Tutorial on Hydrogen Pipeline Analysis as per ASME B31.12 Part PL using CAEPIPE

General

In the search for a sustainable and decarbonized future, hydrogen is emerging as a key energy carrier with tremendous potential. As the demand for hydrogen increases, the need for safe and efficient infrastructure becomes paramount. The American Society of Mechanical Engineers (ASME) recognized this need and developed the ASME B31.12 code to provide guidelines for the design, construction, and operation of hydrogen piping and pipeline systems. This comprehensive code ensures the integrity and safety of hydrogen infrastructure while promoting the growth of the hydrogen industry.

This tutorial provides steps in performing piping stress analysis of both buried and above-ground Hydrogen Pipelines as per ASME B31.12 Part PL using CAEPIPE.

Tutorial

Snap shot shown below is a sample model for Hydrogen Pipelines as per ASME B31.12 Part PL where a portion of the layout is buried in soil (see the snapshot with RED highlight below) and the remaining portion of the layout is above-ground.

Step 1:

Select the piping code for analysis as "B31.12 PL" and the "Design Factor F" through Layout Window > Options > Analysis > Code as shown below and press the button "OK". See para. PL-3.7.1 (b) for details on Design Factor F in ASME B31.12 Part PL.

Step 2:

Next define materials required for piping system through Layout window > Misc > Materials by obtaining their properties from the manufacturer or through the piping standard.

In the Material List window shown on the screen, double click on an empty row to input a new material. Enter the material properties as shown below and press the button "Ok".

Material # 1		×
Material name	A53	
Description	A53 GRADE B	
Туре	CS : Carbon steel	
Density	0.283 (lb/in3)	
Nu	0.3	
Joint factor	1.00	
ОК	Cancel <u>Properties</u> Library	

Step 3:

Click on the Properties button and input the temperature related properties as shown below.

Material Properties X													
#	Temp (F)	E (psi)	Alpha (in/in/F)	Yield (psi)	^								
1	-20	29.9E+6	5.77E-6	35000									
2	70	29.5E+6	6.03E-6	35000									
3	100	29.3E+6	6.13E-6	35000									
4	125	29.2E+6	6.27E-6	35000									
5	150	29.1E+6	6.36E-6	35000									
6	175	28.9E+6	6.41E-6	35000									
7	200	28.8E+6	6.45E-6	35000									
8	225	28.7E+6	6.48E-6	35000									
9	250	28.6E+6	6.50E-6	35000									
10	300	28.3E+6	6.84E-6	35000									
11	350	28.0E+6	6.81E-6	35000									
12	400	27.7E+6	6.79E-6	35000									
13	450	27.5E+6	6.98E-6	35000									
14					¥								
	<u>0</u> K	<u>C</u>	ancel										

Step 4:

Define soils properties using the command Layout window > Misc > Soils.

Soil # 1		×
Soil name	S1	 Cohesive Cohesionless
Density	62.4	(Ib/ft3)
Strength	100	(psi)
Delta		(deg)
Ks		
Ground level	5'0''	(ft'in'')
🔲 Value ente	ered is Depth	of Soil above pipe centerline
Include In maximum	sulation thicki soil loads	ness for computing
OK	Cancel	

Two types of soils can be defined - Cohesive and Cohesionless.

Cohesive soil is hard to break up when dry, and exhibits significant **cohesion** when submerged. **Cohesive soils** include clayey silt, sandy clay, silty clay, clay and organic clay.

Cohesionless soil is any free-running type of **soil**, such as sand or gravel, whose strength depends on friction between particles.

Density is the density of the soil.

Strength

Soil strength. This field needs to be input only for Cohesive soil. For cohesive soil, Strength is the un-drained cohesive strength (Cs).

Ground Level

Ground level for a soil is the height of the soil surface from the global origin (height could be positive or negative). It is NOT a measure of the depth of the pipe's centerline.

In the figure below, the height of the soil surface for Soil 1 is 3 feet from the global origin. Pipe node 10 [model origin] is defined at (0,-5, 0). So, at Node 10, the pipe is buried 8' [= (3' - (-5')] deep into the soil. Define similarly for the other soil.

The pipe centerline is calculated by CAEPIPE from the given data.

