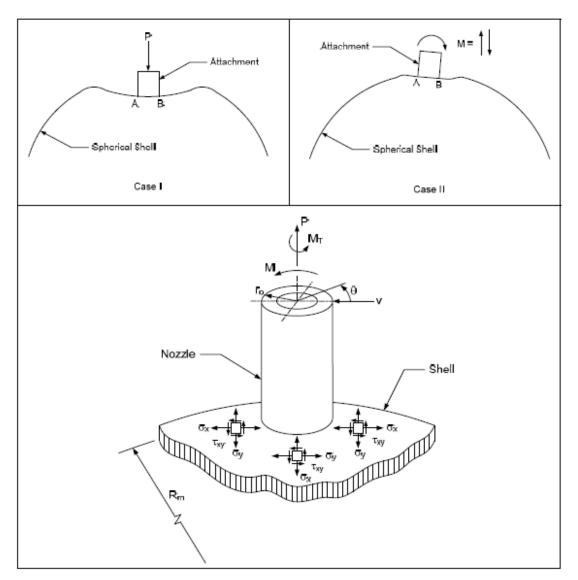
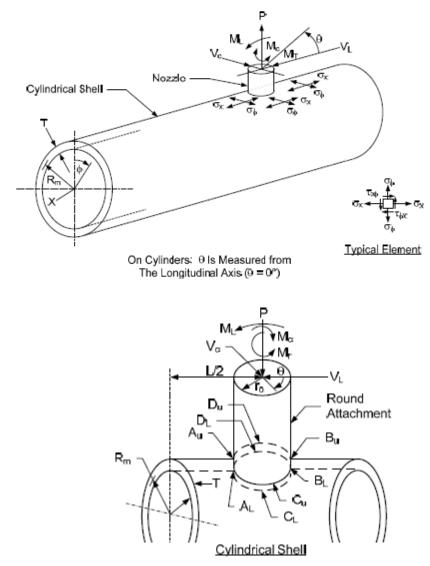



Figure 1 – Types of Loading Conditions at an Attachment to a Spherical Shell

Reference	Read Curves for	Calculate absolute values of stress and	ST	RESS				osite t	hat sh	iown,
Figure No.	neud ourres for	enter result	A_{μ}	A_{ι}	B _u	B_{L}	C_u	C_{L}	$D_{_{\rm H}}$	D_{i}
SP-1 to 10 -	$\frac{N_xT}{P}$ -	$K_n\left(\frac{N_sT}{P}\right)\left(\frac{P}{T^2}\right)$ -	-	-	-	-	-	-	-	-
31-11010	$\frac{M_x}{P}$ -	$K_{\mathfrak{s}} \left(\frac{M_{\mathfrak{s}}}{P} \right) \left(\frac{6P}{T^2} \right) \textbf{-}$	-	+	-	+	-	+	-	+
	$\frac{N_s T \sqrt{R_w T}}{M_1}$	$K_*\!\left(\!\frac{N_sT\sqrt{R_sT}}{M_1}\!\right)\!\!\left(\!\frac{M_1}{T^2\sqrt{R_sT}}\!\right)\!-$					-	-	+	+
SM-1 to 10 -	$\frac{M_s\sqrt{R_sT}}{M_1}$ =	$K_{b}\!\left(\frac{M_{s}\sqrt{R_{s}T}}{M_{1}}\right)\!\!\left(\frac{6M_{1}}{T^{2}\sqrt{R_{s}T}}\right)\!-$					-	+	+	-
3M-1 to 10	$\frac{N_s T \sqrt{R_w T}}{M_2}$	$K_*\!\left(\!\frac{N_sT\sqrt{R_sT}}{M_2}\!\right)\!\!\left(\!\frac{M_2}{T^2\sqrt{R_sT}}\!\right)\!\!-$	-	-	+	+				
	$\frac{M_s \sqrt{R_s T}}{M_2}$	$K_{\rm b}\!\left(\!\frac{M_{\rm s}\sqrt{R_{\rm s}T}}{M_2}\!\right)\!\!\left(\!\frac{6M_2}{T^2\sqrt{R_{\rm s}T}}\right)\!\!-\!$	-	+	+	-				
Add algebraid	ally for summation of	radial stresses $\sigma_s = \sigma_s =$								
	$\frac{N_{y}T}{P}$ =	$K_{*}\left(\frac{N_{r}T}{P}\right)\left(\frac{P}{T^{2}}\right)$ -	-	-	-	-	-	-	-	-
SP-1 to 10 -	$\frac{M_y}{P}$ -	$K_{b}\left(\frac{M_{y}}{P}\right)\left(\frac{6P}{T^{2}}\right)$ -	-	+	-	+	-	+	-	+
	$\frac{N_{j}T\sqrt{R_{m}T}}{M_{1}} -$	$K_{\pi} \left(\frac{N_{y}T \sqrt{R_{\pi}T}}{M_{1}} \right) \left(\frac{M_{1}}{T^{2} \sqrt{R_{\pi}T}} \right) =$					-	-	+	+
SM-1 to 10 -	$\frac{M_y\sqrt{R_xT}}{M_1} =$	$K_{b}\!\left(\frac{M_{x}\sqrt{R_{x}T}}{M_{i}}\right)\!\!\left(\frac{6M_{i}}{T^{2}\sqrt{R_{x}T}}\right)\!-$					-	+	+	-
011110110	$\frac{N_{y}T\sqrt{R_{x}T}}{M_{2}}$ =	$K_*\!\left(\!\frac{N_{\!y}T\sqrt{R_{\!w}T}}{M_2}\!\right)\!\!\left(\!\frac{M_2}{T^2\sqrt{R_{\!w}T}}\!\right)\!\!-$	-	-	+	+				
	$\frac{M_{y}\sqrt{R_{x}T}}{M_{z}}$ =	$K_{b}\!\left(\frac{M_{y}\sqrt{R_{w}T}}{M_{2}}\right)\!\!\left(\frac{6M_{2}}{T^{2}\sqrt{R_{w}T}}\right)\!-$	-	+		-				
Add algebraid	ally for summation of	tangential stresses $\sigma_y = \sigma_y =$								
Shear stress	due to load V_1	$\tau_1 = \frac{V_1}{\pi r_0 T} =$					-	-	+	+
Shear stress	due to load V_2	$\tau_2 = \frac{V_2}{\pi r_g T} =$	+	+	-	-				
Shear stress	due to Torsion, M_{T}	$\tau_2 = \tau_1 - \frac{M_T}{2\pi r_o^2 T} -$	+	+	+	+	+	+	+	+
	ally for summation of									
	STRESS INTENSITY -		_			_			_	
1) V	When $\tau \neq 0, S = \text{larges}$	t absolute magnitude of either $S = \frac{1}{2} \left[\sigma_x + \sigma_y \right]^2$	±√(σ,	$-\sigma_y)^2$	+ 4r ²	or √(σ, - σ,	$()^2 + 4\pi$	2	
2) V	When $\tau = 0, S = large$	st absolute magnitude of either $S = \sigma_s, \sigma_y, (\sigma_s)$	$\left[-\sigma_{y} \right]$)	-					

Local Stresses in Cylindrical Shells at Solid Circular Attachments

As per Section 4.5.3 of WRC Bulletin 537, the below procedure provides one with a tool to compute <u>stresses in the shell, but not in the attachment</u>. Under certain conditions, stresses may be higher in the attachment than they are in the vessel. For example, in the case of a nozzle, it is likely that the stresses will be higher in the nozzle wall than they are in the vessel wall if the nozzle opening is unreinforced or if the reinforcement is placed on the vessel wall and not on the nozzle.

