Tutorial for Force Spectrum Analysis using CAEPIPE

The following are the Steps for performing the Force Spectrum Analysis using CAEPIPE.

General

Force spectrum analyses are generally performed to determine the response of the piping system to shortduration impulsive loads such as fluid hammer, safety relief valve (SRV) and slug flow loads. For an actual shortduration impulsive dynamic load exerted on a piping system, a fluid transient analysis is first carried out in order to arrive at the "time-history loads" (i.e., force vs. time) acting in the three global directions (namely global X, Y and Z) at all affected points in the piping system. The time-history load sets so computed are then applied, one time-history load set at a time, on a single degree-of-freedom (dof) spring-mass system with a pre-set natural frequency, to determine the maximum dynamic response of this single dof system with that natural frequency. Such dynamic analysis for that time-history load is repeated on the same single dof system with different pre-set natural frequencies. The force spectrum for that time-history load would then be a table of maximum dynamic response computed for the single dof system with different natural frequencies. In other words, the force spectrum is a table of force spectral values vs frequencies that captures the maximum intensity and frequency content of that time-history load. Similarly, force spectrum tables are determined for all other time-history load sets. The above force spectrum tables (i.e., maximum dynamic force vs frequency) are then applied as inputs at the respective piping nodes of the CAEPIPE stress model to compute displacements, forces and stresses.

For any piping system, there are as many natural modes of vibrations as the number of dynamic degrees of freedom for that system. The force spectral value corresponding to a natural frequency of the piping system is arrived at by interpolating the force spectrum vs frequency table as determined above. For better understanding, as an example, refer to the graph shown next as well as the natural frequencies computed for a piping system at 10 Hz, 14 Hz, 21 Hz, 29 Hz and 33.8 Hz.

From the above graph, to arrive at a force value corresponding to a natural frequency of 14 Hz, CAEPIPE interpolates the force spectral values between 13 and 15 Hz. Similarly, to arrive at a force value corresponding to a natural frequency of 21 Hz, CAEPIPE interpolates the force spectral values between 20 Hz & 25 Hz. Since force spectral values above 25 Hz are not defined in the graph shown above, CAEPIPE arrives at a force value of 1650 lb. (i.e., the spectral value corresponding to the maximum frequency of 25 Hz in the above plot) even for natural frequencies of 29 and 33.8 Hz. Similarly, CAEPIPE arrives at a force value of 900 lb. for a natural frequency of 10 Hz (i.e., the spectral value corresponding to the minimum frequency of 13 Hz in the above plot).

The results of the modal analysis are used with force spectrum loads to calculate the response (displacements, support loads and stresses) of the piping system. It is often used in place of a time-history analysis to determine the response of the piping system to sudden impulsive loads such as water hammer, relief valve and slug flow.

The force spectrum is a table of force spectral values versus frequencies that captures the intensity and frequency content of the time-history loads. The actual force spectrum load at a node is defined using this force spectrum in addition to the direction (FX, FY, FZ, MX, MY, MZ), units (lb, N, kg, ft-lb, in-lb, Nm, kg-m) and a scale factor.

Tutorial

Step 1:

Attached is a sample CAEPIPE model with Force Spectrum. The steps followed in generating the model are shown in the snap shot below.

H	Caepipe	e:Layout (10) - [foi	cespect	trumsam	nple.mod (c	\tutori	als∖for	c —	o ×	-	Cae	pipe : Graphic	s - [forcespe	ctrums	ampl				×
File	Edit	View Op	tions Lo	ads N	∕lisc W	/indow H	elp				File	Vi	ew Options	Window	Help					
) 🖻	; 🔲 é	3				<u>ا (م</u>					3	+	6			2	(5)	цТ	д
						DZ (ft'in")		-		D-1-		r			•	•		<u> </u>		_
#	Node Title =	Туре	UX (πιr	ייטן(י	(π ⁻ in ⁻)	D2 (π'in")	Mati	Sect	Load	Data						í.			¥	
2	10	From								Anchor					- 1			7.	$ \land $	U
3	20			1'6"	"		A53	3	L2						- 1			2 -		^
4	30	Valve		0'3"			A53	3	L2						- 1					
5	40	Valve	0'3"				A53	3	L2						- 1					
6	50		1'0"				A53	3	L1						- 1					1
7	60	Reducer	0'4"				A53	4	L1						- 1					
8	70	Bend	1'0"				A53	4	L1						- 1					
9	80			10'0	0"		A53	4	L1						- 1					
10	75	Location		_						Force sp load					- 1					
11				_											- 1					
<u> </u>															- 1					
<u> </u>				_											- 1					
⊢				_										2	- 1					
														The second	.					
															_					
														-						
0	 Cae 	pipe : Pij	pe Sect	ions ((2) -	[forcesp	ectru	msar	nple.m	od (c:\tutori	als\forc	esp	e —		>	× –				
Fil	e Ed	lit Viev	v Opt	ions	Misc	: Wind	ow	Hel	p											
				~	~															
				Ô	Q															
#	Na	me No	m Sc	h C	DD	Thk	Cor	AI	M.Tol	Ins.Dens	Ins.Tł	nk	Lin.Dens	Lin.Th	k So	5				
		Dia			inch)	(inch)	(inc		(%)	(lb/ft3)	(inch)		(lb/ft3)	(inch)						
1	β	3"	ST	D 3	3.5	0.216										'				
2	4	4"	รา	D 4	1.5	0.237														
	_		1			1		-		1				1	_					

