

The FASTEST Solutions for Piping Design and Analysis.

Version 7.70

Disclaimer

Please read the following carefully:

This software and this document have been developed and checked for correctness and accuracy by SST Systems, Inc. (SST) and InfoPlant Technologies Pvt. Ltd. (InfoPlant). However, no warranty, expressed or implied, is made by SST and InfoPlant as to the accuracy and correctness of this document or the functioning of the software and the accuracy, correctness and utilization of its calculations.

Users must carry out all necessary tests to assure the proper functioning of the software and the applicability of its results. All information presented by the software is for review, interpretation, approval and application by a Registered Professional Engineer.

CAEPIPE is a trademark of SST and InfoPlant.

CAEPIPE Version 7.70, © 2016, SST Systems, Inc. and InfoPlant Technologies Pvt. Ltd. All Rights Reserved.

SST Systems, Inc. 1798 Technology Drive, Suite 236 San Jose, California 95110 USA

InfoPlant Technologies Pvt. Ltd. 7, Crescent Road Bangalore 560001 India Tel: (408) 452-8111 Fax: (408) 452-8388 Email: info@sstusa.com www.sstusa.com

Tel: +91-80-40336999 Fax: +91-80-41494967 Email: iplant@vsnl.com Annexure A

Code Compliance

Allowable Pressure

At this time, there is no provision in CAEPIPE to specify the type of pipe construction, i.e., whether the pipe is a seamless or longitudinal welded or spiral welded. Accordingly, irrespective of the type of pipe construction, CAEPIPE calculates allowable pressure as follows.

<u>For straight pipes and bends</u> with seamless construction or designed for sustained operation <u>below</u> <u>the creep range</u>. Eq. (9) of para.104.1.2 is used as given below to compute allowable pressure.

$$P_a = \frac{2SEt_a}{D_a - 2Yt_a}$$

For straight pipes and bends designed for sustained operation within the creep range. Eq. (11) of para.104.1.4 is used as given below to calculate allowable pressure.

$$P_a = \frac{2SEWt_a}{D_a - 2Yt_a}$$

where

 P_a = allowable pressure

SE = allowable stress as given in Appendix A of B31.1 (2016) Code, where

E = weld joint efficiency factor or casting quality factor as given in Table 102.4.3

 t_a = available thickness for pressure design = $t_n \times (1 - mill tolerance/100) - corrosion allowance$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance in CAEPIPE)

t_n = nominal pipe thickness

 D_{\circ} = outside diameter of pipe

d = inside diameter of pipe

The Pressure coefficient Y is implemented as per Table 104.1.2 (A). In addition,

Y = 0.0, for cast iron

 $Y = \frac{d}{d + D_o}$, if $D_o/t_a < 6$, for ferritic and austenitic steels designed for temperatures of 900°F

(480°C) and below

W = weld strength reduction factor as per Table 102.4.7. Refer to Annexure B for details on Weld strength reduction factor implemented in CAEPIPE.

For closely spaced miter bends, the allowable pressure is calculated from Eq. (C.3.1) of para.104.3.3.

$$P_a = \frac{SEt_a(R-r)}{r(R-r/2)}$$

where

 $r = mean radius of pipe = (D_o - t_n)/2$

R = equivalent bend radius of the miter

For widely spaced miter bends, the allowable pressure is calculated from Eq. (C.3.2) of para. 104.3.3.

$$P_a = \frac{SEt_a^2}{r(t_a + 1.25 \tan \theta \sqrt{rt_a})}$$

Where, θ = miter half angle

Sustained Stress

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from Eq. 15 of para.104.8.1

$$S_L = \frac{PD_o}{4t_n} + \frac{0.75iM_A}{Z} \le S_h$$

where

P = maximum of CAEPIPE pressures P1 through P10

 D_o = outside diameter

t_n = nominal wall thickness

i = stress intensification factor. The product 0.75i shall not be less than 1.0.

 M_A = resultant bending moment due to weight and other sustained loads

Z = uncorroded section modulus; for reduced outlets, effective section modulus as per para. 104.8.4

S_h = hot allowable stress at maximum CAEPIPE temperature [i.e., at max (Tref, T1 through T10)]

Occasional Stress

The stress (S_{Lo}) due to occasional loads is calculated from Eq. 16 of para.104.8.2 as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_o) such as earthquake or wind. Wind and earthquake are not considered concurrently.

$$S_{Lo} = \frac{P_{peak}D_o}{4t_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le 1.2S_h$$

where

 M_B = resultant bending moment on the cross-section due to occasional loads such as thrusts from relief / safety valve loads, from pressure and flow transients, earthquake, wind etc.

P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P, where P is defined above

Expansion Stress Range (i.e., Stress due to Displacement Load Range)

The stress (S_E) due to thermal expansion is calculated from Eq. 17 of para.104.8.3.

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

M_C = resultant moment due to thermal expansion

 $S_A = f(1.25S_C + 0.25S_h)$, from Eq. (1A) of para. 102.3.2 (B)

f = cyclic stress range reduction factor from Eq.(1C) of para. 102.3.2(B),

 $f = 6/N^{0.2} \le 1.0$ and f ≥ 0.15 with N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping

 S_{C} = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis

 S_h = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than S_L , the allowable stress range may be calculated as

 $S_{\scriptscriptstyle A} = f[1.25(S_{\scriptscriptstyle C} + S_{\scriptscriptstyle h}) - S_{\scriptscriptstyle L}]$, from Eq. (1B) of para. 102.3.2 (B)

This is specified as an analysis option: "Use liberal allowable stresses", in the menu Options->Analysis on the Code tab of CAEPIPE.

Note:

Refer Annexure C for the details of "Thickness" and the "Section Modulus" used by CAEPIPE for weight, pressure and stress calculations.

ASME B31.1-2016

MANDATORY APPENDIX D FLEXIBILITY AND STRESS INTENSIFICATION FACTORS

Table D-1 Flexibility and Stress Intensification Factors									
Description	Flexibility Characteristic, h	Rexibility Factor, k	Stress Intensification Factor, <i>i</i>	Sketch					
Welding elbow or pipe bend [Notes (1), (2), (3), (4), (5)]	$\frac{t_n R}{r^2}$	<u>1.65</u> h	$\frac{0.9}{h^{2/3}}$	$ \begin{array}{c} $					
Closely spaced miter bend [Notes (1), (2), (3), (5)] $s < r(1 + \tan \theta)$ $B \ge 6 t_n$ $\theta \le 22^{1/2} \deg$	$\frac{st_n \cot \theta}{2r^2}$	<u>1.52</u> h ^{5/6}	0.9 h ^{2/3}	$B = \frac{s \cot \theta}{2}$					
Widely spaced miter bend [Notes (1), (2), (5), (6)] $s \ge r(1 + \tan \theta)$ $\theta \le 22^{1}/_{2} \deg$	$\frac{t_n (1 + \cot \theta)}{2r}$	<u>1.52</u> h ^{\$/6}	$\frac{0.9}{h^{\frac{2}{3}}}$	$s \xrightarrow{\theta} \frac{1}{r} \xrightarrow{t} \frac{1}{t_n}$ $R = \frac{r(1 + \cot \theta)}{2}$					
Welding tee per ASME B16.9 [Notes (1), (2), (7)]	$\frac{3.1t_n}{r}$	1	$\frac{0.9}{b^{2/3}}$	$\overbrace{\tau_{c}}^{T_{c}} \overbrace{r}^{T_{c}} \overbrace{t_{n}}^{T_{c}}$					
Reinforced fabricated tee [Notes (1), (2), (8), (9)]	$\frac{\left(t_n + \frac{t_r}{2}\right)^{5/2}}{r(t_n)^{3/2}}$	1	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c} \downarrow \\ \downarrow \\ \uparrow t_r \\ Pad \end{array} \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ ft_r \\ Saddle \end{array}$					
Unreinforced fabricated tee [Notes (1), (2), (9)]	<u>tn</u> r	1	$\frac{0.9}{b^{2/3}}$	$\begin{array}{c} & \downarrow \\ & \downarrow \\ & \uparrow \\ & \downarrow \\ & \uparrow \\ & \downarrow \\$					

ASME B31.1-2016

Description	Flexibility Characteristic, <i>h</i>	Flexibility Factor, k	Stress Intensification Factor, <i>î</i>	Sketch
Branch welded-on fitting (integrally reinforced) per MSS SP-97 [Notes (1), (2)]	$\frac{3.3t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	$\begin{array}{c} \downarrow t_n \\ \hline \hline \hline \hline \\ \hline $
Extruded outlet meeting the requirements of para. 104.3.1(G) [Notes (1), (2)]	$\frac{t_n}{r}$	1	$\frac{0.9}{b^{\frac{2}{3}}}$	$\frac{\frac{1}{4}r}{\frac{1}{4}r}$
Welded-in contour insert [Notes (1), (2), (7)]	$3.1 \frac{t_n}{r}$	1	$\frac{0.9}{h^{2/3}}$	
Description	Flexibility Factor, k	Stress I	ntensification Factor, <i>i</i>	Sketch
Branch connection [Notes (1), (10)]	1	For checking 1.5 $\left(\frac{R_m}{t_{nh}}\right)^2$	t branch end $\left(\frac{r'm}{R_m}\right)^{1/2} \left(\frac{t_{nb}}{t_{nh}}\right) \left(\frac{r'm}{r_p}\right)$	See Fig. D-1
Butt weld [Note (1)]				
$t \ge 0.237$ in., $\delta_{max} \le \frac{1}{16}$ in., and $\delta_{avg}/t \le 0.13$	1	1.0 [Note (1	1)]	
Butt weld [Note (1)]				\uparrow_t t
$t \ge 0.237$ in., $\delta_{max} \le \frac{1}{8}$ in., and $\delta_{avg}/t = any value$	1		$[0.9 + 2.7(\delta_{avg}/t)],$	
Butt weld [Note (1)]		[Note (11)	ss than 1.0]	
t < 0.237 in., $\delta_{max} \le \frac{1}{16}$ in., and $\delta_{avg}/t \le 0.33$	1			
Fillet welds	1	1.3 [Note (1	2)]	See Figs. 127.4.4(A), 127.4.4(B), and 127.4.4(C)
Tapered transition per para. 127.4.2(B) and ASME B16.25 [Note (1)]	1	1.9 max. or 1.3 + 0.00	$0.36\frac{D_0}{t_n} \neq 3.6\frac{\delta}{t_n}$	D_o

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

ASME B31.1-2016

Description	Flexibility Factor, <i>k</i>	Stress Intensification Factor, <i>i</i>	Sketch
Concentric reducer per ASME B16.9 [Notes (1), (13)]	1	2.0 max. or 0.5 + 0.01 $\alpha \left(\frac{D_2}{t_2}\right)^{1/2}$	$ \begin{array}{c} \downarrow^{t_1} \\ \downarrow^{t_1} \\ \downarrow^{t_2} $
Threaded pipe joint or threaded flange	1	2.3	
Corrugated straight pipe, or corrugated or creased bend [Note (14)]	5	2.5	

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

GENERAL NOTE: The validity of the stress intensification and flexibility factor data in Table D-1 has been demonstrated for $D_o/t_a \leq 100$. NOTES:

(1) The following nomenclature applies to Table D-1:

B = length of miter segment at crotch, in. (mm)