- V_c concentrated shear load in the circumferential direction, lb
- V_L concentrated shear load in the longitudinal direction
- M_e external overturning moment in the circumferential direction with respect to the shell
- M, external overturning moment in the longitudinal direction with respect to the shell
- R_m mean radius of cylindrical shell
- l length of cylindrical shell
- r₀ outside radius of cylindrical attachment
- T wall thickness of cylindrical shell
- β attachment parameter

Reference		Calculate absolute	e values of stress and	STRE	SSES	- If	load i	is opp	osite	that s	hown,
Figure No.	Read Curves for	enter result		A _u	A _L	B.,	BL	С"	Cı	D_u	D_L
3C	$\frac{N_{\mu}}{P/R_{m}}$ =	$K_{s} \bigg(\frac{N_{s}}{P/R_{s}} \bigg) \bigg(\frac{P}{R_{s}T} \bigg) \cdot$	-	-	_	-	-	-	-	-	-
1C OR 2C-1	$\frac{M_{\star}}{P}$ -	$K_b \bigg(\frac{M_{\star}}{P} \bigg) \bigg(\frac{6P}{T^2} \bigg) \textbf{-}$	See Note 2 be	low	+	-	+	-	+	-	+
3A	$\frac{N_{\star}}{M_{\star}/R_{\mu}^{2}\beta}$	$K_{s}\left(\frac{N_{s}}{M_{c}/R_{s}^{2}\beta}\right)\left(\frac{M}{R_{s}^{2}}\right)$	()-					-	-	+	+
1A	$\frac{M_{\star}}{M_{\star}/R_{\star}\beta} =$	$K_b \bigg(\frac{M_{\star}}{M_{\star} / R_{\star} \beta} \bigg) \bigg(\frac{6}{R_{\star}}$	$\left(\frac{M_e}{\beta T^2}\right)$ -					-	+	+	-
3B	$\frac{N_{\mu}}{M_{L}/R_{\mu}^{2}\beta}$	$K_{s}\left(\frac{N_{\star}}{M_{\star}/R_{s}^{2}\beta}\right)\left(\frac{M}{R_{s}^{2}}\right)$	$\left(\frac{L}{\beta T}\right)$ -	-	-	+	+				
1B or 1B-1	$\frac{M_{\mu}}{M_{L}/R_{m}\beta} -$	$K_{b} \left(\frac{M_{s}}{M_{t}/R_{s}\beta} \right) \left(\frac{6}{R_{s}} \right)$	$\left(\frac{M_L}{\beta T^2}\right)$ -	-	+	+	-				
Add algebrai	ically for summation of	ϕ stresses σ_i	σ,-								
4C	$\frac{N_s}{P/R_s}$ =	$K_{s}\!\left(\!\frac{N_{s}}{P/R_{s}}\!\right)\!\!\left(\!\frac{P}{R_{s}T}\!\right)\!\!\cdot$	-	-	-	-	-	-	-	-	-
1C-1 OR 2	$\frac{M_s}{P}$ -	$K_b \bigg(\frac{M_x}{P} \bigg) \bigg(\frac{6P}{T^2} \bigg) -$		-	+	-	+	-	+	-	+
4A	$\frac{N_s}{M_e / R_{ss}^2 \beta}$ =	$K_{s} \left(\frac{N_{s}}{M_{e} / R_{s}^{2} \beta} \right) \left(\frac{M}{R_{s}^{2}} \right)$	$\left(\frac{1}{\beta T}\right)$ See Note 3 be	low				-	-	+	+
2A	$\frac{M_s}{M_e/R_m\beta}$ =	$K_b \bigg(\frac{M_s}{M_s / R_m \beta} \bigg) \bigg(\frac{6}{R_m}$	$\left(\frac{M_{e}}{\beta T^{2}}\right)$ -					-	+	+	-
48	$\frac{N_s}{M_L/R_s^2\beta}$ -	$K_{s}\left(\frac{N_{s}}{M_{L}/R_{s}^{2}\beta}\right)\left(\frac{M}{R_{s}^{2}}\right)$	(<u></u>)-	-	-	+	+	ĺ			
2B or 2B-	$\frac{M_s}{M_s/R_m\beta} =$	$K_{b}\left(rac{M_{s}}{M_{s}/R_{s}\beta} ight)\left(rac{6}{R_{s}} ight)$	$\left(\frac{M_{\pm}}{\beta T^2}\right)$ -	-	+	+	-	ĺ			
Add algebrai	ically for summation of	x stresses σ_x	σ _x -								
Shear stress	due to Torsion, M_T	τ ₄₁ =	$\tau_{st} = \frac{M_T}{2\pi r_e^2 T} =$	+	+	+	+	+	+	+	+
Shear stress	due to load $V_{\rm C}$	T.,	$r = \frac{V_c}{\pi r_c T} =$	+	+	-	-				
Shear stress	due to load V_{t}	r	$=\frac{V_{L}}{\pi r_{o}T}$					-	-	+	+
Add algebrai	ically for summation of s	shear stresses r	7-								
COMBINED	STRESS INTENSITY -	S									
			$\sigma_x \pm \sqrt{(\sigma_t - \sigma_x)^2 + 4\tau^2}] \sigma_t$			+ 472					
			le of either S = σ _s , σ _s , or	$\sigma_{i} - \sigma_{i}$	*						
3)	When σ_{i} and σ_{i} have	unlike signs, S = √($(\sigma_{\phi} - \sigma_{x})^{2} + 4r^{2}$								

Note:

- 1. Original Curves are referred for all figures. For example, 3C-Original is referred to read the parameters required for calculating Circumferential Membrane Stress due to P.
- 2. Figure 2C-1 Original is referred to calculate Circumferential Bending Stress due to P at Points A_U, A_L, B_U and B_L. Similarly, Figure 1C is referred to calculate Circumferential Bending Stress due to P at Points C_U, C_L, D_U and D_L.
- 3. Figure 1C-1 Original is referred to calculate Longitudinal Bending Stress due to P at Points A_U, A_L, B_U and B_L. Similarly, Figure 2C is referred to calculate Longitudinal Bending Stress due to P at Points C_U, C_L, D_U and D_L.

Stress Compliance of Local Shell Stresses at Nozzles

[Extract from ASME Section VIII Division 2 (2017)]

5.2.2.4 Assessment Procedure. To determine the acceptability of a component, the computed equivalent stresses given in 5.2.2.2 for a component subject to loads shall not exceed the specified allowable values. A schematic illustrating the categorization of equivalent stresses and their corresponding allowable values is shown in Figure 5.1. The following procedure is used to compute and categorize the equivalent stress at a point in a component (see 5.2.2.3), and to determine the acceptability of the resulting stress state.