101	📲 Caepipe : Loads (2) - [forcespectrumsample.mod (c:\tutorials\forcespectrum)] — 🛛 🛛 🗡													
File	File Edit View Options Misc Window Help													
-#														
#	Name	T1 (F)	P1 (psi)	Desg.T (F)	Desg.Pr. (psi)	Specific gravity	Add.Wgt. (lb/ft)	Wind Load 1	Wind Load 2	Wind Load 3	Wind Load 4			
1	L1	51	475	51	475	0.01						1		
2	L2	51	1875	51	1875	0.01								

-0-1	Caepipe : N	laterials (1) - [f	orces	pectrumsa	mple.m	od (c:\tut	orials\fo	orcespectru	m)]			—		×
File	Edit Vie	w Options N	lisc	Window	Help									
-#		- 6	R	Н	(2									
#	Name	Description	Ty pe	Density (lb/in3)	Nu	Joint factor	Yield (psi)	Tensile (psi)	#	Temp (F)	E (psi)	Alpha (in/in/F)	Allowable (psi)	
1	<mark>A53</mark>	A53 Grade A		0.283	0.3	1.00			1	-20	29.9E+6	6.25E-6	17100	
2									2	70	29.5E+6	6.40E-6	17100	
									3	200	28.8E+6	6.70E-6	17100	
									4	300	28.3E+6	6.90E-6	17100	
									5	400	27.7E+6	7.10E-6	17100	
									6	500	27.3E+6	7.30E-6	17100	
									7	600	26.7E+6	7.40E-6	17100	
									8	650	26.1E+6	7.50E-6	17100	
									9	700	25.5E+6	7.60E-6	15600	
									10	750	24.9E+6	7.70E-6	13000	
									11	800	24.2E+6	7.80E-6	10800	
									12					

1-0-1	Caepipe : Valves (2) - [forcespectrumsample.mod (c:\tutorials\forcesp □ ×													
File	Edit	View	Options	Misc	Window	Help								
-#														
#	From	То	Weight		Thick	Insul	Add.Wgt	Offs	ets of Add.'	Wgt				
			(lb)	(inch)	X	WgtX	(lb)	DX (inch)	DY (inch)	DZ (inch)				
1	20	30	50		3.00	1.75								
2	30	40	50		3.00	1.75								

Step 2:

After creating your piping model (with node 75 being the center node of the discharge bend where the Force Spectrum will be applied), input Force spectrums through Layout or List menu: Misc > Force spectrums.

<u>File Edit View Options Loads</u> <u>Misc Window H</u> elp	
Coordinates	Ctrl+Shift+C
Element types	Ctrl+Shift+T
# Node Type DX (ft'in") E Data types	Ctrl+Shift+D
1 Title = Check <u>B</u> ends	
2 10 From <u>Check Connections</u>	
3 20 1 Check Branch SIF	
4 30 Valve 0 Materials	Ctrl+Shift+M
5 40 Valve 0'3" Sections	Ctrl+Shift+S
6 50 1'0" Loads	Ctrl+Shift+L
7 60 Reducer 0'4"	
8 70 Bend 1'0" Beam Materials	
9 80 1 Beam Sections	
10 75 Location Beam Loads	
11 <u>P</u> umps	
<u> </u>	
Turbines	
Spectrums	
Force spectrums	
Time functions	
Relief valve loading	
Soils	
User Allowables	
Internal Pressure Design: EN 13	480-3 Ctrl+Shift+I
External Pressure Design: EN 13	3480-3 Ctrl+Shift+E
Wind - ASCE/SEI 7-16	
Wind - EN 1991-1-4 (2010)	

Step 3:

The Force spectrum list appears.

Enter a name for the force spectrum and spectrum values versus frequencies table.

*** Caepipe : Force Spectrums (2) - [forcespectrumsample.mod (🛛 🗙												

In addition to inputting the force spectrum directly, it can also be read from a text file. This can be done through List menu: File > Read force spectrum.

The text file should be in the following format:

.

Name (up to 31 characters)

Frequency (Hz) Spectrum value

Frequency (Hz) Spectrum value

Frequency (Hz) Spectrum value

.

The frequencies can be in any order. They will be sorted in ascending order after reading from the file.

Step 4:

.

.

Apply the Force Spectrum Load thus generated at the bend center node 75 after the relief valve in vertical direction (FY) as shown below.