- D_{o} = outside diameter, in. (mm)
- $D_{ob} =$ outside diameter of branch, in. (mm) $D_1 =$ outside diameter of reducer on large end, in. (mm)
- D_2^{-} = outside diameter of reducer on small end, in. (mm)
- Ŕ = bend radius of elbow or pipe bend, in. (mm)
- r = mean radius of pipe, in. (mm) (matching pipe for tees)
- = external crotch radius of welded-in contour inserts and welding tees, in. (mm) l_X
- s = miter spacing at centerline, in. (mm)
- T_c = crotch thickness of welded in contour inserts and welding tees, in. (mm)
- $t_n = \text{nominal wall thickness of pipe, in. (mm) (matching pipe for tees)}$ $t_r = \text{reinforcement pad or saddle thickness, in. (mm)}$
- = reducer cone angle, deg α
- $\delta = \text{mismatch, in. (mm)}$
- $\theta =$ one-half angle between adjacent miter axes, deg
- (2) The flexibility factors k and stress intensification factors i in Table D-1 apply to bending in any plane for fittings and shall in no case be taken less than unity. Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter elbows, and to the intersection point for tees. The values of k and i can be read directly from Chart D-1 by entering with the characteristic h computed from the formulas given.
- (3) Where flanges are attached to one or both ends, the values of k and i in Table D-1 shall be multiplied by the factor c given below, which can be read directly from Chart D-2, entering with the computed h: one end flanged, $c = h^{1/6}$; both ends flanged, $c = h^{1/3}$
- (4) The designer is cautioned that cast butt welding elbows may have considerably heavier walls than those of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5) In large diameter thin-wall elbows and bends, pressure can significantly affect magnitudes of k and k. Values from the Table may be corrected by dividing k by

$$\left[1 + 6\left(\frac{\rho}{\mathcal{E}_c}\right) \left(\frac{r}{t_n}\right)^{7/3} \left(\frac{R}{r}\right)^{1/3}\right]$$

and dividing i by

$$\left[1 \div 3.25 \left(\frac{\rho}{E_c}\right) \left(\frac{r}{t_n}\right)^{5/2} \left(\frac{R}{r}\right)^{2/3}\right]$$

- (6) Also includes single miter joints.
- (7) If $r_x \ge D_{ob}/8$ and $T_c \ge 1.5t_n$, a flexibility characteristic, h, of $4.4t_n/r$ may be used.
- (8) When $t_r > 1.5t_n$, $h = 4.05t_n / r$.
- (9) The stress intensification factors in the Table were obtained from tests on full size outlet connections. For less than full size outlets, the full size values should be used until more applicable values are developed.

Table D-1 Flexibility and Stress Intensification Factors (Cont'd)

NOTES (Cont'd):

(10) The equation applies only if the following conditions are met:

- (a) The reinforcement area requirements of para. 104.3 are met.
- (b) The axis of the branch pipe is normal to the surface of run pipe wall.

 $\langle Q \rangle$ For branch connections in a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe is not less than three times the sum of their inside radii in the longitudinal direction or is not less than two times the sum

- of their radii along the circumference of the run pipe.
 - (d) The inside corner radius r_1 (see Fig. D-1) is between 10% and 50% of t_{nh} .
 - (e) The outer radius r_2 (see Fig. D-1) is not less than the larger of $T_b/2$, $(T_b \neq y)/2$ [shown in Fig. D-1 sketch (c)], or $t_{nh}/2$.
 - (f) The outer radius r_3 (see Fig. D-1) is not less than the larger of:
 - (1) 0.0028d₀;
 - (2) $2(\sin \theta)^3$ times the offset for the configurations shown in Fig. D-1 sketches (a) and (b).
 - (g) $R_m/t_{nh} \le 50$ and $r'_m/R_m \le 0.5$.
- (11) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between 0.875*t* and 1.10*t* for an axial distance of $\sqrt{D_0 t}$. D_0 and *t* are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.
- (12) For welds to socket welded fittings, the stress intensification factor is based on the assumption that the pipe and fitting are matched in accordance with ASME B16.11 and a full weld is made between the pipe and fitting as shown in Fig. 127.4.4(C). For welds to socket welding flanges, the stress intensification factor is based on the weld geometry shown in Fig. 127.4.4(B) and has been shown to envelop the results of the pipe to socket welded fitting tests. Blending the toe of the fillet weld, with no undercut, smoothly into the pipe wall, as shown in the concave fillet welds in Fig. 127.4.4(A) sketches (b) and (d), has been shown to improve the fatigue performance of the weld.
- (13) The equation applies only if the following conditions are met:
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_1/t_1 and D_2/t_2 does not exceed 100.
 - (a) The wall thickness is not less than t_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical
- portion on the small end, where the thickness shall not be less than t_2 .
- (14) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

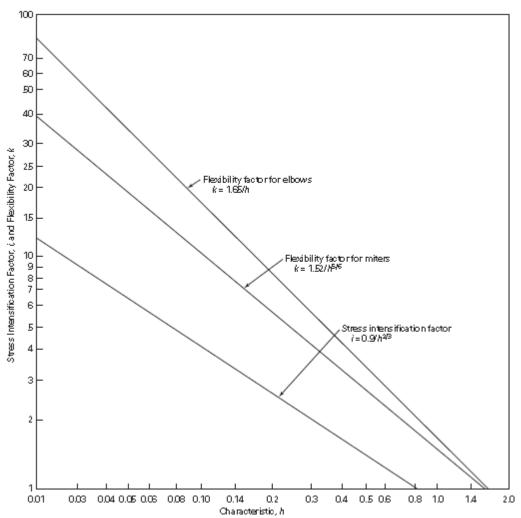
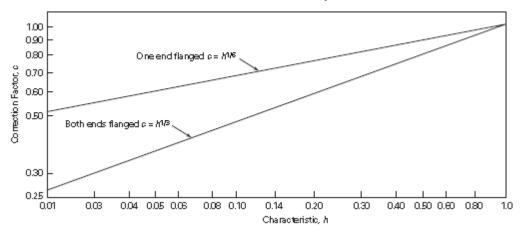



Chart D-1 Flexibility Factor, k, and Stress Intensification Factor, i

ASME B31.5 (2016)

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 504.1.2.

$$P = \frac{2SEt_a}{D - 2Yt_a}$$

where

P = allowable pressure

S = basic allowable stress at maximum of CAEPIPE input temperatures T_1 through T_{10}

E = longitudinal or spiral joint factor (input as material property) from para. 502.3.1 and Table 502.3.1

Table 502.3.1 provides maximum allowable hoop stress values (SE) as a function of metal temperature and includes Longitudinal or Spiral Joint Factor (E) for various materials. Divide SE value by E value provided in Table 502.3.1 to obtain basic allowable stress S. For materials where E is not given explicitly in Table 502.3.1, use E=1.0.

Hence, SE in the above formula for allowable pressure P is the allowable hoop stress per para. 502.3.1 and Table 502.3.1.

 t_a = available thickness for pressure design (as per para. 504.1.1)

= $t_n \times (1 - mill tolerance/100) - corrosion allowance$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance)

 t_n = nominal pipe thickness

D = outside diameter

d = inside diameter

Y = pressure coefficient

For ductile non-ferrous materials and ferritic and austenitic steels,

Y = 0.4 for
$$D/t_a \ge 6$$
 and Y = $\frac{d}{d+D}$, for $4 \le D/t_a < 6$

For Cast Iron, Y = 0.0

Sustained Stress (in corroded condition)

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para. 502.3.2(d). Also, refer to Note 1 below.

$$S_{L} = \frac{PD}{4t_{c}} + \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{c}} \le S_{h}$$

where

 $P = maximum of CAEPIPE input pressures P_1 through P_{10}$

D = outside diameter

 t_c = nominal thickness – corrosion allowance, as per para. 502.3.2 (d)

 $i_i =$ in-plane stress intensification factor

 i_a = out-of-plane stress intensification factor

 M_i = in-plane bending moment

 M_{o} = out-of-plane bending moment

 Z_c = corroded section modulus as per para. 502.3.2 (d)

 S_h = basic allowable stress at maximum of CAEPIPE input temperatures T₁ through T₁₀

Occasional Stress (in corroded condition)

The stress (S_{Lo}) due to occasional loads is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_o) such as earthquake or wind. Wind and earthquake are not considered concurrently (see para. 502.3.3 (a)). Also, refer to Note 1 below.

$$S_{Lo} = \frac{P_{peak}D}{4t_{c}} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{c}}\right]_{sustained} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{c}}\right]_{occasional} \le 1.33S_{h}$$

where

P_{peak} = peak pressure = (peak pressure factor in CAEPIPE) x P, where P is defined above

Expansion Stress (in uncorroded condition)

The stress (S_E) due to thermal expansion is calculated from para. 519.4.5 and para. 519.3.5. Also see Note 2 below.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$

$$S_t = \text{torsional stress} = \frac{M_t}{2Z}$$

M_t = torsional moment

Z = uncorroded section modulus; for reduced outlets, effective section modulus

 $S_A = f(1.25S_{cold} + 0.25S_{hot})$ (see para. 502.3.2 (c))

f = stress range reduction factor from Figure 502.3.2

 S_{Cold} = basic allowable stress at minimum metal temperature expected during the displacement cycle under analysis

 S_{hot} = basic allowable stress at maximum metal temperature expected during the displacement cycle under analysis

When S_h is greater than S_L , the allowable stress range may be calculated as

 $S_A = S_A + f(S_h - S_L)$

where, S_h = basic allowable stress at maximum of CAEPIPE input temperatures T₁, through T₁₀

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options->Analysis on the Code tab.

Notes:

- 1. As per para. 502.3.2 (d), the pressure stress should be calculated using the formula $Pd^2/(D^2-d^2)$, where d is the internal diameter = D-2t_c. This can be selected through Options > Analysis > Pressure
- 2. As per para. 519.4.5(a), Bending and torsional stress shall be computed using the as-installed modulus of elasticity, i.e., E_c at installation temperature. Hence, "Use modulus at reference

Refrigeration Piping and Heat Transfer Components ASME B31.5 (2016)

temperature" (available through CAEPIPE Layout > Options > Analysis > Temperature) is set as "default" and is disabled for user to modify.

3. Refer Annexure C for the details of "Thickness" and the "Section Modulus" used by CAEPIPE for weight, pressure and stress calculations.

