Tutorial for Harmonic Analysis using CAEPIPE

The following are the Steps to perform Harmonic Analysis using CAEPIPE.

General

 A harmonic analysis is performed to determine the response of a piping system to sinusoidal loads. Harmonic forces can arise from unbalanced rotating equipment, acoustic vibrations caused by reciprocating equipment, flow impedance, and other sources. These forces can be damaging to a piping system if their frequency is close to the piping system's natural frequency, thereby introducing resonant conditions.

It is feasible that multiple harmonic loads may be applied simultaneously at different locations of a piping system. More complex forms of vibration, such as those caused by the fluid flow, may be considered as superposition of several simple harmonics, each with its own frequency, magnitude, and phase.

• A harmonic analysis uses the results from the modal analysis to obtain a solution. A single damping factor is used for all modes.

First, the maximum response for each harmonic load is obtained separately. Then, the total response for multiple simultaneous harmonic loads is determined by combining the individual responses. The combination method may be specified as the Root Mean Square (RMS) or Absolute Sum. Even in the case of a system with a single harmonic load, the said combination is always carried out, so that the resulting solution becomes an "unsigned" case. For an unsigned case, the actual values for displacements, element forces and moments, etc. computed internally by CAEPIPE prior to such combination can be +ve or -ve for the dynamic event.

Step 1:

Attached is a CAEPIPE model for Harmonic Analysis. For this model, let us assume the following.

- 1. Node 5 is connected to a Tank.
- 2. Node 40 is connected to a Pump Suction Nozzle.

HIH	Caepipe : M	aterials (1) - [harn	nonicanalysis	.mod (c:\	\tutorials	harmo	onicanaly	sis)]					-		×
File	Edit Viev	v Optior	ns Misc	Window	Help											
+)] Q	н	(2			•								
#	Name	Descript	ion			Density (lb/in3)	Nu	Joint factor	Yield (psi)	Tensile (psi)	: #	Temp (F)	E (psi)	Alpha (in/in/F	Allowat) (psi)	ole
1	312	A312 TP	<mark>316 (16</mark> 0	Dr-12Ni-2Mo) AS	0.289	0.3	1.00			1	-325	30.3E+6	8.15E-6	5 20000	
2											2	-200	29.7E+6	8.47E-6	5 20000	_ '
											3	-100	29.0E+6			- 11
											4	70	28.3E+6			- 1
											5	200	27.6E+6			_ 1
											6	300	27.0E+6			- 1
											7	400	26.5E+6			- 1
											8	500	25.8E+6			
											9	600	25.3E+6	9.82E-6	6 17000	
File	Edit	View		is Misc	Wind		Help	-	->							
#	Name	Nom Dia	Sch	OD (inch)	Thk (inch	Cor.) (incl		M.Tol (%)	Ins.D (Ib/ft3		ns.Tl inch)		n.Dens)/ft3)	Lin.T		
1	6	6"	STD	6.6248	0.28		Í	. ,	11	· ·	.559		. ,		, 	
2	8	8"	STD	8.6248	0.322											
3	10	10"	STD	10.75	0.365	_	_									
		·-		1										I		_
				[harmoni	-		-		ls\harm	nonican	alysis	5)]		_		×
File	Edit	View	Option	is Misc	Wind	1 wor	Help									
+	🛨 🗐 🔲 🎼 🔍 🛄 💶 🖚 🔿															
#	Name	T1 (F)	P1 (psi)	Desg.T (F)	Desi (psi)		Spe grav		Add.W Ib/ft)	~ .	'ind bad 1	Win Loa		/ind bad 3	Wind Load 4	
1	<u>_</u> 1	365	145	365	145		1.0									
2	L2	500	464	500	464		1.0									
<u> </u>		1.00			1.2.											

Step 2:

The harmonic load can be imposed as a Force (FX/FY/FZ) at a specified frequency and phase angle. You may be able to get more information on the harmonic loading (mass, rpm, etc.) from the manufacturer of the equipment.