Step 1. Determine the types of loads acting on the component. In general, separate load cases are analyzed to evaluate "load-controlled" loads such as pressure and externally applied reactions due to weight effects and "strain-controlled" loads resulting from thermal gradients and imposed displacements. The loads to be considered in the design shall include, but not be limited to, those given in Table 5.1. The load combinations that shall be considered for each loading condition shall include, but not be limited to those given in Table 5.3.

Step 2. At the point on the vessel that is being investigated, calculate the stress tensor (six unique components of stress) for each type of load. Assign each of the computed stress tensors to one or to a group of the categories defined below. Assistance in assigning each stress tensor to an appropriate category for a component can be obtained by using Figure 5.1 and Table 5.6. Note that the equivalent stresses Q and F do not need to be determined to evaluate protection against plastic collapse. However, these components are needed for fatigue and ratcheting evaluations that are based on elastic stress analysis (see 5.5.3 and 5.5.6, respectively).

(a) General primary membrane equivalent stress – P_m

(b) Local primary membrane equivalent stress – P_L

(c) Primary bending equivalent stress – P_b

(d) Secondary equivalent stress – Q

(e) Additional equivalent stress produced by a stress concentration or a thermal stress over and above the nominal (P + Q) stress level – F

Step 3. Sum the stress tensors (stresses are added on a component basis) assigned to each equivalent stress category. The final result is a stress tensor representing the effects of all the loads assigned to each equivalent stress category. Note that in applying STEPs in this paragraph, a detailed stress analysis performed using a numerical method such as finite element analysis typically provides a combination of $P_L + P_b$ and $P_L + P_b + Q + F$ directly.

(a) If a load case is analyzed that includes only "load-controlled" loads (e.g., pressure and weight effects), the computed equivalent stresses shall be used to directly represent the P_m , $P_L + P_b$, or $P_L + P_b + Q$. For example, for a vessel subject to internal pressure with an elliptical head; P_m equivalent stresses occur away from the head to shell junction, and P_L and $P_L + P_b + Q$ equivalent stresses occur at the junction.

(b) If a load case is analyzed that includes only "strain-controlled" loads (e.g., thermal gradients), the computed equivalent stresses represent Q alone; the combination $P_L + P_b + Q$ shall be derived from load cases developed from both "load-controlled" and "strain-controlled" loads.

(c) If the stress in category F is produced by a stress concentration or thermal stress, the quantity F is the additional stress produced by the stress concentration in excess of the nominal membrane plus bending stress. For example, if a plate has a nominal primary membrane equivalent stress of S_e , and has a fatigue strength reduction characterized by a factor K_f , then: $P_m = S_e$, $P_b = 0$, Q = 0, and $F = P_m(K_f - 1)$. The total equivalent stress is $P_m + F$.

Step 4. Determine the principal stresses of the sum of the stress tensors assigned to the equivalent stress categories, and compute the equivalent stress using Eq. (5.1).

Step 5. To evaluate protection against plastic collapse, compare the computed equivalent stress to their corresponding allowable values (see 5.2.2.2).

The allowable limit on local primary membrane and local primary membrane plus bending, S_{PL} , is computed as the larger of the quantities shown below.

(a) 1.5 times the tabulated allowable stress for the material from Annex 3-A

(b) S_y for the material from Annex 3-A, except that the value from (a) shall be used when the ratio of the minimum specified yield strength to ultimate tensile strength exceeds 0.70, or the value of *S* is governed by time-dependent properties as indicated in Annex 3-A

$$P_m \le S$$
 (5.2)

$$P_{L} \le S_{PL}$$
 (5.3)

$$(P_L + P_b) \le S_{PL} \tag{5.4}$$

5.5.6 RATCHETING ASSESSMENT — ELASTIC STRESS ANALYSIS

5.5.6.1 Elastic Ratcheting Analysis Method.

(*a*) To evaluate protection against ratcheting the following limit shall be satisfied.

$$\Delta S_{n,k} \le S_{PS} \tag{5.78}$$

(b) The primary plus secondary equivalent stress range, $\Delta S_{n,k}$, is the equivalent stress range, derived from the highest value across the thickness of a section, of the combination of linearized general or local primary membrane stresses plus primary bending stresses plus secondary stresses ($P_L + P_b + Q$), produced by specified operating pressure and other specified mechanical loads and by general thermal effects. The effects of gross structural discontinuities but not of local structural discontinuities (stress concentrations) shall be included. Examples of this stress category for typical pressure vessel components are shown in Table 5.6.

(c) The maximum range of this equivalent stress is limited to S_{PS} . The quantity S_{PS} represents a limit on the primary plus secondary equivalent stress range and is defined in (d). In the determination of the maximum primary plus secondary equivalent stress range, it may be necessary to consider the effects of multiple cycles where the total stress range may be greater than the stress range of any of the individual cycles. In this case, the value of S_{PS} may vary with the specified cycle, or combination of cycles, being considered since the temperature extremes may be different in each case. Therefore, care shall be exercised to assure that the applicable value of S_{PS} for each cycle, or combination of cycles, is used (see 5.5.3).

(d) The allowable limit on the primary plus secondary stress range, S_{PS} , is computed as the larger of the quantities shown below.

(1) Three times the average of the *S* values for the material from Annex 3-A at the highest and lowest temperatures during the operational cycle.

(2) Two times the average of the S_y values for the material from Annex 3-D at the highest and lowest temperatures during the operational cycle, except that the value from (1) shall be used when the ratio of the minimum specified yield strength to ultimate tensile strength exceeds 0.70 or the value of S is governed by time-dependent properties as indicated in Annex 3-A.

- S_{PL} = allowable limit on the local primary membrane and local primary membrane plus bending stress categories (see 5.2.2.4.)
- S_{PS} = allowable limit on the primary plus secondary stress range (see 5.5.6.)

	Exam	Table 5.6 ples of Stress Classif	ication	
Vessel Component	Location	Origin of Stress	Type of Stress	Classification
Any shell including cylinders, cones, spheres, and formed heads	Shell plate remote from discontinuities	Internal pressure	General membrane Gradient through plate thickness	Р _т Q
		Axial thermal gradient	Membrane Bending	Q
	Near nozzle or other opening	Net-section axial force and/ or bending moment applied to the nozzle, and/ or internal pressure	Local membrane Bending Peak (fillet or corner)	P _L Q F
	Any location	Temperature difference between shell and head	Membrane Bending	Q
	Shell distortions such as out- of-roundness and dents	Internal pressure	Membrane Bending	P _m Q
Cylindrical or conical shell	Any section across entire vessel	Net-section axial force, bending moment applied to the cylinder or cone, and/or internal pressure	Membrane stress averaged through the thickness, remote from discontinuities; stress component perpendicular to cross section	Pm
			Bending stress through the thickness; stress component perpendicular to cross section	P _b
	Junction with head or flange	Internal pressure	Membrane	P_L
			Bending	Q

	St		igure 5.1 d Limits of Equival	ent Stress		
Stress		Primary		Secondary Membrane	Peak	
Category	General Membrane	Local Membrane	Bending	plus Bending	геак	
Descrip- tion (For examples, see Table 5.2)		Average stress across any solid section. Considers dis- continuities but not concentra- tions. Produced only by mech- anical loads.	Component of primary stress proportional to distance from centroid of solid section. Excludes dis- continuities and concentrations. Produced only by mechanical loads.	Self-equilibrating stress necessary to satisfy contin- uity of structure. Occurs at struc- tural discontinui- ties. Can be caused by mechanical load or by differential thermal expansion. Excludes local stress concentrations.	 Increment added to primary or secondary stress by a concentration (notch). Certain ther- mal stresses which may cause fatigue but not distor- tion of vessel shape. 	
Symbol	Pm	PL	Pb	Q	F	
	- Use design load	PL (Q + F S _a	

ASCE/SEI 7

Minimum Design Loads for Buildings

and

Other Structures

The Design Earthquake Load – ASCE/SEI 7-16

Chapter 13 titled "Seismic Design Requirements for Nonstructural Components" from ASCE/SEI 7-16 provides Seismic Design requirements for architectural, mechanical and electrical components including specific references to ASME boiler, pressure vessels and piping as detailed below.

Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCE) Spectral Response Acceleration Parameters

The MCE spectral response acceleration parameter for Site Class effects shall be determined by Eq. 11.4-1.

$$S_{MS} = F_a S_S$$

where,

 F_a = Site Coefficient defined in Table 11.4-1.

 S_s = the mapped MCE spectral response acceleration parameter at short periods as determined in accordance with Section 11.4.1. The value of Ss can be retrieved from the USGS website <u>http://earthquake.usgs.gov/designmaps</u>.

SITE CLASS	S _S ≤0.25	Ss=0.5	Ss=0.75	S _S =1.0	S _S =1.25	S _S ≥1.5
A	0.8	0.8	0.8	0.8	0.8	0.8
В	0.9	0.9	0.9	0.9	0.9	0.9
с	1.3	1.3	1.2	1.2	1.2	1.2
D	1.6	1.4	1.2	1.1	1.0	1.0
E	2.4	1.7	1.3	See	e Section 11	.4.8
F			See Sect	ion 11.4.8		

Note: Site specific analysis is required for Site Class E with Ss>= 1.0 and Site Class F,

Design Spectral Acceleration Parameters

Design earthquake spectral response acceleration parameter at short period, SDS shall be determined from Eq. 11.4-3.

$$S_{DS} = \left(\frac{2}{3}\right) S_{MS}$$

Seismic Design Force

The horizontal seismic design force (Fp) shall be applied at the component's center of gravity and distributed relative to the component's mass distribution and shall be determined in accordance with Eq. 13.3-1 of para. 13.3.1.

$$F_p = \frac{0.4a_p S_{DS} W_p}{\left(\frac{R_p}{I_p}\right)} \left(1 + 2\frac{z}{h}\right)$$

F_p is not required to be taken as greater than

$$F_p = 1.6S_{DS}I_pW_p$$

 F_{p} shall not be taken as less than

$$F_p = 0.3S_{DS}I_pW_p$$

where,

Fp = seismic design force

 S_{DS} = spectral acceleration, short period, as determined above

 S_{MS} = maximum MCE spectral acceleration at short periods

 a_p = component amplification factor that varies from 1.00 to 2.50(see Table 13.6-1 below)

 I_p = component importance factor that varies from 1.00 to 1.50 (see Section 13.1.3)

 $W_p =$ component operating weight

Rp = component response modification factor that varies from 1.00 to 12 (see Table 13.6-1 below)

z = height in structure of point of attachment of component with respect to the base. For items at or below the base, z shall be taken as 0. The value of z/h need not exceed 1.0.

h = average roof height of structure with respect to the base

Note:

As per 13.1.8, the earthquake loads determined in accordance with Section 13.3.1 shall be multiplied by a factor 0.7. This can be performed in CAEPIPE by entering the value as 0.70 for "All. Stress Factor ADS(a)" through "ASCE/SEI 7-16" Seismic parameter input dialog.

Vertical Seismic Force

As per para. 13.3.1, Vertical Seismic Force shall be computed as

$$V_p = 0.2S_{DS}W_p$$

where,

 S_{DS} and W_p are as defined above.

ASCE/SEI 7-16

Table 13.6-1 Seismic Coefficients for Mechanical and Electrical Components

Components	a_p^a	$R_p^{\ b}$	$\Omega_0^{\ c}$
MECHANICAL AND ELECTRICAL COMPONENTS			
Air-side HVACR, fans, air handlers, air conditioning units, cabinet heaters, air distribution boxes, and other mechanical components constructed of sheet metal framing	21/2	6	2
Wet-side HVACR, boilers, furnaces, atmospheric tanks and bins, chillers, water heaters, heat exchangers, evaporators, air separators, manufacturing or process equipment, and other mechanical components constructed of high-deformability materials	1	21/2	2
xir coolers (fin fans), air-cooled heat exchangers, condensing units, dry coolers, remote radiators and other mechanical components elevated on integral structural steel or sheet metal supports	21/2	3	11/2
Engines, turbines, pumps, compressors, and pressure vessels not supported on skirts and not within the scope of Chapter 15	1	21/2	2
kirt-supported pressure vessels not within the scope of Chapter 15	21/2	21/2	2
Elevator and escalator components	1	21/2	2
Generators, batteries, inverters, motors, transformers, and other electrical components constructed of high-deformability materials	1	21/2	2
Notor control centers, panel boards, switch gear, instrumentation cabinets, and other components constructed of sheet metal framing	21/2	6	2
Communication equipment, computers, instrumentation, and controls	1	21/2	2
Roof-mounted stacks, cooling and electrical towers laterally braced below their center of mass	21/2	3	2
Roof-mounted stacks, cooling and electrical towers laterally braced above their center of mass	1	21/2	2
ighting fixtures	1	11/2	2
Other mechanical or electrical components	1	11/2	2
/IBRATION-ISOLATED COMPONENTS AND SYSTEMS ^b			
Components and systems isolated using neoprene elements and neoprene isolated floors with built-in or separate elastomeric snubbing devices or resilient perimeter stops	21⁄2	21/2	2
spring-isolated components and systems and vibration-isolated floors closely restrained using built-in or separate elastomeric snubbing devices or resilient perimeter stops	21⁄2	2	2
nternally isolated components and systems	21/2	2	2
Suspended vibration-isolated equipment including in-line duct devices and suspended internally isolated components	$\frac{2}{2}$	21/2	2
DISTRIBUTION SYSTEMS	2/2	2/2	2
Piping in accordance with ASME B31 (2001, 2002, 2008, and 2010), including in-line components with joints made by welding or brazing	21/2	12	2
piping in accordance with ASME B31, including in-line components, constructed of high- or limited-deformability materials, with joints made by threading, bonding, compression couplings, or grooved couplings	21⁄2	6	2
Piping and tubing not in accordance with ASME B31, including in-line components, constructed of high-deformability materials, with joints made by welding or brazing	21⁄2	9	2
Piping and tubing not in accordance with ASME B31, including in-line components, constructed of high- or limited-deformability materials, with joints made by threading, bonding, compression couplings, or grooved couplings	21/2	41⁄2	2
Priping and tubing constructed of low-deformability materials, such as cast iron, glass, and nonductile plastics	$2^{1/2}$	3	2
Ductwork, including in-line components, constructed of high-deformability materials, with joints made by welding or brazing	21/2	9	2
Ductwork, including in-line components, constructed of high- or limited-deformability materials with joints made by means other than welding or brazing	21/2	6	2
Ductwork, including in-line components, constructed of low-deformability materials, such as cast iron, glass, and nonductile plastics	21/2	3	2
Electrical conduit and cable trays	21/2	6	2
Bus ducts	1	21/2	2
Plumbing	1	21/2	2
Pneumatic tube transport systems	$2^{1/2}$	6	2