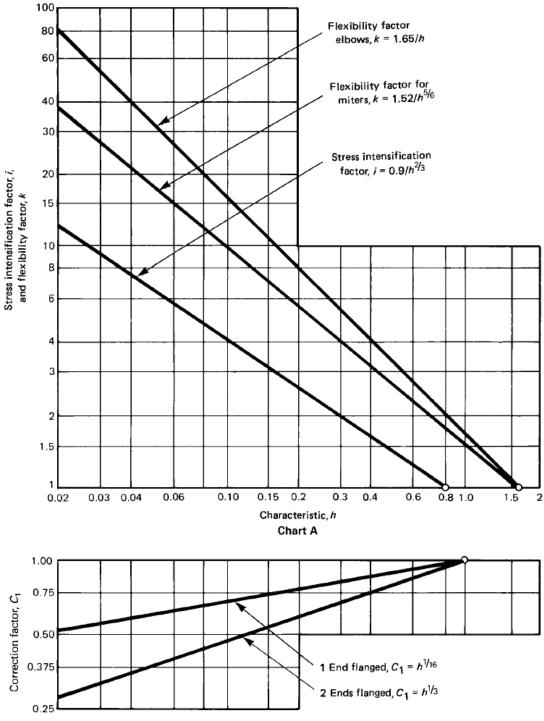


Table 519.3.6 Flexibility Factor, k, and Stress Intensification Factor, i

Table 519.5.0	riexinitity r	actor, r, ar	id Stiess lille	IISIIICation	
	Flexibility	Flexibility	Stress Inten Facto		
Description	Characteristic, h	Factor,	<i>i_j</i> [Note (1)]	i, [Note (2)]	Illustration
Welding elbow or pipe bend [Notes (3)–(7)]	$\frac{\overline{TR}}{r^2}$	$\frac{1.65}{h}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/_3}}$	$\overline{\overline{r}}$ $R = \text{bend radius}$
Closely spaced miter bend [Notes (3), (4), (5), and (7)], $s < r(1 + \tan \theta)$	$\frac{\overline{T}s}{r^2}\left(\frac{\cot \theta}{2}\right)$	$\frac{1.52}{h^{5/2}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\frac{\sqrt{1-\frac{1}{2}}}{R} = \frac{1}{2}$
Widely spaced miter bend [Notes (3), (4), (7), and (8)], $s \ge r(1 + \tan \theta)$	$\frac{\overline{T}}{r}\left(\frac{1+\cot\theta}{2}\right)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{\frac{2}{3}}}$	$\theta = \frac{r(1+\cot\theta)}{2}$
Welding tee ASME B16.9 [Notes (3) and (4)]	$4.4\frac{\overline{T}}{r}$	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{\frac{3}{2}}}$	Ť Ť
Reinforced fabricated tee with pad or saddle [Notes (3), (4), and (9)]	$\frac{(\overline{T} + \frac{1}{2}T)^{\frac{5}{2}}}{t^{\frac{3}{2}}r}$	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2/3}}$	$\frac{1}{\frac{1}{7}}$ Pad saddle
Unreinforced fabricated tee [Notes (3) and (4)]	$\frac{\overline{T}}{r}$	1	0.75 <i>i</i> _o + 0.25	$\frac{0.9}{h^{2/3}}$	
Butt welded joint, reducer, or welding neck flange		1	1.0	1.0	
Double-welded slip-on flange	•••	1	1.2	1.2	

Table 519.3.6 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

Description	Flexibility	Flexibility		ensification tor	
	Characteristic, h	Factor, k	<i>i;</i> [Note (1)]	<i>i</i> , [Note (2)]	Illustration
Fillet welded joint (single- welded), socket welded flange, or single-welded slip-on flange		1	1.3	1.3	
Lap flange (with ASME B16.9 lap-joint stub)		1	1.6	1.6	
Threaded pipe joint or threaded flange		1	2.3	2.3	
Corrugated straight pipe, or corrugated or creased bend [Note (10)]		5	2.5	2.5	

Table 519.3.6 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

GENERAL NOTE: For reference, see Table 519.3.6 figure on page 41.

NOTES:

(1) In-plane.

(2) Out-plane.

(3) For fittings and miter bends the flexibility factors, *k*, and stress intensification factors, *i*, in the Table apply to bending in any plane and shall not be less than unity; factors for torsion equal unity.

- (4) Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter elbows and to the intersection point for tees. The values of *k* and *i* can be read directly from Chart A by entering with the characteristic, *h*, computed from the equations given where
 - R_{-} = bend radius of welding elbow or pipe bend, in. (mm)
 - r = mean radius of matching pipe, in. (mm)
 - s = miter spacing at centerline, in. (mm)
 - T = pad or saddle thickness, in. (mm)
 - \overline{T} = nominal wall thickness, in. (mm), of: part itself for elbows and curved or miter bends; matching pipe for welding tees; run or header for fabricated tees (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diameter).
 - $\theta_{-}=$ one-half angle between adjacent miter axes, deg

(5) Where flanges are attached to one or both ends, the values of k and T in the Table shall be corrected by the factors C_1 given below, which can be read directly from Chart B; entering with the computed h: one end flanged, $h^{\frac{1}{2}} \ge 1$; both ends flanged, $h^{\frac{1}{2}} \ge 1$.

(6) The engineer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.

(7) In large-diameter thin-wall elbows and bends, pressure can significantly affect the magnitude of flexibility and stress intensification factors. To correct values obtained from the Table for the pressure effect, divide
 (a) flexibility factor, k, by

$$1 + 6 \frac{P}{E_c} \left(\frac{r}{\overline{T}}\right)^{\frac{1}{2}} \left(\frac{R}{r}\right)^{\frac{1}{2}}$$

(b) stress intensification factor, i, by

$$1+3.25 \frac{P}{E_c} \left(\frac{r}{T}\right)^{\frac{5}{2}} \left(\frac{R}{r}\right)^{\frac{2}{3}}$$

where

- E_c = cold modulus of elasticity, ksi (MPa)
- P = internal design pressure, psi (kPa)
- (8) Also includes single-miter joint.
- (9) When $T > 1.5\overline{T}$, use $h = 4.05 \overline{T}/r$.
- (10) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

ASME B31.9 (2014)

Allowable Pressure

For straight pipes and bends, the calculation of allowable pressure is based on Eq. 2 of paras.904.1.1 and 904.2.1.

$$P = \frac{2SE(t_m - A)}{D}$$

where

P = allowable pressure

SE = allowable hoop stress, given in Appendix I of B31.9 (2014) Code, where

E = longitudinal or spiral weld joint efficiency factor or casting quality factor

 t_m = minimum required pipe thickness as per para.904.1.1(a)

= t_n × (1 - mill tolerance/100)

t_n = nominal pipe thickness

A = corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in "corrosion allowance" in CAEPIPE)

D = outside diameter

For closely and widely spaced miter bends, the allowable pressure shall be the lower positive value calculated from Eqs. (3A) and (3B) of para 904.2.2 (a)

$$P = \frac{SET}{r} \left(\frac{T}{T + 0.64 \tan \theta \sqrt{rT}} \right)$$
Eq. (3A)
$$P = \frac{SET}{r} \left(\frac{R - r}{R - r/2} \right)$$
Eq. (3B)

where

 $r = mean radius of pipe = (D - t_n) / 2$

 $T = t_m - A$, where t_m and A are defined above

R = effective bend radius of the miter

 θ = miter half angle

Sustained Stress (in uncorroded condition)

The longitudinal stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated as mentioned in para.902.3.2 (d)

$$S_L = \frac{PD_o}{4t_n} + \frac{0.75iM_A}{Z} \le S_h$$

where

 $P = maximum of CAEPIPE pressures P_1 through P_{10}$

D_o = outside diameter

 $t_n = nominal wall thickness$

i = stress intensification factor. The product 0.75i shall not be less than 1.0.

M_A = resultant bending moment due to weight and other sustained loads

Z = uncorroded section modulus; for reduced outlets, effective section modulus

ASME B31.9 (2014)

 S_h = hot allowable stress at maximum CAEPIPE temperatures [i.e., at max (T_{ref} , T_1 through T_{10})]

Occasional Stress (in uncorroded condition)

The longitudinal stress (S_{Lo}) due to occasional loads is calculated as mentioned in para.902.3.3 (a) as the sum of stresses due to pressure, live and dead loads and stress due to occasional loads (S_o) such as earthquake or wind. Wind and earthquake are not considered to occur concurrently.

$$S_{Lo} = \frac{P_{peak}D_o}{4t_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le 1.33S_h$$

where

M_B = resultant bending moment due to occasional loads

P_{peak} = peak pressure = (peak pressure factor) x P

Expansion Stress (in uncorroded condition)

The stress (S_E) due to thermal expansion is calculated from para.902.3.2 (c), para.919.2.1 and para.919.4.1 (b).

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

M_C = resultant moment due to thermal expansion

$$S_A = f(1.25S_c + 0.25S_h)$$

f = stress range reduction factor = 6/N0.2, where N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping. Also 0.15 \leq f \leq 1.0

 S_{c} = basic allowable stress as minimum metal temperature expected during the displacement cycle under analysis [i.e., at min (T_{ref} , T_{1} through T_{10})

 S_h = basic allowable stress as maximum metal temperature expected during the displacement cycle under analysis [i.e., at max (T_{ref} , T_1 through T_{10})

When S_h is greater than SL, the allowable stress range SA may be calculated as per para. 902.3.2 (d).

 $S_A = f[1.25(S_C + S_h) - S_L]$

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options->Analysis on the "Code" tab.

Allowable Pressure

For straight pipe, the design pressure for a given design wall thickness or the design wall thickness for a given design pressure shall be determined by the following design formula from Clause 4.3.5.1.

$$P = FLJT\left(\frac{2St}{D}\right)$$

where

P = allowable pressure

S = specified minimum yield strength

t = minimum wall thickness

= nominal wall thickness \times (1 - mill tolerance/100) - corrosion allowance

F = design factor = 0.8 as per Clause 4.3.6.

L = location factor (from Table 4.2)

- J = joint factor (from Table 4.3), input as material property in CAEPIPE
- T = temperature factor for steel pipe (from Table 4.4)

D =outside diameter

Sustained + Occasional Stress (Unrestrained Piping)

The sum of longitudinal pressure stress and the total bending stress due to sustained force (pressure, weight and other sustained mechanical loads) and wind loading shall be limited in accordance with the following formula from Clause 4.8.5.

$$0.5S_h + s_B \le SFLT$$

where

 S_h = hoop stress due to design pressure, as determined using the formula given in Clause 4.6.5 $=\frac{PD}{2t}$

 S_B = absolute value of beam bending compression stresses resulting from live and dead loads = $\frac{iM_B}{iM_B}$

$$Z_C$$

- P = design pressure
- D =outside diameter of pipe
- t = minimum wall thickness
- = nominal wall thickness \times (1 mill tolerance/100) corrosion allowance
- i = stress intensification factor (from Table 4.8)
- M_B = resultant bending moment due to live and dead loads
- Z_C = corroded section modulus
- S = specified minimum yield strength
- F = design factor = 0.8 as per Clause 4.3.6
- L = location factor (from Table 4.2)
- T = temperature factor for steel pipe (from Table 4.4)

Expansion Stress (Unrestrained Piping)

The thermal expansion stress range (S_E) for those portions of pipeline systems without axial restraint shall be combined in accordance with the formulae given in Clause 4.8.3 and 4.8.4.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le 0.72ST$$

where

 S_b = resultant bending stress = iM_b/Z

 S_t = torsional stress = $M_t/(2Z)$

 M_b = resultant bending moment due to expansion loads

 M_t = torsional moment due to expansion loads

Z = un-corroded section modulus

i = stress intensification factor (from Table 4.8)

S = specified minimum yield strength

T = temperature factor for steel pipe (from Table 4.4)

Combined Stress (Restrained Piping)

For those portions of restrained pipelines, the combined stress shall be limited in accordance with the formula given in Clause 4.7.2.1.

$$S_h - S_L + s_B \le ST$$

where

 S_h = hoop stress due to design pressure, as determined using the formula given in Clause 4.6.5 = $\frac{PD}{2t}$

- S_L = longitudinal compressive stress as determined using the formula given in Clause 4.7.1 = $S_L = \vartheta S_h - E_c \alpha (T_{opr} - T_{ref})$
- S_B = absolute value of beam bending compression stresses resulting from live and dead loads = $\frac{iM_B}{E}$

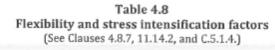
$$z_c$$

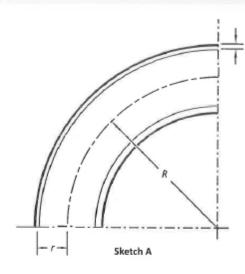
P = design pressureD = outside diameter of pipe

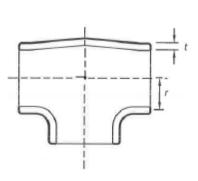
t = minimum wall thickness

= nominal wall thickness \times (1 - mill tolerance/100) - corrosion allowance

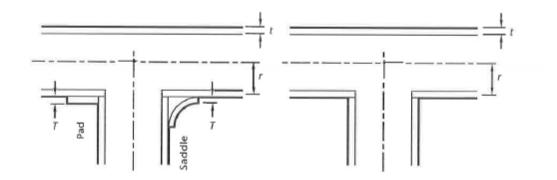
- i = stress intensification factor (from Table 4.8)
- M_B = resultant bending moment due to live and dead loads
- Z_C = corroded section modulus
- ϑ = Poisson's ratio
- E_c = modulus of elasticity of steel at T_{ref}


 T_{opr} = operating temperature under consideration (T₁, T₂, T₃, ..., T₁₀ in CAEPIPE)


- T_{ref} = ambient temperature at the time of restraint = Reference temperature in CAEPIPE
- α = coefficient of thermal expansion at T_{opr} defined above
- S = specified minimum yield strength
- T = temperature factor for steel pipe (from Table 4.4)


Note:

Evaluation as per Clause 4.7.2.1 (listed above) for Restrained Piping shall be performed in CAEPIPE only when the value of S_L computed as listed above is negative (compressive).