For this Tutorial, the following assumptions are made.

- 1. Frequency of the rotating equipment = 14.5 Hz.
- 2. Force in Global Z Direction = FZ = 9000 lb.

The above parameters are entered for analysis by creating a "Data" type called "Harmonic Load" through Layout window > Misc > Data types... at Node 40. See snap shot below for details.

Harmonic load at node 40	×
Frequency 14.5	(Hz)
Phase	(deg)
FX (lb) FY (lb)	FZ (lb) 9000
OK Cancel	

Step 3:

Define "Percentage of Damping" and "Combination" method for Harmonic analysis through CAEPIPE Layout window > Loads > Harmonic...

Harmonic Analysis $ imes$
Damping 🚺 (%)
Combination C Root Mean Square C Absolute Sum
OK Cancel

Step 4:

Then, include "Harmonic response" for analysis through Layout window > Loads > Load cases.

Step 5:

Save the model and perform the analysis through Layout window > File > Analyze. CAEPIPE will apply these loads to compute the response of the piping system by performing a Harmonic analysis along with other load cases defined in the piping system.

Step 6:

Upon successful analysis, CAEPIPE will now show a "Load case" with name "Harmonic response" under "Support Loads", "Displacements", "Element forces" and "Support load summary" results.

Load cases (5)	×				
☑ Sustained (W+P)	🔲 Design (W+PD+TD)				
Empty Weight (W)	🔽 Modal analysis				
💌 Expansion (T1)	✓ Harmonic response				
🔽 Operating (W+P1+T1)					
OK Cancel	All None				

-0	' Caepi	ipe : Lo	ads on	Anchor	s: Harmo	nic resp	onse -	[harmon	icanalysi	is.res	(c:\tuto	ials		_		×
Fil	e Res	ults \	liew	Options	Windo	w Hel	р									
4	3	+ (ið (2			⇒	\equiv	🔶			Ī	4	
#	Nod	e Ta	a FX	(lb)	FY (lb)	FZ (I	b)	MX (ft-lb)	MY (f	ft-lb)	MZ (ft-	lb)				
1	5		396	• •	16	217	,	62	2591		2870	,				
2	40		533		1493	2		166	3418		7354					
3	125		32		64	48		315	235	•	143					
Ľ			1			1			1							
1-0-	Caepip	e : Disp	laceme	nts: Harm	ionic respo	onse - [h	armoni	canalysis.re	s (c:\tuto	orials∖h	armonic	analy	sis)]			×
File	e Resul	lts Vie	w Op	tions V	Vindow I	Help										
4	3 -	┢)			-		(-	→	1	4	∍ ⊏	>	— A