Depth of Soil above Pipe's Centerline

When the option "Value entered is Depth of Soil above pipe centerline" is turned ON in Soil input, then CAEPIPE will compute maximum soil loads for the sections buried using the Depth entered. This option will be helpful for

modeling pipes that are running up or down a hill with the same depth of soil filled above pipe's centerline as shown in the figure given below.

Warning:

Assign Soil only to those elements that are really buried in soil when the option "Value entered is Depth of Soil above pipe centerline" is turned ON.

Step 5:

Tie the soils defined above with pipe sections through Layout window > Misc > Sections or Ctrl+Shft+S (to list Sections). Double click on the required section property. You will see the field Soil in the bottom right corner. Pick the soil name from the drop-down combo box.

)=()-(Caepipe	: Pipe Sect	ions (4	4) - [Hy	/drogen	_Pipeline	s_ASME_	_B3112_PL.m	od (D:\KP	Developm	. —		×
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>O</u> pt	tions	<u>M</u> isc	<u>W</u> indow	/ <u>H</u> elp							
#			đ	Q	Н		(➡					
#	Name	Nom Dia	Sch	OD (inch)	Thk (inch)	Cor.Al (inch)	M.Tol (%)	Ins.Dens (Ib/ft3)	lns.Thk (inch)	Lin.Dens (lb/ft3)	Lin.Thk (inch)	Soil	
1	1	6"	40	6.625	0.28								
2	2	16"	40	16	0.5								
3	2B	16"	40	16	0.5							S1	
4	1B	6"	40	6.625	0.28							S1	
5													

If a part of a piping system uses a certain pipe section with some portion of it buried and the balance not buried, then two separate sections have to be defined, with one of them without soil and the other with soil as shown above for Sections 2 and 2B.

Step 6:

Assign the appropriate section for each buried element on the Layout window with the correct soil around it.

Step 7:

Review the stress layout by highlighting the buried sections of the model in graphics. If your model contains sections that are above-ground and buried, then you can selectively see only the buried sections of piping in CAEPIPE graphics by highlighting the section that is tied to the soil. Use the Highlight feature under the Section List window and place highlight on the buried piping section (see Highlight under List window>View menu, or press Ctrl+H). The Graphics window should highlight only that portion of the model that is using that specific section/soil. See the portion shown in green in the figure below.

Step 8:

It is at the bends, elbows, and branch connections that the highest stresses are found in buried piping subjected to thermal expansion of the pipe. Hence, buried piping elements at the junction of bends, elbows and branch connections are to be refined in the stress layout.

This can be performed through Layout window > Edit > Refine Nodal Mesh > Buried Piping. Please see the section titled "Buried Piping" in CAEPIPE User's Manual for details on "Nodal mesh generation".

1-0-	Caepip	be:Layout (89) - [FRP	_ISO_14692_3.m	nod (D:\KP	Develo	opment	\Docum	ents\Tutorials	\29_	FRP — 🗆 🗙	
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>O</u> ptions <u>L</u> oa	ads <u>M</u> isc <u>W</u> i	ndow <u>H</u>	elp						
	2	Edit <u>t</u> ype	Ctrl+T	e 🏔							
		Edit data	Ctrl+D								
#	Π	<u>C</u> opy	Ctrl+C	Z (ft'in")	Mati	Sect	Load	Data	^		
24	T	Paste	Ctrl+V		FP	2B	1				
25		Find and Replace	Ctrl+H					Integral tee			
26					FP	2B	1				
27		Insert	Ctrl+Ins		FP	2B	1				
28		Delete	Ctrl+X		FP	2B	1				
29		<u>S</u> plit			FP	2B	1				
30		Multiple Split						Integral tee			
31		<u>S</u> lope			FP	2B	1				
32		<u>R</u> otate			FP	2B	1				
33	1	<u>C</u> hange			FP	2B	1				Refine Nodal Mesh for X
34	1	Com <u>b</u> ine	Ctrl+B					Flange			
35	Ī	<u>R</u> enumber nodes			FP	2B	1				
36		Refine <u>N</u> odal Mesh	Ctrl+R		FP	2B	1				Buried Piping
37		Refine <u>B</u> ranches						Flange			
38		<u>G</u> enerate	Ctrl+G		FP	2B	1				C Dupamic Analusis
39		<u>R</u> egenerate			FP	2B	1				 Dynamic Analysis
40		Duplicate last row	Ctrl+Enter		FP	2B	1				March Martelline Francisco (U.S. 200
41		Undo	Ctrl+7		FP	2B	1				Mass Modeling Frequency (Hz) 33
42		Redo	Ctrl+V		FP	2B	1				
43	350	<u>n</u> eao	-2.0007		FP	2B	1				OK Cancel
44	360		-0.9375		FP	2B	1				