Oil and gas pipeline systems Z662 (2015)

Sketch B

Sketch C

Sketch D

(Continued)

Oil and gas pipeline systems Z662 (2015)

Table -	4.8	(Concluded)	Í
10010	21.02	C	

Description	Flexibility factor, κ*	Stress intensi- fication factor, i*	Description	Flexibility factor, ĸ*	Stress intensifi- cation factor, i*	Flexibility character- istic, h	See sketch
Buttwelded joint, reducer, or welding neck flange	1	1.0	Welding elbow or pipe bend†	1.65 h	$\frac{0.9}{h^{2/3}}$	$\frac{tR}{r^2}$	A
Double-welded slip-on or socket welding flange	1	1.2	Welding tee per CSA Z245.11	1	$\frac{0.9}{h^{2/3}}$	4.4 ^t / _r	В
Fillet-welded joint or single- welded socket welding flange	1	1.3	Reinforced fabricated tee with pad or saddle	1	$\frac{0.9}{h^{2/3}}$	$\frac{(t+1/27)^{\frac{5}{2}}}{t^{3/2}r}$	c
Lap joint flange (with ASME B16.9 lap joint stub)	1	1.6	Unreinforced fabricated tee	1	$\frac{0.9}{h^{2/3}}$	t r	D
Screwed pipe joint or screwed flange	1	2.3					
Corrugated pipe, straight or curved, or creased bend‡	5	2.5					

The flexibility factors and stress intensification factors apply to fittings of the same nominal wall thickness as the pipe used in the pipeline system and shall in no case be taken as less than unity. They apply over the effective arc length (shown by dash-dot lines in the sketches) for elbows, and to the intersection point for tees.
t Where flanges are attached to one or both ends, the values of κ and i in this Table shall be multiplied by the following factors:
a) one end flanged: (h)^{1/8}
b) both ends flanged: (h)^{1/8}
Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Note: Designers are cautioned that more comprehensive analysis than that specified in Clauses 4.6 to 4.10 can be necessary for specific cases.

Annexure B

Weld Strength Reduction Factors built into CAEPIPE

(as given in Table 102.4.7 of ASME B31.1 - 2016)

Weld Strength Reduction Factors applied for calculating the Allowable Design Pressure of components (extracted from Table 102.4.7 of ASME B31.1-2016).

			Weld Strength Reduction Factor for Temperature, Deg F (Deg C)									
		700	750	800	850	900	950	1000	1050	1100	1150	1200
SI. No.	Steel Group	(371)	(399)	(427)	(454)	(482)	(510)	(538)	(566)	(593)	(621)	(649)
1	Carbon Steel (CS)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	Ferritic Steels (FS)	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
3	Austenitic Steel (AS) [contd. in note 2 below]	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.86	0.82	0.77
4	Materials other than those stated from SI. Nos. 1 to 3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Notes:

1. NP = Not permitted

2. For Austenitic Steels (including 800H and 800 HT) the values upto 1500 deg F are as follows:

Temperature, deg F	Temperature, deg C	Weld Strength Reduction Factor
1250	677	0.73
1300	704	0.68
1350	732	0.64
1400	760	0.59
1450	788	0.55
1500	816	0.50

Annexure C

Thickness and Section Modulus used by CAEPIPE in Weight, Pressure and Stress Calculations for ASME B31.x Codes

Particulars	Allowable Pressure	Pipe Weight	Sustained Stress	Expansion Stress	Occasional Stress
B31.1 (2016)					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness
Section			Uncorroded Section Modulus;	Uncorroded Section Modulus;	Uncorroded Section Modulus;
Modulus used	-	-	For Branch, effective section modulus	For Branch, effective section modulus	For Branch, effective section modulus
B31.3 (2014)					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness - Corrosion allowance	-	Nominal Thickness – Corrosion allowance
Section			Corroded Section Modulus;	Uncorroded Section Modulus;	Corroded Section Modulus;
Modulus used	-	-	For Branch, effective section modulus	For Branch, effective section modulus	For Branch, effective section modulus
B31.4 (2012)					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness
Section Modulus used	-	-	Uncorroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch effective section modulus
B31.5 (2016)					
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness – Corrosion allowance	-	Nominal Thickness – Corrosion allowance
Section Modulus used	-	-	Corroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch, effective section modulus	Corroded Section Modulus; For Branch, effective section modulus

Particulars	Allowable Pressure	Pipe Weight	Sustained Stress	Expansion Stress	Occasional Stress
B31.8 (2012)					
Pipe Thickness used	Nominal Thk.	Nominal Thickness	Nominal Thickness	-	Nominal Thickness
Section Modulus used	-	-	Uncorroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch, effective section modulus
B31.9 (2014)	I	I		I	
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness
Section Modulus used	-	-	Uncorroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch, effective section modulus

Note:

1. Corrosion allowance includes thickness required for threading, grooving, erosion, corrosion etc.

2. Uncorroded section modulus = section modulus calculated using the nominal thickness.

3. Corroded section modulus = section modulus calculated using the "corroded thickness"

corroded thickness = nominal thickness - corrosion allowance

4. Effective section modulus = section modulus calculated using effective branch thickness, which is lesser of i_it_b or t_h

where, t_b = branch nominal thickness, t_h = header nominal thickness, i_i = in-plane SIF at branch

Annexure D

ANSI/API Standard 610 Eleventh Edition, September 2010

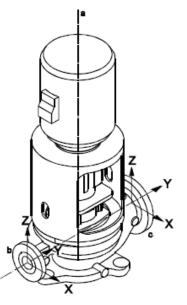
ISO 13709: 2009, (Identical) Centrifugal pumps for petroleum, petrochemical and natural gas industries

API Standard 610, 11th Edition, Sep 2010 / ISO 13709:2009

API 610 (11th Edition, 2010) / ISO 13709:2009 for Pumps

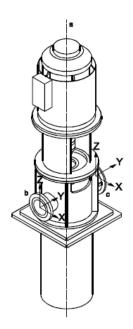
The allowable nozzle forces and moments for pumps are taken from Table 4 of the eleventh edition of API Standard 610 / ISO 13709.

		SI units											
				Nominal	size of fla	nge (DN)							
	≼ 50	80	100	150	200	250	300	350	400				
		Forces (N)											
Each top nozzle													
FX	710	1 070	1 420	2 490	3 780	5 340	6 670	7 120	8 450				
FY	580	890	1 160	2 050	3 110	4 450	5 340	5 780	6 670				
FZ	890	1 330	1 780	3 110	4 890	6 670	8 000	8 900	10 230				
F _R	1 280	1 930	2 560	4 480	6 920	9 630	11 700	12 780	14 850				
Each side nozzle		_	_	_									
F_X	710	1 070	1 420	2 490	3 780	5 340	6 670	7 120	8 450				
FY	890	1 330	1 780	3 110	4 890	6 670	8 000	8 900	10 230				
FZ	580	890	1 160	2 050	3 110	4 450	5 340	5 780	6 670				
F _R	1 280	1 930	2 560	4 480	6 920	9 630	11 700	12 780	14 850				
Each end nozzle													
F_X	890	1 330	1 780	3 110	4 890	6 670	8 000	8 900	10 230				
FY	710	1 070	1 420	2 490	3 780	5 340	6 670	7 120	8 450				
FZ	580	890	1 160	2 050	3 110	4 450	5 340	5 780	6 670				
F _R	1 280	1 930	2 560	4 480	6 920	9 630	11 700	12 780	14 850				
				Mo	oments (N	m)							
Each nozzle													
M _X	460	950	1 330	2 300	3 530	5 020	6 100	6 370	7 320				
M _Y	230	470	680	1 180	1 760	2 440	2 980	3 120	3 660				
Mz	350	720	1 000	1 760	2 580	3 800	4 610	4 750	5 420				
M _R	620	1 280	1 800	3 130	4 710	6 750	8 210	8 540	9 820				


Table 4	4 — N	ozzle	load	ings
---------	-------	-------	------	------

	US Customary units															
	Nominal size of flange (NPS)															
	≰ 2	3	4	6	8	10	12	14	16							
			1		Forces (Ib	f)		1	1							
Each top nozzle																
F_X	160	240	320	560	850	1 200	1 500	1 600	1 900							
FY	130	200	260	460	700	1 000	1 200	1 300	1 500							
FZ	200	300	400	700	1 100	1 500	1 800	2 000	2 300							
F _R	290	430	570	1 010	1 560	2 200	2 600	2 900	3 300							
Each side nozzle																
F_X	160	240	320	560	850	1 200	1 500	1 600	1 900							
FY	200	300	400	700	1 100	1 500	1 800	2 000	2 300							
FZ	130	200	260	460	700	1 000	1 200	1 300	1 500							
F _R	290	430	570	1 010	1 560	2 200	2 600	2 900	3 300							
Each end nozzle			•	•				•	•							
F_X	200	300	400	700	1 100	1 500	1 800	2 000	2 300							
FY	160	240	320	560	850	1 200	1 500	1 600	1 900							
FZ	130	200	260	460	700	1 000	1 200	1 300	1 500							
F _R	290	430	570	1 010	1 560	2 200	2 600	2 900	3 300							
				M	oments (ft	lbf)										
Each nozzle																
MX	340	700	980	1 700	2 600	3 700	4 500	4 700	5 400							
MY	170	350	500	870	1 300	1 800	2 200	2 300	2 700							
MZ	260	530	740	1 300	1 900	2 800	3 400	3 500	4 000							
M_{R}	460	950	1 330	2 310	3 500	5 000	6 100	6 300	7 200							
NOTE 1 See Figures	20 through 2	24 for orient	ation of noz	zle loads (X	, Y and Z).											
NOTE 2 Each value	shown above	indicates r	ange from r	minus that v	alue to plus	that value;	for example	e 160 indicat	es a range							
from -160 to +160.																

API Standard 610, 11th Edition, Sep 2010 / ISO 13709:2009


Table 4 — Nozzle loadings (continued)

The coordinate systems and nozzle orientations for various pump configurations are shown next.