#				[Displacer	ments (g	(lobal)									
		X (inc		′ (inch)	Z (inch)	XX (c			ZZ (deg	3)						
1	5	0.000		.000	0.000	0.000	-		0.0000							
2	10	2.844		.000	0.000	0.000			0.0812	-11						
3	15A	0.333		.005	0.000	0.008			0.1675	-11						
4	15B	0.845		.010	0.007	0.034			0.0566	- 4						
5	20A	0.053		.009	0.071	0.035			0.2405	- 1						
6 7	20B 45	0.000		.033 .120	0.073	0.074			0.1035 0.0381	- 1						
8	25	0.000		.120	0.237	0.007			0.0381	-						
9	50	0.000		.105	0.158	0.007			0.0381	- 1						
10	30	0.000		.103	0.135	0.007			0.0415	-						
11	35	0.000		.083	0.025	0.000			0.0603	- 1						
12	38	0.000		.001	0.404	0.000			0.0140	- 1						
13	40	0.000		.000	0.407	0.000			0.0000							
	1	0.000		110	0.100	0.045	- <u> </u>	0.01.70	0.0001							
HIH	Caepipe :	Pipe forc	es in loca	al coordina	tes: Harmoni	c response	- [harm	onicanalysis.r	es (c:\tutor	rials\har	monicanal	ysis)]			- 1	- ×
File	Results	View	Options	Window	Help											
8				<u>ið</u> i 6	1			■ ← •						I		
#		lb)	y Sheaı (lb)	r z Shear (lb)	Torsio Moment	<u> </u>	Inpla Momei	ane(ft-lb) nt SIF	Outpla Moment	ne(ft-lb) SIF) Fle: FFi	< Fac FFo		SL+SO (psi)	(psi)	SL+SO
1		217 217	16 16	39600 39600	2870 2870		62 128		259143 216060					105765 90279	25995 25995	4.07 3.47
2		248 248	82 82	17395 17395	2870 2870		128 920		216060 5728					90281 4114	25995 25995	3.47 0.16
3	15A 2	283	176	13490	2870	1.00	920	2.54	5728	2.12	7.95	7.95		5896	25995	0.23
4	15B 3	176 307	283 911	13490 299	22590 22590	1.00	787	2.54	13992 787	2.12	7.95	7.95		14704 12175	25995 25995	0.57
5	20A 4	307 431	911 1659 431	299 1567 1567	22590 22590 2928	1.00	3320 3320 5932	2.54 2.54	4887 4887 24549	2.12 2.12	7.95 7.95	7.95		10815 11643 18384	25995 25995 25995	0.42 0.45 0.71
6	20B 1	1659 1627	431 110	1567 226	2928 2928	1.00	5932	2.54	24549 24549	2.12	7.95	7.95		11821	25995 25995	0.45
7	45 1	1627 1599	110 1042	226 3284	2928 2928	1.00	7239		27228	1.00				13165 13162	25995 25995	0.51
8	25 5	1599 517	1042 883	3284 8919	2928 166	1.39 1.39	-24286 -40390	2.00 2.00	6306 6176	1.00				16800 26199	25995 25995	0.65
	50 15	517 I	883	8919	1166		5385		32400		1			14779	25995	1057