^{*a*}A lower value for a_p is permitted where justified by detailed dynamic analyses. The value for a_p shall not be less than 1. The value of a_p equal to 1 is for rigid components and rigidly attached components. The value of a_p equal to $2\frac{1}{2}$ is for flexible components and flexibly attached components. ^{*b*}Components mounted on vibration isolators shall have a bumper restraint or snubber in each horizontal direction. The design force shall be taken as $2F_p$ if the nominal clearance (air gap) between the equipment support frame and restraint is greater than 0.25 in. (6 mm). If the nominal clearance specified on the construction documents is not greater than 0.25 in. (6 mm), the design force is permitted to be taken as F_p . ^cOverstrength as required for anchorage to concrete and masonry. See Section 12.4.3 for seismic load effects including overstrength.

The Design Wind Load – ASCE/SEI 7-16

Chapter 26 titled "Wind Load: Generic Requirements" is used to determine basic parameters for determining wind loads and Chapter 29 titled "Wind Load on Other Structures and Building Appurtenances – MWFRS" of ASCE/SEI 7-16 provides a directional wind force determination procedure for building appurtenances and other structures. Details referred from these two (2) chapters for implementation in CAEPIPE are detailed below.

Type of Element Classification

Type of Element Classification = Other Structures

Figure 26.1-1 directs the ASCE 7 user to the appropriate method to determine wind forces for the particular building or structure the user is concerned with. The method most appropriate for industrial plant piping of any type is detailed in Chapter 29, "Wind Loads on Other Structures and Building Appurtenances – MWFRS".

Wind Load Parameters

The following wind load parameters shall be determined in accordance with Chapter 26.

Basic Wind Speed (V):

The basic wind speed, V, used in the determination of design wind loads on buildings and other structures shall be determined from Fig. 26.5-1 as follows.

Fig. 26-5-1A can be referred for Risk Category I buildings and other structures.

Fig. 26-5-1B can be referred for Risk Category II buildings and other structures

Fig. 26.5-1C can be referred for Risk Category III buildings and other structures.

Fig. 26.5-1D can be referred for Risk Category IV Buildings and Other Structures.

Wind Directionality Factor K_d:

The wind directionality factor, K_d , shall be determined from Table 26.6-1 as given below.

Exposure Categories:

As detailed in Section 26.7.3 of ASCE/SEI 7-16, Exposure Categories can be B, C or D.

Topographical Factor K_{zt}:

As detailed in Section 26.8.2, Wind speed-up effects shall be included in the calculation of design wind loads by using the factor Kzt.

Figure 26.8-1 (given below) can be referred to compute the Topographical Factor Kzt.

$$K_{zt} = (1 + K_1 K_2 K_3)^2$$

where K_1 , K_2 and K_3 are given in Fig. 26.8-1.

If site conditions and locations of structures do not meet all the conditions specified in Section 26.8.1 then Kzt = 1.0

Velocity Pressure Exposure Coefficient K_z

Velocity pressure exposure coefficient Kz can be determined from Table 26.10.1 provided below.

Velocity Pressure

Velocity pressure, q_z , evaluated at height z shall be calculated by the following equation:

$$q_z = 0.00256K_zK_{zt}K_dK_eV^2 (lb/ft^2)$$

where

 K_d = wind directionality factor as defined above

 K_{zt} = velocity pressure exposure coefficient as defined above

 K_z = topographic factor as defined above

 K_e = ground elevation factor to adjust air density permitted K_e = 1

V = basic wind speed as defined above

Design Wind Loads - Other Structures

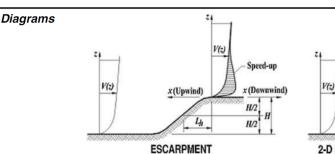
The design wind force for other structures (chimneys, tanks, rooftop equipment for h > 60, and similar structures, open signs, lattice frameworks, and trussed towers) shall be determined by section 29.4, ASCE 7-16, with the following equation:

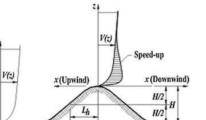
$$F = q_z C_f G A_f (lb)$$

where

 q_z = velocity pressure evaluated at height z as defined above of the centroid of area A_f

G = gust-effect factor for a rigid building or other structure is permitted to be taken as 0.85


 C_f = force coefficients from Fig. 29.4-1 given below


 $A_{\rm f}$ = projected area normal to the wind except where $C_{\rm f}$ is specified for the actual surface area in ${\rm ft}^2$

Structure Type	Directionality Factor K_a
Buildings	
Main Wind Force Resisting System	0.85
Components and Cladding	0.85
Arched Roofs	0.85
Circular Domes	1.0^{a}
Chimneys, Tanks, and Similar Structures	
Square	0.90
Hexagonal	0.95
Octagonal	1.0^{a}
Round	1.0^{a}
Solid Freestanding Walls, Roof Top	0.85
Equipment, and Solid Freestanding and	
Attached Signs	
Open Signs and Single-Plane Open Frames	0.85
Trussed Towers	
Triangular, square, or rectangular	0.85
All other cross sections	0.95

Table 26.6-1 Wind Directionality Factor, K_d

^aDirectionality factor $K_d = 0.95$ shall be permitted for round or octagonal structures with nonaxisymmetric structural systems.

2-D RIDGE OR 3-D AXISYMMETRICAL HILL

Topographic Multipliers for Exposure C^{a,b,c}

		K ₁ Multiplier			K ₂ Mult	iplier			K ₂ Multiplier	
H/L _h	2D Ridge	2D Escarpment	3D Axisym- metrical Hill	x/L _h	2D Escarpment	All Other Cases	z/L _h	2D Ridge	2D Escarpment	3D Axisym- metrical Hill
0.20	0.29	0.17	0.21	0.00	1.00	1.00	0.00	1.00	1.00	1.00
0.25	0.36	0.21	0.26	0.50	0.88	0.67	0.10	0.74	0.78	0.67
0.30	0.43	0.26	0.32	1.00	0.75	0.33	0.20	0.55	0.61	0.45
0.35	0.51	0.30	0.37	1.50	0.63	0.00	0.30	0.41	0.47	0.30
0.40	0.58	0.34	0.42	2.00	0.50	0.00	0.40	0.30	0.37	0.20
0.45	0.65	0.38	0.47	2.50	0.38	0.00	0.50	0.22	0.29	0.14
0.50	0.72	0.43	0.53	3.00	0.25	0.00	0.60	0.17	0.22	0.09
				3.50	0.13	0.00	0.70	0.12	0.17	0.06
				4.00	0.00	0.00	0.80	0.09	0.14	0.04
							0.90	0.07	0.11	0.03
							1.00	0.05	0.08	0.02
							0.50	0.01	0.02	0.00
							2.00	0.00	0.00	0.00

^{*a*} For values of H/L_h , x/L_h , and z/L_h other than those shown, linear interpolation is permitted. ^{*b*} For $H/L_h > 0.5$, assume that $H/L_h = 0.5$ for evaluating K_1 and substitute 2*H* for L_h for evaluating K_2 and K_3 .