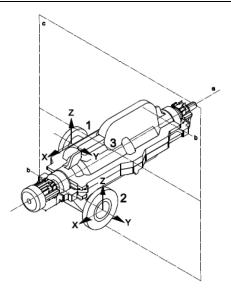
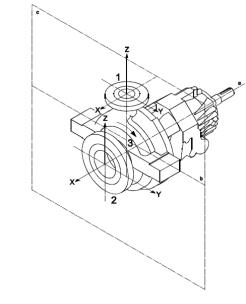

- ^a Shaft centreline.
- ^b Discharge.
- Suction.

Figure 21 — Coordinate system for the forces and moments in Table 5 — Vertical in-line pumps

- a Shaft centreline.
- ^b Discharge.
- ° Suction.


Figure 22 — Coordinate system for the forces and moments in Table 5 — Vertically suspended, double-casing pumps

Key

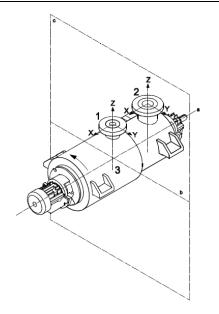

- 1 discharge nozzle
- 2 suction nozzle
- 3 centre of pump
- a Shaft centreline.
- b Pedestal centreline.
- Vertical plane.

Figure 23 — Coordinate system for the forces and moments in Table 5 — Horizontal pumps with side suction and side discharge nozzles

- Key
- 1 discharge nozzle 2 suction nozzle
- 3 centre of pump
- а Shaft centreline.
- ^b Pedestal centreline.
- c Vertical plane.

Figure 24 — Coordinate system for the forces and moments in Table 5 — Horizontal pumps with end suction and top discharge nozzles

Key

- 1 discharge nozzle
- 2 suction nozzle
- 3 centre of pump
- Shaft centreline.
 Pedestal centreline.
- Vertical plane.

Figure 25 — Coordinate system for the forces and moments in Table 5 — Horizontal pumps with top nozzles

Criteria for Piping Design

The criteria for piping design are taken from Appendix F of the API 610.

F.1 Horizontal pumps

F.1.1 Acceptable piping configurations should not cause excessive misalignment between the pump and driver. Piping configurations that produce component nozzle loads lying within the ranges specified in Table 5 limit casing distortion to one-half the pump vendor's design criterion (see 6.3.3) and ensure pump shaft displacement of less than 250 µm (0,010 in).

F.1.2 Piping configurations that produce loads outside the ranges specified in Table 5 are also acceptable without consultation with the pump vendor if the conditions specified in F.1.2 a) through F.1.2 c) as follows are satisfied. Satisfying these conditions ensures that any pump casing distortion is within the vendor's design criteria (see 6.3.3) and that the displacement of the pump shaft is less than 380 μ m (0,015 in).

- a) The individual component forces and moments acting on each pump nozzle flange shall not exceed the range specified in Table 5 (T4) by a factor of more than 2.
- b) The resultant applied force (*F*_{RSA}, *F*_{RDA}) and the resultant applied moment (*M*_{RSA}, *M*_{RDA}) acting on each pump-nozzle flange shall satisfy the appropriate interaction equations as given in Equations (F.1) and (F.2):

$[F_{RSA}/(1,5 \times F_{RST4})] + [M_{RSA}/(1,5 \times M_{RST4})] < 2$	(F.1)

 $[F_{\text{RDA}}/(1,5 \times F_{\text{RDT4}})] + [M_{\text{RDA}}/(1,5 \times M_{\text{RDT4}})] < 2$ (F.2)

c) The applied component forces and moments acting on each pump nozzle flange shall be translated to the centre of the pump. The magnitude of the resultant applied force, *F*_{RCA}, the resultant applied moment, *M*_{RCA}, and the applied moment shall be limited by Equations (F.3) to (F.5). (The sign convention shown in Figures 21 through 25 and the right-hand rule should be used in evaluating these equations.)

$F_{\rm RCA} < 1,5(F_{\rm RST4}+F_{\rm RDT4})$	(F.3)
$ M_{YCA} < 2.0(M_{YST4} + M_{YDT4})$	(F.4)
$M_{\rm RCA} < 1,5(M_{\rm RST4} + M_{\rm RDT4})$	(F.5)

where

 $F_{\text{RCA}} = [(F_{\text{XCA}})^2 + (F_{\text{YCA}})^2 + (F_{\text{ZCA}})^2]^{0.5}$

where

 $F_{XCA} = F_{XSA} + F_{XDA}$

 $F_{\rm YCA} = F_{\rm YSA} + F_{\rm YDA}$

 $F_{\rm ZGA} = F_{\rm ZSA} + F_{\rm ZDA}$

 $M_{\rm RCA} = [(M_{\rm XCA})^2 + (M_{\rm YCA})^2 + (M_{\rm ZCA})^2]^{0.5}$

where

 $M_{XCA} = M_{XSA} + M_{XDA} - [(F_{YSA})(zS) + (F_{YDA})(zD) - (F_{ZSA})(yS) - (F_{ZDA})(yD)]/1 000$

 $\mathcal{M}_{YCA} = \mathcal{M}_{YSA} + \mathcal{M}_{YDA} + [(F_{XSA})(zS) + (F_{XDA})(zD) - (F_{ZSA})(xS) - (F_{ZDA})(xD)]/1 000$

 $\mathcal{M}_{\mathsf{ZCA}} = \mathcal{M}_{\mathsf{ZSA}} + \mathcal{M}_{\mathsf{ZDA}} - [(\mathcal{F}_{\mathsf{XSA}})(\mathcal{YS}) + (\mathcal{F}_{\mathsf{XDA}})(\mathcal{YD}) - (\mathcal{F}_{\mathsf{YSA}})(\mathcal{xS}) - (\mathcal{F}_{\mathsf{YDA}})(\mathcal{xD})]/1 \text{ 000}$

In USC units, the constant 1 000 shall be changed to 12. This constant is the conversion factor to change millimetres to metres or inches to feet.

F.1.3 Piping configurations that produce loads greater than those allowed in F.1.2 shall be approved by the purchaser and the vendor.

NOTE In order to evaluate the actual machine distortion (at ambient conditions), the piping alignment checks required in API RP 686, Chapter 6, should be performed. API RP 686 allows only a small fraction of the permitted distortion resulting from use of the values from this annex.

F.2 Vertical in-line pumps

Vertical in-line pumps that are supported only by the attached piping may be subjected to component piping loads that are more than double the values shown in Table 4 if these loads do not cause a principal stress greater than 41 N/mm² (5 950 psi) in either nozzle. For calculation purposes, the section properties of the pump nozzles shall be based on Schedule 40 pipe whose nominal size is equal to that of the appropriate pump nozzle. Equation (F.6), Equation (F.7), and Equation (F.8) can be used to evaluate principal stress, longitudinal stress and shear stress, respectively, in the nozzles.

For SI units, the following equations apply:

$$\sigma_{\rm p} = (\sigma/2) + (\sigma^2/4 + \tau^2)^{0.5} < 41 \tag{F.6}$$

$$\sigma_{\rm I} = [1,27 \times F_{\rm Y} / (D_0^2 - D_1^2)] + [10\ 200 \times D_0 (M_{\rm X}^2 + M_{\rm Z}^2)^{0.5}] / (D_0^4 - D_1^4)$$
(F.7)

$$\tau = [1,27 \times (F_{\chi}^{2} + F_{Z}^{2})^{0.5}] / (D_{0}^{2} - D_{i}^{2}) + [5\ 100 \times D_{0}(|M_{Y}|)] / (D_{0}^{4} - D_{i}^{4})$$
(F.8)

For USC units, the following equations apply:

$$\sigma_{\rm p} = (\sigma/2) + (\sigma^2/4 + \tau^2)^{0.5} < 5.950 \tag{F.9}$$

$$\sigma_{\rm l} = [1,27 \times F_{\rm Y} / (D_{\rm o}^2 - D_{\rm i}^2)] + [122 \times D_{\rm o} (M_{\rm X}^2 + M_{\rm Z}^2)^{0.5}] / (D_{\rm o}^4 - D_{\rm i}^4) \tag{F.10}$$

$$\tau = [1,27 \times (F_{\chi}^{2} + F_{Z}^{2})^{0.5}] / (D_{0}^{2} - D_{i}^{2}) + [61 \times D_{0}(|M_{Y}|)] / (D_{0}^{4} - D_{i}^{4})$$
(F.11)

where

- σ_p is the principal stress, expressed in MPa (lbf/in²);
- σ₁ is the longitudinal stress, expressed in MPa (lbf/in²);
- is the shear stress, expressed in MPa (lbf/in²);
- F_X is the applied force on the X axis;
- F_Y is the applied force on the Y axis;
- F_Z is the applied force on the Z axis;
- M_X is the applied moment on the X axis;
- M_Y is the applied moment on the Y axis;
- M_Z is the applied moment on the Z axis;
- D_i, D_o are the inner and outer diameters of the nozzles, expressed in millimetres (inches).

 F_{X} , F_{Y} , F_{Z} , M_{X} , M_{Y} , and M_{Z} represent the applied loads acting on the suction or discharge nozzles; thus, subscripts S_{A} and D_{A} have been omitted to simplify the equations. The sign of F_{Y} is positive if the load puts the nozzle in tension; the sign is negative if the load puts the nozzle in compression. One should refer to Figure 20 and the applied nozzle loads to determine whether the nozzle is in tension or compression. The absolute value of M_{Y} should be used in Equations (F.8) to (F.11).

F.3 Nomenclature

The following definitions apply to the sample problems in F.4

where

- C is the centre of the pump. For pump types OH2 and BB2 with two support pedestals, the centre is defined by the intersection of the pump shaft centreline and a vertical plane passing through the centre of the two pedestals (see Figure 23 and Figure 24). For pump types BB1, BB3, BB4 and BB5 with four support pedestals, the centre is defined by the intersection of the pump shaft centreline and a vertical plane passing midway between the four pedestals (see Figure 22);
- D is the discharge nozzle;
- D_i is the inside diameter of Schedule 40 pipe whose nominal size is equal to that of the pump nozzle in question, expressed in millimetres (inches);
- D_o is the outside diameter of Schedule 40 pipe whose nominal size is equal to that of the pump nozzle in question, expressed in millimetres (inches);
- F is the force, expressed in newtons (pounds force);
- F_R is the resultant force. (F_{RSA} and F_{RDA} are calculated by the square root of the sum of the squares method using the applied component forces acting on the nozzle flange. F_{RST4} and F_{RDT4} are extracted from Table 4, using the appropriate nozzle size);
- M is the moment, expressed in newton metres (foot-pounds force);
- M_R is the resultant moment. (M_{RSA} and M_{RDA} are calculated by the square root of the squares method using the applied component moments acting on the nozzle flange. M_{RST4} and M_{RDT4} are extracted from Table 4 using the appropriate nozzle size);
- $\sigma_{\rm p}$ is the principal stress, expressed in megapascals (pounds force per square inch);
- σi is the longitudinal stress, expressed in newtons per square millimetre (pounds per square inch);
- is the shear stress, expressed in newtons per square millimetre (pounds per square inch);
- S is the suction nozzle;
- x, y, z are the location coordinates of the nozzle flanges with respect to the centre of the pump, expressed in millimetres (inches);
- X, Y, Z are the directions of the load (see Figures 20 to 24);
- Subscript A is an applied load;
- Subscript T4 is a load extracted from Table 4.

Verification of API 610 Pump Compliance

Implementation of API 610 Pump Compliance in CAEPIPE is verified using the sample provided in API Standard 610, 11th Edition and presented in this section.

