Readme Supplement

for

CAEPIPE Version 5.21

Disclaimer

Please read the following carefully:

This software and this document have been developed and checked for correctness and accuracy by SST Systems, Inc. However, no warranty, expressed or implied, is made by SST Systems, Inc., as to the accuracy and correctness of this document or the functioning of the software and the accuracy, correctness and utilization of its calculations.

Users must carry out all necessary tests to assure the proper functioning of the software and the applicability of its results. All information presented by the software is for review, interpretation, approval and application by a Registered Professional Engineer.

CAEPIPE is a trademark of SST Systems, Inc.

CAEPIPE Version 5.21, ©2007, SST Systems, Inc., All Rights Reserved.

SST Systems, Inc. 1641 N. First Street, Suite 275 San Jose, California 95112 USA. Tel: (408) 452-8111 Fax: (408) 452-8388 Email: info@sstusa.com www.sstusa.com **API Standard 617**

(Seventh edition, June 2003)

API Standard 617 (Seventh edition, June 2003) for Compressors

1. Allowables for each Nozzle

The total resultant force and resultant moment imposed on the compressor at any connection should not exceed

$$3F_r + M_r \leq 927D_e$$

Where

 F_r = resultant force at the Nozzle (lb)

M_r = resultant moment at the Nozzle (ft.-lb)

De = nominal pipe size (inches) of the connection up to 8" in diameter = $(16 + D_{nom})/3$ If the size is greater than 8"

2. Combined Allowables for Compressors

The combined resultants of the forces and moments of the inlet, sidestream, and discharge connections resolved at the centerlines of the largest connection should not exceed the following two conditions:

(a) The resultant should not exceed:

$$2F_c + M_c \le 462D_c$$

Where

F_c = combined resultant of inlet, sidestream, and discharge forces (lb)

 M_c = combined resultant of inlet, sidestream, and discharge moments, and moments resulting from forces (ft.-lb)

 D_c = diameter of one circular opening equal to the total areas of the inlet, sidestream, and discharge openings. If the equivalent nozzle diameter is greater than 9", use a value value of D_c equal to (18 + Equivalent Diameter) / 3

(b) The components of these resultants shall not exceed:

$$F_{x} = 92D_{c} \qquad M_{x} = 462D_{c}$$

$$F_{y} = 231D_{c} \qquad M_{y} = 231D_{c}$$

$$F_{z} = 185D_{c} \qquad M_{z} = 231D_{c}$$

Where

- F_x = horizontal component of F_c parallel to the compressor shaft (lb)
- F_y = vertical component of F_c (lb)
- F_z = horizontal component of F_c at right angles to be compressor shaft (lb)
- M_x = component of M_c around the horizontal axis (ft-lb)
- M_y = component of M_c around the vertical axis (ft-lb)
- M_z= component of M_c around the horizontal axis at right angles to the compressor (ft-lb)

Z: Perpendicular to compressor shaft

X: Parallel to compressor shaft