"Multipliers are based on the assumption that wind approaches the hill or escarpment along the direction of maximum slope.

Notation

H = Height of hill or escarpment relative to the upwind terrain, in ft (m).

 K_1 = Factor to account for shape of topographic feature and maximum speed-up effect.

 $\vec{k_2}$ = Factor to account for reduction in speed-up with distance upwind or downwind of crest.

- K_3 = Factor to account for reduction in speed-up with height above local terrain.
- L_h = Distance upwind of crest to where the difference in ground elevation is half the height of hill or escarpment, in ft (m).

x = Distance (upwind or downwind) from the crest to the site of the building or other structure, in ft (m).

z = Height above ground surface at the site of the building or other structure, in ft (m).

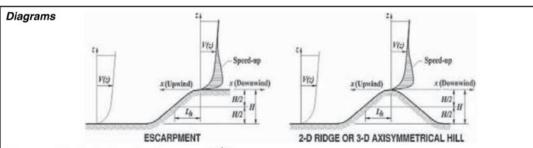
 μ = Horizontal attenuation factor.

 γ = Height attenuation factor.

Equations

 $K_{zt} = (1 + K_1 K_2 K_3)^2$

 K_1 = determined from table below


 $K_2 = (1 - |x|/\mu L_h)$

$$K_3 = e^{-yz/l}$$

Parameters for Speed-Up over Hills and Escarpments

		$K_1/(H/L_h)$				I
		Exposure				
Hill Shape	в	С	D	γ	Upwind of Crest	Downwind of Crest
2D ridges (or valleys with negative H in $K_1/(H/L_h)$	1.30	1.45	1.55	3	1.5	1.5
2D escarpments	0.75	0.85	0.95	2.5	1.5	4
3D axisymmetrical hill	0.95	1.05	1.15	4	1.5	1.5

FIGURE 26.8-1 Topographic Factor, K_{zt}

Topographic Multipliers for Exposure Ca,b,c

		K ₁ Multiplier	~		K ₂ Mult	iplier			K ₂ Multiplier	
H/L _h	2D Ridge	2D Escarpment	3D Axisym- metrical Hill	x/L _h	2D Escarpment	All Other Cases	z/L _h	2D Ridge	2D Escarpment	3D Axisym- metrical Hill
0.20	0.29	0.17	0.21	0.00	1.00	1.00	0.00	1.00	1.00	1.00
0.25	0.36	0.21	0.26	0.50	0.88	0.67	0.10	0.74	0.78	0.67
0.30	0.43	0.26	0.32	1.00	0.75	0.33	0.20	0.55	0.61	0.45
0.35	0.51	0.30	0.37	1.50	0.63	0.00	0.30	0.41	0.47	0.30
0.40	0.58	0.34	0.42	2.00	0.50	0.00	0.40	0.30	0.37	0.20
0.45	0.65	0.38	0.47	2.50	0.38	0.00	0.50	0.22	0.29	0.14
0.50	0.72	0.43	0.53	3.00	0.25	0.00	0.60	0.17	0.22	0.09
				3.50	0.13	0.00	0.70	0.12	0.17	0.06
				4.00	0.00	0.00	0.80	0.09	0.14	0.04
							0.90	0.07	0.11	0.03
							1.00	0.05	0.08	0.02
							0.50	0.01	0.02	0.00
							2.00	0.00	0.00	0.00

^aFor values of H/L_h , x/L_h , and z/L_h other than those shown, linear interpolation is permitted. ^bFor $H/L_h > 0.5$, assume that $H/L_h = 0.5$ for evaluating K_1 and substitute 2H for L_h for evaluating K_2 and K_3 . ^cMultipliers are based on the assumption that wind approaches the hill or escarpment along the direction of maximum slope.

Notation

H = Height of hill or escarpment relative to the upwind terrain, in ft (m).

 K_1 = Factor to account for shape of topographic feature and maximum speed-up effect.

 K_2 = Factor to account for reduction in speed-up with distance upwind or downwind of crest.

 K_3 = Factor to account for reduction in speed-up with height above local terrain.

 L_{h} = Distance upwind of crest to where the difference in ground elevation is half the height of hill or escarpment, in ft (m).

x = Distance (upwind or downwind) from the crest to the site of the building or other structure, in ft (m).

z = Height above ground surface at the site of the building or other structure, in ft (m).

 μ = Horizontal attenuation factor.

 γ = Height attenuation factor.

Table 26.11-1 Terrain Exposure Constants

					Customary Units	•				
Exposure	α	z_g (ft)	â	ĥ	ã	b	c	ℓ (ft)	ē	z _{min} (ft) ^a
В	7.0	1,200	1/70	0.84	1/4.0	0.45	0.30	320	1/3.0	30
С	9.5	900	1/9.5	1.00	1/6.5	0.65	0.20	500	1/5.0	15
D	11.5	700	1/11.5	1.07	1/9.0	0.80	0.15	650	1/8.0	7
					S.I. Units					
Exposure	α	z_g (m)	â	ĥ	ā	b	c	<i>t</i> (m)	ē	z _{min} (m) ^a
В	7.0	365.76	1/7	0.84	1/4.0	0.45	0.30	97.54	1/3.0	9.14
С	9.5	274.32	1/9.5	1.00	1/6.5	0.65	0.20	152.40	1/5.0	4.57
D	11.5	213.36	1/11.5	1.07	1/9.0	0.80	0.15	198.12	1/8.0	2.13

 $a_{z_{min}} =$ minimum height used to ensure that the equivalent height \bar{z} is the greater of 0.6*h* or z_{min} . For buildings or other structures with $h \le z_{min}$, \bar{z} shall be taken as z_{min} .

Height above	Ground Level, z		Exposure		
ft	m	в	с	D	
0–15	0-4.6	0.57 (0.70) ^a	0.85	1.03	
20	6.1	$0.62 (0.70)^a$	0.90	1.08	
25	7.6	$0.66 (0.70)^a$	0.94	1.12	
30	9.1	0.70	0.98	1.16	
40	12.2	0.76	1.04	1.22	
50	15.2	0.81	1.09	1.27	
60	18.0	0.85	1.13	1.31	
70	21.3	0.89	1.17	1.34	
80	24.4	0.93	1.21	1.38	
90	27.4	0.96	1.24	1.40	
100	30.5	0.99	1.26	1.43	
120	36.6	1.04	1.31	1.48	
140	42.7	1.09	1.36	1.52	
160	48.8	1.13	1.39	1.55	
180	54.9	1.17	1.43	1.58	
200	61.0	1.20	1.46	1.61	
250	76.2	1.28	1.53	1.68	
300	91.4	1.35	1.59	1.73	
350	106.7	1.41	1.64	1.78	
400	121.9	1.47	1.69	1.82	
450	137.2	1.52	1.73	1.86	
500	152.4	1.56	1.77	1.89	

Table 26.10-1 Velocity Pressure Exposure Coefficients, K_h and K_z

^{*a*}Use 0.70 in Chapter 28, Exposure B, when z < 30 ft (9.1 m).