F.4.3 Example 1B --- USC units

F.4.3.1 Problem

For an overhung end-suction process pump (OH2), the nozzle sizes and location coordinates are as given in Table F.4. The applied nozzle loadings are as given in Table F.5. The problem is to determine whether the conditions specified in F.1.2 a), F.1.2 b), and F.1.2 c) are satisfied.

Table F.4 — Nozzle sizes and location coordinates for Example 1B

Dimensions in inches

Nozzle	Size	x	у	z	
Suction	10	+10,50	0	0	
Discharge	arge 8		-12,25	+15	

Force	Value Ibf	Moment	Value ft-Ibf		
_	—	Suction	_		
FXSA	+2 900	M _{XSA}	–1 000 –3 700°		
F_{YSA}	0	MYSA			
F_{ZSA}	-1 990	M_{ZSA}	-5 500		
_	—	Discharge	_		
F _{XDA}	+1 600	M _{XDA}	+500		
F_{YDA}	-100	MYDA	-2 500		
F_{ZDA}	+1 950	M_{ZDA}	-3 600		

Table F.5 — Applied nozzle loadings for Example 1B

CAEPIPE model corresponding to the above API Publication sample

⊨l Caepipe : Layout (8) - [API610_Example_1B.mod (D:\KPDevelopm –									\times	
<u>File Edit View Options Loads Misc Window H</u> elp										
🗋 📂 🖨 📕 🗐 🔲 🎼 🍳										
#	Node	Туре	DX (ft'in")	DY (ft'in")	DZ (ft'in")	Matl	Sect	Load	Data	
1	Title =	Verificatio	n of Horizo	ntal Pump	_	_	_	_		
2	Examp	ble 1B of Al	PI 610, 11th	Edition Pu	blication			_		
3	10	From	0'10-1/2"						Anchor	
4	10	Location							Force	
5	20		1'0"			1	10	1		
6	50	From		-1'0-1/4"	1'3"				Anchor	
7	50	Location							Force	
8	60				1'0"	1	8	1		
9										

Image: Pipe Sections (2) - [API610_Example_1B.mod (D:\KPDevelopment\Ve — — X											×			
<u>File Edit View Options Misc Window Help</u>														
#			<u></u> fô	<u>}</u> @										
1 #	Name	Nom Dia	Sch	OD (inch)	Thk (inch)	Cor.Al (inch)	М.Та (%)		ns.Dens lb/ft3)	Ins.Thk (inch)	Lin.De (lb/ft3)		Lin.Thk (inch)	Soil
1 1 2 8	10 2	10" 8"	STD STD	10.75 8.625	0.365									
3	,	0	010	0.023	0.522			+						
			1				1				1			
		Material iew <u>O</u> j			_Example_ <u>W</u> indow	1B.mod (<u>H</u> elp	(D:\KPD	evel	opment\V	erification\	Verifi	_		×
+			tô 1	Q	н	Qa 🛛								
# \	lame	Des	cription	Ty pe	Density (lb/in3)	Nu	Joint factor	#	Temp (F)	E (psi)	Alpha (in/in/F)	Allo (psi	wable 1	•
1 1		A53	Grade I	· ·	0.0		1.00	1	-100	30.2E+6	5.65E-6	150	·	
2								2	70	29.5E+6	6.07E-6	150	00	
								3	200	28.8E+6	6.38E-6	150	00	
								4	300	28.3E+6	6.60E-6	150		
		_						5 6	400 500	27.7E+6 27.3E+6	6.82E-6 7.02E-6	150 150		
		_						ь 7	600		7.02E-6	150		
								8	650		7.34E-6	150		
								9	700	25.5E+6	7.44E-6	144		
		-						10	750	24.9E+6	7.55E-6	130	00	
								11	800	24.2E+6	7.65E-6	108	00	
Force	at node	10				×	Force	at n	ode 50	,			×	
FX		FY		FZ -1990	(њ)		FX	0	FY		-Z 1950	()	b)	
MX		MY		MZ			, MX		MY	í	ΜZ			
-100		-3700		-5500	(ft-lb))	500		-250		-3600	(f	t-lb)	
• A	∖dd to W∙	+P C	Add to	11			• 4	\dd t	o W+P	C Add to	11			
(OK	Can	cel					OK	C	ancel				
Pump #	1									×				
Descrip	otion Exam	ple 1B	¢	<u>H</u> orizontal	C <u>V</u> ertica	linline C	<u>A</u> NSI/HI	9.6.2						
	ump type				~	<u>P</u> ump size				-				
	ial group [→ Mo	ounting type				_				
	perature		(F)											
-	tion Node		Local		C Top		Side		€ End					
Discha	rge Node	50	Local	ion	Top	С	Side		C End					
Shaft X co	·	n Ycomp	Za	omp										
Locati ×	ion of the c	enter of pu Y	mpZ											
		0.001			(ft'in'')									
OK		Cancel												

Results from API 610, 11th Edition

F.4.3.2 Solution

F.4.3.2.1 A check of condition of F.1.2 a) is as follows:

For the 10 in end suction nozzle:

$$|F_{XSA}/F_{XST4}| = |+2\ 900/1\ 500| = 1,93 < 2,00$$
$$|F_{YSA}/F_{YST4}| = |0/1\ 200| = 0 < 2,00$$
$$|F_{ZSA}/F_{ZST4}| = |-1\ 990/1\ 000| = 1,99 < 2,00$$
$$|M_{XSA}/M_{XST4}| = |-1\ 000/3\ 700| = 0,27 < 2,00$$
$$|M_{YSA}/M_{YST4}| = |-3\ 700/1\ 800| = 2,06 > 2,00$$
$$|M_{ZSA}/M_{ZST4}| = |-5\ 500/2\ 800| = 1,96 < 2,00$$

For the 8 in top discharge nozzle:

$$|F_{XDA}/F_{XDT}| = |+1\ 600/850| = 1,88 < 2,00$$
$$|F_{YDA}/F_{YDT}| = |-100/700| = 0,14 < 2,00$$
$$|F_{ZDA}/F_{ZDT4}| = |+1\ 950/1\ 100| = 1,77 < 2,00$$
$$|M_{XDA}/M_{XDT4}| = |+500/2\ 600| = 0,19 < 2,00$$
$$|M_{YDA}/M_{YDT4}| = |-2\ 500/1\ 300| = 1,93 < 2,00$$
$$|M_{ZDA}/M_{ZDT4}| = |-3\ 600/1\ 900| = 1,89 < 2,00$$

F.4.3.2.2 A check of condition F.1.2 b) is as follows:

For the suction nozzle, F_{RSA} and M_{RSA} are determined using the square root of the sum of the squares method:

$$\mathcal{F}_{\text{RSA}} = [(\mathcal{F}_{\text{XSA}})^2 + (\mathcal{F}_{\text{YSA}})^2 + (\mathcal{F}_{\text{ZSA}})^2]^{0,5} = [(+2\ 900)^2 + (0)^2 + (-1\ 990)^2]^{0,5} = 3\ 517$$

$$\mathcal{M}_{\text{RSA}} = [(\mathcal{M}_{\text{XSA}})^2 + (\mathcal{M}_{\text{YSA}})^2 + (\mathcal{M}_{\text{ZSA}})^2]^{0,5} = [(-1\ 000)^2 + (-3\ 599)^2 + (-5\ 500)^2]^{0,5} = 6\ 649$$

Referring to Equation (F.1),

 $F_{RSA}/(1,5 \times F_{RST4}) + M_{RSA}/(1,5 \times M_{RST4}) < 2$ 3 517/(1,5 × 2 200) + 6 649/(1,5 × 5 000) < 2 1,95 < 2 For the discharge nozzle, F_{RDA} and M_{RDA} are determined by the same method used to find F_{RSA} and M_{RSA} :

$$F_{\mathsf{RDA}} = [(F_{\mathsf{XDA}})^2 + (F_{\mathsf{YDA}})^2 + (F_{\mathsf{ZDA}})^2]^{0,5} = [(+1.600)^2 + (-100)^2 + (+1.950)^2]^{0,5} = 2.524$$

$$\mathcal{M}_{\mathsf{RDA}} = [\mathcal{M}_{\mathsf{XDA}})^2 + (\mathcal{M}_{\mathsf{YDA}})^2 + (\mathcal{M}_{\mathsf{ZDA}})^2]^{0,5} = [(+500)^2 + (-2\ 500)^2 + (-3\ 600)^2]^{0,5} = 4\ 411$$

Referring to Equation (F.2),

 $F_{\text{RDA}}/(1,5 \times F_{\text{RDT4}}) + M_{\text{RDA}}/(1,5 \times M_{\text{RDT4}}) < 2$

 $2\ 524/(1.5\times 1\ 560) + 4\ 411/(1.5\times 3\ 500) < 2$

1,92 < 2

The loads acting on each nozzle satisfy the appropriate interaction equation, so the condition specified in F.1.2 b) is satisfied.

Results from CAEPIPE Rotating Equipment Report

🕮 Caepipe : Rotating Equipment Report - [API610_Example_1B.res (D:\KPDevelop – 🛛 🗙										
File Results	<u>V</u> iew <u>O</u> pt	ions <u>W</u> indov	/ <u>H</u> elp							
) E							
API 610 (11th	ed.), Sep 2	.010 / ISO 137	09 report fo	r pump : Example 1B						
Load case: (Operating (V	V+P1+T1)								
Shaft axis: Xo	comp = 1.00	0, Ycomp = 0	.000, Zcomj	o = 0.000						
Center location: X = 0, Y = 0.001, Z = 0 (ft'in")										
Suction node	e: 10, Locat	tion: (End), Si	ze: 10.000 (inch)						
Offsets from	center: dx =	0'10-1/2", dy	= -0.001, dz	= 0 (ft'in")						
Check of con	dition F.1.1	for suction no	ide 10:							
(Calculated	Allowed	Ratio	Status						
FX (lb)	2900	1500	1.933	-						
FY (lb)	0	1200	0.000	OK						
FZ (lb)	-1990	1000	1.990	_						
FR (lb)	3517	2200	1.599	_						
MX (ft-lb)	-1000	3700	0.270	ОК						
MY (ft-lb)	-3700	1800	2.056	Failed						
MZ (ft-lb)	-5500	2800	1.964	_						
MR (ft-lb)	6704	5000	1.341	_						
Condition F.1	.2.a for suct	tion node 10 f	ailed 🚧							
Discharge no	ode: 50, Lo	cation: (Top)	Size: 8.00	0 (inch)						
Offsets from	center: dx =	0, dy = -1.021	8, dz = 1'3"	(ft'in")						
Check of con	dition F.1.1	for discharge	node 50:							
(Calculated	Allowed	Ratio	Status						
FX (lb)	1600	850	1.882	—						
FY (lb)	-100	700	0.143	ОК						
FZ (lb)	1950	1100	1.773	_						
FR (lb)	2524	1560	1.618	_						
MX (ft-lb)	500	2600	0.192	ОК						
MY (ft-lb)	-2500	1300	1.923	_						
MZ (ft-lb)	-3600	1900	1.895	_						
MR (ft-lb)	4411	3500	1.260	_						
(FR/1.5FRT4	l) + (MR/1.5	MRT4) =	1.919	ОК						

Annexure E Response Spectrum Libraries

Response Spectrum Libraries

Fourteen (14) new Response Spectrum Libraries have been added as per the following.

- 1. EL Centro May 18, 1940
- 2. Uniform Building Code (UBC) 1991 Edition and
- 3. Nuclear Regulatory Commission (NRC) Guide 1.60

EL Centro

This spectrum data can be accessed by selecting the file "ELCentro_NS_May18_1940.spe" available in the folder "SpectrumLibrary" through Layout window > Misc > Spectrums > File > Library.