=1= Caepipe : Support load summary for anchor at node 5 - [harmonicanalysis.res (c: $ \Box$ $ imes$										
File Results View Options Window Help										
$\textcircled{\begin{tabular}{ c c c c } \hline @ & @ & @ & @ & @ & @ & @ & & & & & &$										
Load combination	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)				
Sustained	-24	233	-98	-1783	-871	-185				
Operating1	195	799	-106	-3998	4147	-2077				
Sustained+Harmonic	39576	249	120	-1721	258271	2685				
Sustained-Harmonic	-39624	218	-315	-1845	-260014	-3056				
Operating1+Harmonic	39795	814	111	-3936	263289	793				
Operating1-Harmonic	-39406	783	-324	-4060	-254996	-4948				
Maximum	39795	814	120	-1721	263289	2685				
Minimum	-39624	218	-324	-4060	-260014	-4948				
Allowables	0	0	0	0	0	0				
J										

Step 7:

From the review of frequency results of CAEPIPE, it is noted that one of the natural frequencies of this piping system (i.e., frequency for Mode 10 shown in yellow highlight in the snap shot below) is close to the rotating equipment frequency of 14.5 Hz.

-0-1	🍽 Caepipe : Frequencies - [harmonicanalysis.res (c:\tutorials\harmonicanalysi — 🛛 🛛 🛛										
File	File Results View Options Window Help										
4											
#	Frequency	Period		ipation fa	actors		nass/Tot	tal mass			
	(Hz)	(second)	×	Y	Z	×	Y	Z			
1	1.473	0.6788	0.0528	0.5034	-3.3441	0.0001	0.0130	0.5743			
2	2.502	0.3998	-1.4706	-0.6359	-0.1343	0.1111	0.0208	0.0009			
3	3.141	0.3184	-2.4648	0.5853	0.0084	0.3120	0.0176	0.0000			
4	3.702	0.2702	0.2151	3.1984	0.3743	0.0024	0.5254	0.0072			
5	3.763	0.2657	0.1984	1.1702	0.1233	0.0020	0.0703	0.0008			
6	5.048	0.1981	-0.1425	0.3283	0.1984	0.0010	0.0055	0.0020			
7	5.539	0.1805	-0.0228	-0.0144	-0.7486	0.0000	0.0000	0.0288			
8	5.901	0.1695	0.1759	0.0126	0.1174	0.0016	0.0000	0.0007			
9	8.568	0.1167	-1.3319	0.0917	0.0886	0.0911	0.0004	0.0004			
10	14.553	0.0687	-1.0193	-0.0477	-0.0036	0.0534	0.0001	0.0000			
11	16.917	0.0591	0.1139	-0.9348	-0.0311	0.0007	0.0449	0.0000			
12	27.478	0.0364	-0.0830	-0.0110	-0.0420	0.0004	0.0000	0.0001			
13	51.942	0.0193	0.3711	-0.0917	-0.7651	0.0071	0.0004	0.0301			
14					Total	0.5828	0.6985	0.6454			

Due to closeness of Mode 10 frequency to the equipment frequency, it is observed that Mode 10 is excited on the piping system by the harmonic load, thereby creating a resonance. This can be seen graphically by plotting the mode shape corresponding to Mode 10 with frequency of "14.55 Hz" (figure shown on the left below) and the deflected shape for "harmonic response" case (figure shown on the right below). See snap shots for details.

Step 8:

In order to prevent piping failure due to resonance, it is important to suppress relevant modes by changing the stiffness of the piping system either by adding or by moving the existing piping supports. For example, for the layout shown above, a lateral restraint in X direction is added at Node 10 as the displacement in X direction is about 3" for Harmonic Response case prior to adding this X restraint. By adding this new support, the stiffness of the piping system is altered. This, in turn, removed the 10th frequency with "14.55 Hz", thereby ensuring that the natural frequency of the piping system is not close to the operating equipment frequency. See snap shots below.

1-0-1	📲 Caepipe : Frequencies - [harmonicanalysis_trx_10.res (c:\tutorials\harmoni — 🛛 🛛 🛛										
File	File Results View Options Window Help										
Æ											
#	Frequency	Period		ipation fa	actors		nass/Tot	tal mass			
	(Hz)	(second)	×	Y	Z	×	Y	Z			
1	1.474	0.6783	-0.0075	-0.4970	3.3457	0.0000	0.0127	0.5749			
2	2.956	0.3382	-0.9955	0.9922	0.0814	0.0509	0.0506	0.0003			
3	3.581	0.2792	-1.5073	-1.3860	-0.1892	0.1167	0.0987	0.0018			
4	3.729	0.2682	0.0054	3.0516	0.3445	0.0000	0.4782	0.0061			
5	4.705	0.2125	-1.8744	0.4453	0.0945	0.1804	0.0102	0.0005			
6	5.101	0.1961	-0.4923	-0.2136	-0.1835	0.0124	0.0023	0.0017			
7	5.540	0.1805	0.0155	-0.0171	-0.7481	0.0000	0.0000	0.0287			
8	5.904	0.1694	-0.2497	-0.0065	-0.1154	0.0032	0.0000	0.0007			
9	8.585	0.1165	-1.3138	0.0878	0.0881	0.0886	0.0004	0.0004			
10	16.913	0.0591	-0.0654	0.9358	0.0313	0.0002	0.0450	0.0001			
11	27.472	0.0364	-0.1185	-0.0109	-0.0420	0.0007	0.0000	0.0001			
12	51.938	0.0193	0.3657	-0.0902	-0.7605	0.0069	0.0004	0.0297			
13					Total	0.4601	0.6985	0.6450			