Notes 1. The velocity pressure exposure coefficient K_z may be determined from the following formula:

For 15 ft (4.6 m) $\leq z \leq z_g$ $K_z = 2.01(z/z_g)^{2/\alpha}$ For z < 15 ft (4.6 m) $K_z = 2.01(15/z_g)^{2/\alpha}$

- 2. α and z_g are tabulated in Table 26.11-1.
- 3. Linear interpolation for intermediate values of height z is acceptable.
- 4. Exposure categories are defined in Section 26.7.

Force Coefficients, C_f

Cross Section	Type of Surface	h/D		
		1	7	25
Square (wind normal to face)	All	1.3	1.4	2.0
Square (wind along diagonal)	All	1.0	1.1	1.5
Hexagonal or octagonal	All	1.0	1.2	1.4
Round, $D_{\sqrt{q_z}} > 2.5$	Moderately smooth	0.5	0.6	0.7
$D_{\sqrt{q_z}} > 5.3$ (in S.I.)	Rough $(D'/D = 0.02)$	0.7	0.8	0.9
v	Very rough $(D'/D=0.08)$	0.8	1.0	1.2
Round, $D\sqrt{q_z} \le 2.5$ $D\sqrt{q_z} \le 5.3$ (in S.I.)	All	0.7	0.8	1.2

Notation

D = Diameter of circular cross section and least horizontal dimension of square, hexagonal, or octagonal cross sections at elevation under consideration, in ft (m)

D' = Depth of protruding elements such as ribs and spoilers, in ft (m)

h = Height of structure, in ft (m)

 q_z = Velocity pressure evaluated at height z above ground, in lb/ft² (N/m²).

Notes

1. The design wind force shall be calculated based on the area of the structure projected on a vertical plane normal to the wind direction.

The force shall be assumed to act parallel to the wind direction.

2. Linear interpolation is permitted for h/D values other than shown.

FIGURE 29.4-1 Other Structures (All Heights): Force Coefficients, C₁, for Chimneys, Tanks, and Similar Structures

The Design Snow Loads – ASCE/SEI 7-22

Chapter 7 titled "Snow Loads" in ASCE/SEI 7-22 provides Snow Loads Design requirements as detailed below.

Ground Snow Loads (P_g)

Ground snow loads, P_{g} , to be used in the determination of "Design Snow Loads" shall be calculated using the ASCE Design Ground Snow Load Geodatabase. A graphical representation of the data in the ASCE Design Ground Snow Load Geodatabase is shown in Figures 7.2-1A through 7.2-1D for the conterminous United States and Table 7.2-1 for Alaska. Where the results from the geodatabase indicate that a case study needs to be conducted for a specific location, the ground snow load determination for the location shall be based on an analysis of data available in the vicinity of the site, shall meet the reliability targets set forth in Table 1.3-1, and shall be approved by the Authority Having Jurisdiction.

Ground Snow Load Geodatabase of geocoded design ground snow load values are available at <u>https://asce7hazardtool.online/</u>.

Flat Roof Snow Loads (P_f)

The flat roof snow load (P_f) shall be calculated in lb/ft2 (kN/m2) using Eq. 7.3-1 of ASCE/SEI 7-22 as given below.

$$P_f = 0.7 C_e C_t P_g$$

where

 P_{g} = Ground Snow Load based as per Risk Category and Site Class.

 C_e = Exposure Factor as per Table 7.3-1.

 C_t = Thermal Factor as per Table 7.3-2.

Snow Loads on Pipes

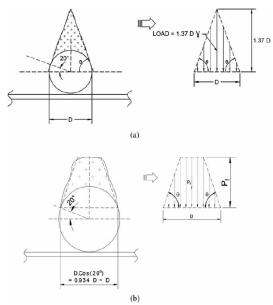


Figure 7.13-2. Snow load on individual pipes and cable trays with diameter or width (a) less than, or equal to, 0.73p₁/γ, and (b) greater than 0.73p₁/γ. Note: D, pipe diameter +2x insulation thickness (as applicable): P₁ flat toot snow load: θ, assumed angle of repose = 70 degrees.

Pipes with a diameter less than or equal to 0.73 P_f/γ shall be designed for a triangular snow load in accordance with Figure 7.13-2(a). Individual pipes with a diameter greater than 0.73 pf / γ shall be designed for a trapezoidal snow load, in accordance with Figure 7.13-2(b). Snow loads on pipes are not required to be considered if the wintertime external surface temperature of the pipe is greater than 45 °F (7.2 °C).

If D <= 0.73 P_f/ γ

Snow Load
$$=\frac{1}{2}D.h.\gamma.1$$

where

h = 1.37.D

If D > 0.73 P_f / γ

Snow Load
$$=$$
 $\frac{1}{2}(a+b)$. h. γ . 1

where

 $P_f = Flat Roof Snow Load (lb/ft² or kN/m²)$

 $h = P_f / \gamma$ (ft or m)

D = Pipe Outer Diameter + 2 * Insulation Thickness (ft or m)

b = bottom width = 0.934 D (ft or m)

 $\mathbf{x} = \mathrm{Tan}(20) * \mathbf{h} \; (\mathrm{ft} \; \mathrm{or} \; \mathbf{m})$

a = top width = b - 2x (ft or m)

 γ = Snow density, as determined from Equation (7.7-1), lb/ft³ (kN/m³)

 $\gamma = (0.13 P_g + 14)$ but not more than 30 lb/ft³

 $\gamma = (0.426 P_g + 2.2)$ but not more than 4.7 kN/m³

Ice Loads – Atmospheric Icing – ASCE/SEI 7-22

Chapter 10 titled "Ice Loads – Atmospheric Icing" in ASCE/SEI 7-22 provides the Ice Loads Design requirements as detailed below.

Ice Load

The ice load shall be determined using the volume or cross-sectional area of glaze ice formed on all exposed surfaces of structural members, guys, components, appurtenances, and cable systems. On structural shapes, prismatic members, and other similar shapes, the cross sectional area of ice shall be determined by

$$A_{i} = \pi \frac{t_{d}}{12} \left(D_{c} + \frac{t_{d}}{12} \right) \text{[English Units]}$$
$$A_{i} = \pi \frac{t_{d}}{1000} \left(D_{c} + \frac{t_{d}}{1000} \right) \text{[SI Units]}$$

where

 $A_i = Cross Section Area of Ice (ft² or m²).$

 t_d = Radial Ice Thickness (inch or mm)

 D_c = Diameter of the cylinder circumscribing an object, ft (m). D_c is shown for a variety of cross-sectional shapes in Figure 10.4-1 of ASCE/SEI 7-22.

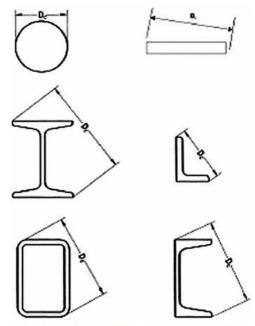


Figure 10.4-1. Characteristic dimension, D_c , for calculating the ice area for a variety of cross-sectional shapes.