This predefined data is taken from "J'Bigs, Introduction to Structural Dynamics" and is based on the northsouth component of the May 18, 1940 El Centro California earthquake. As stated in this document, the recorded maximum quantities were 0.33g, 13.7 in/sec, and 8.3 in. This is intended to apply to elastic systems having between 5 and 10 % critical damping. For the El Centro input given below, the three straight lines are defined by.

(1)
$$u_{\max} = (y_{so})_{\max} = 8.3$$
 in. small f

(2)
$$u_{\max} = \frac{1.5(\dot{y}_{so})_{\max}}{2\pi f} = \frac{3.3}{f}$$
 in. intermediate f

(3)
$$u_{\max} = \frac{2(\bar{y}_{so})_{\max}}{(2\pi f)^2} = \frac{6.6}{f^2}$$
 in. large f

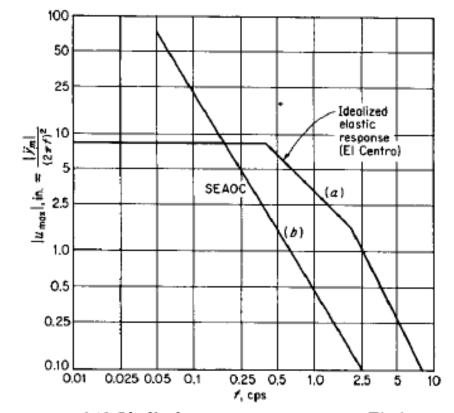


FIGURE 6.12 Idealized response spectrum for El Centro earthquake, May 18, 1940, N-S component and SEAOC recommendation.

Uniform Building Code (1991 Edition)

This spectrum data can be accessed by selecting the file "UBC_1991.spe" available in the folder "SpectrumLibrary" through Layout window > Misc > Spectrums > File > Library. This library has predefined spectrums for three (3) types of soils as shown in the figure below (taken from Uniform Building Code 1991 Edition).

- 1. Rock and Stiff Soils (Soil Type 1) [Library Name in CAEPIPE: RASS (S1)]
- 2. Deep and Cohesionless or Stiff Clay Soils (Soil Type 2) [Library Name in CAEPIPE: DCSCS (S2)]
- 3. Soft to Medium Clays and Sands [Library Name in CAEPIPE: SMCS (S3)]

These spectrums must be scaled by the Zero Period Accelerations (ZPA), which is the product of Z and I, where Z is the seismic zone coefficient and I is the earthquake importance factor as given in UBC Tables 23-I and 23-L. They are reproduced from UBC code for easy reference. This product can be applied in CAEPIPE as a scale factor through Layout window > Loads > Spectrum > Factor (s).

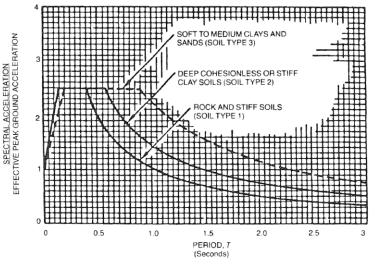


FIGURE NO. 23-3-NORMALIZED RESPONSE SPECTRA SHAPES

		z			
ZONE	1	2A	2B	3	4
Z	0.075	0.15	0.20	0.30	0.40

The zone shall be determined from the seismic zone map in Figure No. 23-2.

TABLE NO. 23-L-OCCUPANCY REQUIREMENTS

	IMPORTANC	IMPORTANCE FACTOR /				
OCCUPANCY CATEGORY	Earthquake ²	Wind				
1. Essential facilities	1.25	1.15				
II. Hazardous facilities	1.25	1.15				
III. Special occupancy structures	1.00	1.00				
IV. Standard occupancy structures	1.00	1.00				

¹Occupancy types or functions of structures within each category are listed in Table No. 23-K and structural observation requirements are given in Sections 305, 306 and 307. ²For life-safety-related equipment, see Section 2336 (a).

Nuclear Regulatory Commission (NRC) Guide 1.60

This spectrum data can be accessed by selecting the file "NRC_G1.6_2014.spe" available in the folder "SpectrumLibrary" through Layout window > Misc > Spectrums > File > Library. This library have ten (10) predefined spectrums are based upon Safe Shutdown Earthquake (SSE) for Horizontal and Vertical Design Response Spectra corresponding to 0.5, 2.0, 5.0, 7.0 and 10% Damping factors as shown in the figure below (taken from NRC Guide 1.60, July 2014, Revision 2)

These predefined spectrums are named in the CAPIPE spectrum library as follows.

- 1. NRC-HDS-D0.5 (Horizontal Design Spectra with 0.5% Damping Factor)
- 2. NRC-HDS-D2 (Horizontal Design Spectra with 2% Damping Factor)
- 3. NRC-HDS-D5 (Horizontal Design Spectra with 5% Damping Factor)
- 4. NRC-HDS-D7 (Horizontal Design Spectra with 7% Damping Factor)
- 5. NRC-HDS-D10 (Horizontal Design Spectra with 10% Damping Factor)
- 6. NRC-VDS-D0.5 (Vertical Design Spectra with 0.5% Damping Factor)
- 7. NRC-VDS-D2 (Vertical Design Spectra with 2% Damping Factor)
- 8. NRC-VDS-D5 (Vertical Design Spectra with 5% Damping Factor)
- 9. NRC-VDS-D7 (Vertical Design Spectra with 7% Damping Factor)
- 10. NRC-VDS-D10 (Vertical Design Spectra with 10% Damping Factor)

The horizontal and vertical component Design Response Spectra in Figures 1 and 2 correspond to a maximum horizontal ground acceleration of 1.0g. For sites with different acceleration values specified for the design earthquake, the Design Response Spectra should be linearly scaled from Figures 1 and 2 in proportion to the specified maximum horizontal ground acceleration. This proportion factor calculated can be applied in CAEPIPE as a scale factor through Layout window > Loads > Spectrum > Factor (s).

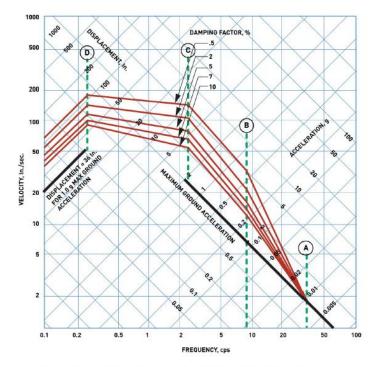


Figure 1. Horizontal Design Response Spectra Scaled to 1 g Horizontal Ground Acceleration

Horizontal Component:

The numerical values of design displacements, velocities, and accelerations for the horizontal component Design Response Spectra are obtained by multiplying the corresponding values of the maximum ground displacement and acceleration by the factors given in Table 1 given below. In Figure 1, the base diagram consists of three parts: the bottom line on the left part represents the maximum ground displacement, the bottom line on the right part represents the maximum acceleration, and the middle part depends on the maximum velocity. The horizontal component Design Response Spectra in Figure 1 of this guide correspond to a maximum horizontal ground acceleration of 1.0g. The maximum ground displacement is taken proportional to the maximum ground acceleration, and is set at 36 inches for a ground acceleration of 1.0 g. The displacement region lines of the Design Response Spectra are parallel to the maximum ground displacement line and are shown on the left of Figure 1. The velocity region lines slope downward from a frequency of 0.25 cycles per second (cps) or Hertz (Hz) (control point D) to a frequency of 2.5 cps (control point C) and are shown at the top. The remaining two sets of lines between the frequencies of 2.5 cps and 33 cps (control point A), with a break at a frequency of 9 cps (control point B), constitute the acceleration region of the horizontal Design Response Spectra. For frequencies higher than 33 cps, the maximum ground acceleration line represents the Design Response Spectra.

Table 1. Horizontal Design Response Spectra

Percent of	Amplification Factors for Control Points										
Critical		Displacement ^{a,b}									
Damping	A (33 cps)	B (9 cp s)	C (2.5 cps)	D (0.25 cps)							
0.5	1.0	4.96	5.95	3.20							
2.0	1.0	3.54	4.25	2.50							
5.0	1.0	2.61	3.13	2.05							
7.0	1.0	2.27	2.72	1.88							
10.0	1.0	1.90	2.28	1.70							

Relative Values of Spectrum Amplification Factors for Control Points

- a. Maximum ground displacement is taken proportional to maximum ground acceleration, and is 36 in. for ground acceleration of 1.0 gravity.
- b. Acceleration and displacement amplification factor are taken from recommendations given in Newmark, N. M., John A. Blume, and Kanwar K. Kapur, "Design Response Spectra for Nuclear Power Plants," American Society of Civil Engineers (ASCE) Structural Engineering Meeting, San Francisco, April 1973, (ADAMS Accession No. ML13207A044).

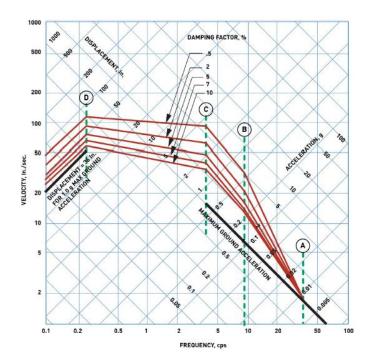


Figure 2. Vertical Design Response Spectra scaled to 1 g Horizontal Ground Acceleration

Table 2. Vertical Design Response Spectra

	Amplification Factors for Control Points										
Percent of	mt of Acceleration ^{a,b} Displacem										
Critical Damping	A (33 cp s)	B (9 cps)	С (3.5 ср s)	D (0.25 cp s)							
0.5	1.0	4.96	5.67	2.13							
2.0	1.0	3.54	4.05	1.67							
5.0	1.0	2.61	2.98	1.37							
7.0	1.0	2.27	2.59	1.25							
10.0	1.0	1.90	2.17	1.13							

Relative Values of Spectrum Amplification Factors for Control Points

- a. Maximum ground displacement is taken proportional to maximum ground acceleration and is 36 in. for ground acceleration of 1.0 gravity.
- b. Acceleration amplification factors for the vertical design response spectra are equal to those for horizontal design response spectra at a given frequency, whereas displacement amplification factors are 2/3 those for horizontal design response spectra. These ratios between the amplification factors for the two design response spectra are in agreement with those recommended in Newmark, N. M., John A. Blume, and Kanwar K. Kapur, "Design Response Spectra for Nuclear Power Plants," American Society of Civil Engineers (ASCE) Structural Engineering Meeting, San Francisco, April 1973, (ADAMS Accession No. ML13207A044).

The Vertical Component

The numerical values of design displacements, velocities, and accelerations in these spectra are obtained by multiplying the corresponding values of the maximum horizontal ground motion (acceleration = 1.0 g and displacement = 36 in.) by the factors given in Table 2.

The vertical component Design Response Spectra corresponding to the maximum horizontal ground acceleration of 1.0 g are shown in Figure 2. The displacement region lines of the Design Response Spectra are parallel to the maximum ground displacement line and are shown on the left of Figure 2. The velocity region lines slope downward from a frequency of 0.25 cps (control point D) to a frequency of 3.5 cps (control point C) and are shown at the top. The remaining two sets of lines between the frequencies of 3.5 cps and 33 cps (control point A), with a break at the frequency of 9 cps (control point B), constitute the acceleration region of the vertical Design Response Spectra. It should be noted that the vertical Design Response Spectra for frequencies less than 0.25; for frequencies higher than 3.5, they are the same, while the ratio varies between 2/3 and 1 for frequencies between 0.25 and 3.5. For frequencies higher than 33 cps, the Design Response Spectra follow the maximum ground acceleration line.