1-0-1	📲 Caepipe : Layout (10) - [forcespectrumsample.mod (c:\tutorials\forcespectrum)] — 🛛 🛛 🛛													
File	Edit	View Opt	ions Load	s Misc V	Vindow He	elp								
#	Node	Туре	DX (ft'in")	DY (ft'in")	DZ (ft'in")	Matl	Sect	Load	Data					
1	Title =								_					
2	10	From							Anchor					
3	20			1'6"		A53	3	L2						
4	30	Valve		0'3"		A53	3	L2						
5	40	Valve	0'3"			A53	3	L2						
6	50		1'0"			A53	3	L1						
7	60	Reducer	0'4"			A53	4	L1						
8	70	Bend	1'0"			A53	4	L1						
9	80			10'0"		A53	4	L1						
10	75	Location							Force sp load					
11														

Force Spectrum Load	?	×
Direction F 💌	Units (Ib)	•
Force RVFS		•
Scale Factor 1		
OK Cancel		

Step 5:

Check "Force Spectrum" for analysis through Layout window > Load cases. Click on OK.

Load cases (5)	×
▼ Sustained (W+P)	🔲 Design (W+PD+TD)
🔲 Empty Weight (W)	🔽 Modal analysis
💌 Expansion (T1)	Force spectrum
Operating (W+P1+T1)	
OK Cancel	All None

Step 6:

Save and Analyze the model. After analysis, CAEPIPE displays Occasional stresses which include the effects of the Force Spectrum load.

1-0-0	📲 Caepipe : B31.1 (2022) Code compliance (Sorted stresses) - [forcespectrumsample.res — 🛛 🛛 🗡													
File	Result	s Vie	w Opti	ons	Window	Help)							
Æ														
	Sustained Expansion Occasional													
#	SLSHSLSLSESASESO1.2SHSONode(psi)(psi)(psi)(psi)(psi)SANode(psi)(psi)1.2SH													
1	20	9669	17100	0.57	10	0	26195	0.00	10	191113	20520	9.31		
2	10	9664	17100	0.57	20	0	26195	0.00	20	148596	20520	7.24		
3	40	3834	17100	0.22	40	0	26195	0.00	40	122523	20520	5.97		
4	50	3209	17100	0.19	50	0	26195	0.00	50	120658	20520	5.88		
5	60	2763	17100	0.16	60	0	26195	0.00	70B	99118	20520	4.83		
6	70A	2544	17100	0.15	70A	0	26195	0.00	75	95035	20520	4.63		
7	75	2313	17100	0.14	70B	0	26195	0.00	70A	85517	20520	4.17		
8	80	2255	17100	0.13	75	0	26195	0.00	60	67037	20520	3.27		
9	70B	2222	17100	0.13	80	0	26195	0.00	80	3562	20520	0.17	_	

Step 7:

Another load case called "Force Spectrum" will be available for which you can study displacements, support loads, support load summary (for sizing supports), etc.

1-0-0	🝽 Caepipe : Displacements: Sustained (W+P) - [forcespectrumsample.res (c:\tutorials\fo — 🛛 🛛 🗡													
File	Result	s View (Options W	indow He	lp									
4	$\underline{\texttt{A}} = \underline{\texttt{A}} = \texttt{$													
#														
	Node X (inch) Y (inch) Z (inch) XX (deg) YY (deg) ZZ (deg)													
1	10	0.000	0.000	0.000	0.0000	0.0000	0.0000							
2	20	0.007	0.000	0.000	0.0000	0.0000	-0.0435							
3	30	0.009	0.000	0.000	0.0000	0.0000	-0.0451							
4	40	0.009	-0.002	0.000	0.0000	0.0000	-0.0466							
5	50	0.009	-0.015	0.000	0.0000	0.0000	-0.0662							
6	60	0.009	-0.019	0.000	0.0000	0.0000	-0.0688							
7	70A	0.009	-0.027	0.000	0.0000	0.0000	-0.0704							
8	70B	0.017	-0.034	0.000	0.0000	0.0000	-0.0734							
9	75	0.011	-0.032	0.000	0.0000	0.0000	-0.0730							
10	80	0.163 -0.034 0.000 0.0000 0.0000 -0.0734												

=== Caepipe : Support load summary for anchor at node 10 - [forcespectrumsample.res ($ \Box$ $ imes$													
File Results View Options	File Results View Options Window Help												
Load combination FX (lb) FY (lb) FZ (lb) MX (ft-lb) MY (ft-lb) MZ (ft-lb)													
Sustained													
Operating1	0	-239	0	0	0	-313							
Sustained+Force spectrum	4501	9517	0	0	0	25128							
Sustained-Force spectrum	-4501	-9994	0	0	0	-25753							
Operating1+Force spectrum	4501	9517	0	0	0	25128							
Operating1-Force spectrum	-4501	-9994	0	0	0	-25753							
Maximum	4501	9517	0	0	0	25128							
Minimum	-4501	-9994	0	0	0	-25753							
Allowables	0	0	0	0	0	0							