Ice Loads on Pipes

where

Ice Load = A_i , γ . 1

 γ = ice density = 56 lb/ft³ (900 kg/m³)

 $A_i = Cross Section Area of Ice (ft² or m²).$

EN 1991-1-4 (2010)

General actions - Wind actions

The Design Wind Load

Section 4 titled "Wind velocity and velocity pressure" is used to compute Peak Velocity Pressure at a given elevation.

Basic Values

The fundamental value of the basic wind velocity, Vb,Q, is the characteristic 10 minutes mean wind velocity, irrespective of wind direction and time of year, at 10m above ground level in open country terrain with low vegetation such as grass and isolated obstacles with separations of at least 20 obstacle heights.

The basic wind velocity shall be calculated from Expression (4.1) of EN 1991-1-4 (2010) as given below.

$$Vb, Q = C_{dir}. V_b. C_{Season}$$

where

 V_b is the basic wind velocity, defined as a function of wind direction and time of year at 10m above ground of terrain category II.

 $V_{b,Q}$ is the fundamental value of the basic wind velocity

 C_{dir} is the directional factor, the recommended value is 1.0.

 C_{season} is the season factor, the recommended value is 1.0.

Mean Wind

The mean wind velocity $V_m(z)$ at a height z above the terrain depends on the terrain roughness and orography and on the basic wind velocity, V_b , and is determined using Expression (4.3) of EN 1991-1-4 (2010) as given below.

$$V_m(z) = C_r(z) \cdot V_b \cdot C_o(z)$$

Where

 $C_r(z)$ is the terrain roughness factor. This can be computed as given below.

 $C_0(z)$ is the orography factor, the recommended value is 1.0. See Section 4.3.3 of EN 1991-1-4 (2010) for further details.

Terrain Roughness Factor[C_r(z)]

The roughness factor, $C_r(z)$, accounts for the variability of the mean wind velocity at the site of the structure due to:

- a. height above ground level
- b. ground roughness of the terrain upwind of the structure in the wind direction considered.

$$C_r(z) = K_r Ln\left(\frac{z}{z_o}\right) for z_{min} < z < z_{max}$$
$$C_r(z) = C_r(z_{min}) for z < z_{min}$$

where

$$K_r = 0.19. \left(\frac{z}{z_{o,II}}\right)^{0.07}$$

where

 $z_{O,II}$ = 0,05 m [terrain category II, as per Table 4.1 of EN 1991-1-4 (2010)] z_{min} is the minimum height defined in Table 4.1 of EN 1991-1-4 (2010) z_{max} is to be taken as 200 m Table 4.1 – Terrain categories and terrain parameters

Terrain category		z₀ m	z _{min} m	
0	Sea or coastal area exposed to the open sea	0,003	1	
I	Lakes or flat and horizontal area with negligible vegetation and without obstacles	0,01	1	
11	Area with low vegetation such as grass and isolated obstacles (trees, buildings) with separations of at least 20 obstacle heights	0,05	2	
111	Area with regular cover of vegetation or buildings or with isolated obstacles with separations of maximum 20 obstacle heights (such as villages, suburban terrain, permanent forest)	0,3	5	
IV	Area in which at least 15 $\%$ of the surface is covered with buildings and their average height exceeds 15 m	1,0	10	
NOTE: The terrain categories are illustrated in A.1.				

Wind Turbulence

The turbulence intensity Iv(z) at height z is defined as the standard deviation of the turbulence divided by the mean wind velocity.

$$I_{V}(z) = \frac{K_{t}}{C_{o}(z) \cdot \ln\left(\frac{z}{z_{o}}\right)} \text{ for } z_{min} < z < z_{max}$$
$$I_{v}(z) = I_{v}(z_{min}) \text{ for } z < z_{min}$$

where

Kt is the turbulence factor. The value may be given in the National Annex. The recommended value for Kt is 1.0.

 $C_0(z)$ is the orography factor as explained above.

 z_0 is the roughness length as given in Table 4.1 of EN 1991-1-4 (2010).

Peak Velocity Pressure [Qp(z)]

The peak velocity pressure $\mathbf{Qp}(\mathbf{z})$ at height z, which includes mean and short-term velocity fluctuations, is determined using Expression (4.8) of EN 1991-1-4 (2010) as given below.

$$Q_p(z) = [1 + 7.I_v(z)].\frac{1}{2}.\rho.V_m^2(z) = C_e(z).Q_b$$

where

 ρ is the air density, which depends on the altitude, temperature and barometric pressure to be expected in the region during wind storms

 $C_e(z)$ is the exposure factor = $\frac{Q_p(z)}{Q_b}$

 Q_b is the basic velocity pressure $=\frac{1}{2}$. ρ . V_b^2

Design Wind Loads

The design wind force is then determined as given below.

$$F = \boldsymbol{Q}_{\boldsymbol{p}}(\boldsymbol{z}).A_f$$

where

 $Q_p(z)$ = peak velocity pressure evaluated at height z

 $A_f =$ projected area normal to the wind

Note:

In Expression 5.3, Wind Force is computed by multiplying the above Qp(z) with CsCd and Cf. From Section 6.2(d), for chimneys with circular cross-sections (similar to the flow around circular pipes), CsCd is specified as 1.0. So, the only factor that is NOT yet applied in computing the design wind loads above is Cf.

From Section 7.9 for Circular Cylinders, for most piping systems, Cf should be of between 0.7 and 1.0. Surface roughness factors (k) provided in Section 7.9.2 and endeffect factors provided in Section 7.13 (used for computing Cf) are mostly related to structural elements. Since piping elements are connected to either adjoining pipe elements or fittings or components or equipment, the end-effect factor for any element in a pipe stress model should be 1.0; it is equivalent to saying that, from fluid flow point of view, each element in a pipe stress model is behaving as an infinitely long element. Hence, it does not cause the kind of end flow effect created by finite length elements.

In view of the above, applying only Eq. 4.8 to compute design wind force is conservative. Hence, in the current version of CAEPIPE, Expression 5.3 is not implemented to calculate Design Wind Loads.

A.1 Illustrations of the upper roughness of each terrain category

Terrain category 0

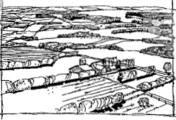
Sea, coastal area exposed to the open sea

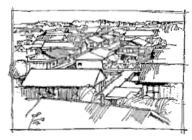
Terrain category I

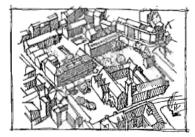
Lakes or area with negligible vegetation and without obstacles

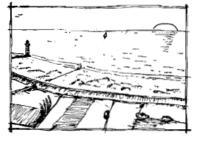
Terrain category II

Area with low vegetation such as grass and isolated obstacles (trees, buildings) with separations of at least 20 obstacle heights


Terrain category III


Area with regular cover of vegetation or buildings or with isolated obstacles with separations of maximum 20 obstacle heights (such as villages, suburban terrain, permanent forest)


Terrain category IV


Area in which at least 15 % of the surface is covered with buildings and their average height exceeds 15 m