Note:

Since the acceleration values below 2.5 cps and 3.5 cps for Horizontal Design Response Spectra and Vertical Design Response Spectra respectively are NOT given in the Figures 1 and 2 above, the acceleration values corresponding to 2.5 cps (for Horizontal Design Response Spectra) and 3.5 cps (for Vertical Design Response Spectra) are entered for 0.1 cps in the respective directions.

Similarly, the accelerations values above 33 cps and up to 60 cps are entered as 1.0 g in the respective directions.

Annexure F Import / Export of Material Library

Import

CAEPIPE can import material properties created using a text file (batch file) into the Material Library. The text file may be created using a text editor and should have the extension: .mlb (material library batch file). The text file may also be created for an existing material library using the Export command from the Material Library window.

To import a material properties into the material library, select the menu command File > New > Material Library. From the Material Library window > File > Import...

Ħ0Ħ	⊨l¤ Caepipe : Material Library (0) - [Untitled] - □ ×											
<u>F</u> ile	Edit Option	s <u>H</u> elp										
	<u>N</u> ew	Ctrl+N										
	<u>O</u> pen	Ctrl+O										
	<u>C</u> lose Im <u>p</u> ort		sity 3)	Nu	Joint factor	#	Temp (F)	E (psi)	Alpha (in/in/F)	Allowab (psi)	le	
	-					1						
	<u>S</u> ave	Ctrl+S										
	Save <u>A</u> s <u>E</u> xport		F									
	<u>P</u> rint	Ctrl+P	E									
	Exit	Alt+F4										
			_									
											_	

The Import Material Library dialog is shown.

脚 Import Ma	aterial Library			\times	
Look <u>i</u> n: 🏪		(-	* 💷 *		
Name	^	Date mod	dified	^	
SwSetup		9/9/2015	9:56 AM		
Temp		6/30/2016 4:17 PM			
Users		4/14/2016 6:32 PM			
Windows	s	6/13/201	6 5:19 PM		
B311-201	4.mlb	6/29/201	5 11:26 AM	¥	
<			>		
File <u>n</u> ame:	B311-2014.mlb		<u>I</u> mport		
Files of type:	Material Library Batch files (*.mlb)	•	Cancel		

Select the material library batch file (.mlb) and then click on the Import button. The batch file will be read and the material properties thus imported are then shown in the Layout window, which can be further, modified.

The input data is given in the following order. The start of each section is indicated by a keyword. The data for that section follow. Only the first five characters of the keyword are significant.

Format of Material Library Batch file (.mlb) is given below

OPTIONS

Piping Code, Units

Piping Codes that can be entered are given below. Example, enter B311 to define the Piping Code as "ASME B31.1".

Units can be "SI" or "English". If this field is left blank, then CAEPIPE will set the default units as "English"

OPTIONS Example

OPTIONS

B311,SI

Piping codes

B311	ANSI B31.1
B311-67	USAS B31.1 (1967)
B313	ANSI B31.3
B314	ANSI B31.4
B315	ANSI B31.5
B318	ANSI B31.8
B319	ANSI B31.9
ASME	ASME Section III, Class 2 (1980)
ASME-86 ASME See	ction III, Class 2 (1986)
ASME-92 ASME Sec	tion III, Class 2 (1992)
BS806	British code
NORWEGIAN-83	Norwegian code (1983)
NORWEGIAN-90	Norwegian code (1990)
RCC-M	French code (1985)
SNCT	CODETI (1995)
SWEDISH Swedish	code (1978)
STOOMWEZEN	Dutch code (1989)
Z183	Z183 (1990)
Z184	Z184 (1992)
EUROPEAN	EN 13480 (2002)

MATERIAL

English units

First line:

Description (32 Characters), Density (Ib/in3), Poisson's ratio, [Long. joint factor], [circ. joint factor], [material type], [tensile strength (psi)]

Following lines:

Description, Temp (F), E (psi), alfa (in/in/F), [allowable stress (psi)], [yield stress (psi)], [rupture stress (psi)], [hoop modulus (psi)], [shear modulus (psi)]

. .

.

SI units

First line:

Description (32 Characters), Density (kg/m3), Poisson's ratio, [Long. joint factor], [circ.joint factor], [material type], [tensile strength (N/mm²)]

Following lines:

Description, Temp (C), E (N/mm²), alfa (mm/mm/C), [allowable stress (N/mm²)], [yield stress (N/mm²)], [rupture stress (N/mm²)], [hoop modulus (N/mm²)], [shear modulus (N/mm²)]

·

OPTIONS

MATERIAL Example (SI units)

EUROPEAN, SI MATERIAL EN 1.0345 (P235GH) max 60 mm,7850,0.300,1.00,1.00,CSS,360.0 EN 1.0345 (P235GH) max 60 mm,20,212000,11.90E-6,120.0,0.000,0.000,0.000,0.000 EN 1.0345 (P235GH) max 60 mm, 50, 209500, 12.20E-6, 120.0, 0.000, 0.000, 0.000, 0.000 EN 1.0345 (P235GH) max 60 mm,100,207000,12.50E-6,120.0,0.000,0.000,0.000,0.000 EN 1.0345 (P235GH) max 60 mm,150,203000,12.75E-6,120.0,0.000,0.000,0.000,0.000 EN 1.0345 (P235GH) max 60 mm,200,199000,13.00E-6,113.0,0.000,0.000,0.000,0.000 EN 1.0345 (P235GH) max 60 mm,250,195500,13.30E-6,100.0,0.000,0.000,0.000,0.000 EN 1.0345 (P235GH) max 60 mm, 300, 192000, 13.60E-6, 86.70, 0.000, 0.000, 0.000, 0.000 EN 1.0345 (P235GH) max 60 mm, 350, 188000, 13.85E-6, 80.00, 0.000, 0.000, 0.000, 0.000 EN 1.0345 (P235GH) max 60 mm,400,184000,14.10E-6,74.70,0.000,94.00,0.000,0.000 EN 1.0345 (P235GH) max 60 mm,410,183100,14.14E-6,74.16,0.000,85.30,0.000,0.000 EN 1.0345 (P235GH) max 60 mm, 420, 182200, 14.18E-6, 73.62, 0.000, 76.00, 0.000, 0.000 EN 1.0345 (P235GH) max 60 mm,430,181300,14.22E-6,66.70,0.000,66.70,0.000,0.000 EN 1.0345 (P235GH) max 60 mm,440,180400,14.26E-6,58.70,0.000,58.70,0.000,0.000 EN 1.0345 (P235GH) max 60 mm,450,179500,14.30E-6,51.30,0.000,51.30,0.000,0.000 EN 1.0345 (P235GH) max 60 mm,460,178600,14.34E-6,44.00,0.000,44.00,0.000,0.000 EN 1.0345 (P235GH) max 60 mm,470,177700,14.38E-6,37.30,0.000,37.30,0.000,0.000 EN 1.0345 (P235GH) max 60 mm,480,176800,14.42E-6,31.30,0.000,31.30,0.000,0.000 EN 1.0345 (P235GH) max 60 mm, 490, 175900, 14.46E-6, 26.00, 0.000, 26.00, 0.000, 0.000 EN 1.0345 (P235GH) max 60 mm,500,175000,14.50E-6,21.30,0.000,21.30,0.000,0.000

MATERIAL Example (English units)

OPT	IONS		
B311	L		
MATI	ERIAL		
A53	GRADE	A	(SEAMLESS),0.283,0.300,1.00,1.00,CS,29994
A53	GRADE	A	(SEAMLESS),-20,29.9E+6,6.25E-6,13700,0,0,0,0
A53	GRADE	A	(SEAMLESS),100,29.3E+6,6.46E-6,13700,0,0,0,0
A53	GRADE	A	(SEAMLESS),200,28.8E+6,6.70E-6,13700,0,0,0,0
A53	GRADE	A	(SEAMLESS),300,28.3E+6,6.90E-6,13700,0,0,0,0
A53	GRADE	A	(SEAMLESS),399.9,27.4E+6,7.10E-6,13700,0,0,0,0
A53	GRADE	A	(SEAMLESS),500,27.3E+6,7.30E-6,13700,0,0,0,0
A53	GRADE	A	(SEAMLESS),600.1,26.5E+6,7.40E-6,13700,0,0,0,0
A53	GRADE	A	(SEAMLESS),649.9,26.0E+6,7.50E-6,13700,0,0,0,0
A53	GRADE	A	(SEAMLESS),700,25.5E+6,7.60E-6,12499,0,0,0,0
A53	GRADE	A	(SEAMLESS),750,24.9E+6,7.70E-6,10699,0,0,0,0
A53	GRADE	A	(SEAMLESS),800.1,24.2E+6,7.80E-6,9000,0,0,0,0

Export

CAEPIPE can export material properties to a batch text file with the extension .mlb (material library batch file). The text file may be edited using a text editor / using MS Excel. The edited text file may be read back into CAEPIPE by using the Import feature.

To export the material properties, select the menu command File > Export from the Material Library Layout window.

HH (HPI Caepipe : Material Library (180) - [Untitled] - 🗆 🗙													
<u>F</u> ile	<u>E</u> dit <u>O</u> ptio	ons <u>H</u> elp												
	<u>N</u> ew	Ctrl+N	1											
	<u>O</u> pen	Ctrl+0												
	<u>C</u> lose Im <u>p</u> ort			Ту pe	Density (Ib/in3)	Nu	Joint factor	^	#	Temp (F)	E (psi)	Alpha (in/in/F)	Allowable (psi)	^
	-	Chill C	ESS)	CS	0.283	0.3	1.00		1	-20	29.9E+6	6.25E-6	13700	
	Save	Ctrl+S	ESS)	CS	0.283	0.3	1.00		2	100	29.3E+6	6.46E-6	13700	
	Save <u>A</u> s			CS	0.283	0.3	0.85		3	200	28.8E+6	6.70E-6	13700	
	Export			CS	0.283	0.3	0.85	-	4	300	28.3E+6	6.90E-6	13700	
	<u>P</u> rint	Ctrl+P		CS	0.283	0.3	1.00		5	399.9	27.4E+6	7.10E-6	13700	
	Exit	Alt+F4		CS	0.283	0.3	1.00		6	500	27.3E+6	7.30E-6	13700	
7	ATU6 GRA	JEC		CS	0.283	0.3	1.00		7	600.1	26.5E+6	7.40E-6	13700	
8	A105			CS	0.283	0.3	1.00		8	649.9	26.0E+6	7.50E-6	13700	
9	A135 GRA	DE A		CS	0.283	0.3	0.85		9	700	25.5E+6	7.60E-6	12499	
10	A135 GRA	DE B		CS	0.283	0.3	0.85	¥	10	750	24.9E+6	7.70E-6	10699	•

The Export Material Library dialog is shown. Click on the Export button to write to the batch file.

비며 Export Material Library		×			
Save in: Windows (C:)	← 🗈 💣 📰▼				
Name	Date modified	^			
📙 10piTube	7/2/2015 10:07 AM				
ACTWIN2	11/13/2015 6:51 AM				
Autodesk	8/17/2015 5:29 PM				
BentleyDownloads	8/29/2014 3:04 PM				
Cadmatic	8/19/2014 6:29 PM				
<	>				
File <u>n</u> ame:	<u>E</u> xport				
Save as type: Material Library Batch files (*.mlb)	▼ Cancel				