Step 9:

After completing the stress layout, save the model and analyze through Layout window > File > Analyze. See the file "Hydrogen_Pipeline_ASME_B3112_PL.mod" available with this tutorial for further details.

Step 10:

Upon successful analysis, CAEPIPE shows the code compliance as per ASME B31.12 Part PL under Sorted stresses as shown below.

Step 11:

Code Compliance results of CAEPIPE display the stresses on an element-by-element basis. For the tutorial problem, a snapshot of Code Compliance results is shown below, in which the first element from node 320 to node 330 is highlighted. You will observe that the 2nd Column titled "Press. Allow" output the following for each element.

1. First row outputs the "Design Pressure" input for that element.

2. Second row outputs the "Calculated Allowable Pressure" for that element as per the equation provided in ASME B31.12 PL. Please note, when the "Design Pressure" input for an element exceeds the "Allowable Pressure" computed for that element, then CAEPIPE will change the display color of Design Pressure to RED.

-04	•I• Caepipe : B31.12 PL (2019) Code Compliance - [Hydrogen_Pipelines_ASME_B3112_PLres (D:\KPDevelopme — 🔲 🗙													
<u>F</u> ile	Result	s <u>V</u> iew	Option	ıs <u>W</u> indow	<u>H</u> elp									
4	3 -			6	\	\	⇒							
		Press.	Unrest	rained (PL-	2.6.5 a,b)	Unrestr	ained (PL	-2.6.7)	Restrai	ned (PL-2	.6.3 a,b)	^		
#	Node	Allow. (psi)	SL (psi)	0.75ST (psi)	SL 0.75ST	SE (psi)	SA (psi)	SE SA	Seq (psi)	0.9ST (psi)	Seq 0.9ST			
30	320 330	75.0 1575							15400 15928	31500 31500	0.49 0.51			
31	330 340	75.0 1575							15225 16147	31500 31500	0.48 0.51			
32	340 350	75.0 1575							15347 16120	31500 31500	0.49 0.51			
33	350 360	75.0 1575							15320 15892	31500 31500	0.49 0.50			
34	370A 370B	75.0 1575							15261 15906	31500 31500	0.48 0.50			
35	380 390	75.0 1575	572 539	26250 26250	0.02 0.02	2350 3158	43649 43682	0.05 0.07						
36	390 400	75.0 1575	539 449	26250 26250	0.02 0.02	3158 2692	43683 43774	0.07 0.06						
37	410A 410B	75.0 1575	449 532	26250 26250	0.02 0.02	6974 9433	43774 43689	0.16 0.22						
38	420 430	75.0 1575	532 1046	26250 26250	0.02 0.04	3625 249	43689 43165	0.08 0.01						
39	430 440	75.0 1575	1044 446	26250 26250	0.04 0.02	249 877	43167 43777	0.01 0.02						
40	440 450	75.0 1575	446 577	26250 26250	0.02 0.02	877 737	43777 43643	0.02 0.02						
41	450 460	75.0 1575	577 546	26250 26250	0.02 0.02	737 737	43643 43676	0.02 0.02						
42	460 470	75.0 1575	546 553	26250 26250	0.02	737 661	43676 43668	0.02				J		

CAEPIPE will show the deflections and support loads for each load case under Deflections and Support loads results as shown below.

-0-	Caepipe	e : Displ	acem	ents: C	Operati	ing (W+P	1+T1) -	[Hydro	ogen_	Pipeli	ines_A	SME_	B3112	2_PL.re	es (D:\H	(PDe	velop	o	—		×
<u>F</u> ile	<u>R</u> esult	s <u>V</u> ie	w <u>O</u>	ptions	s <u>W</u> in	ndow <u>H</u>	elp														
4	3 🛛				tô) 🔍		4			\equiv	+				, <		\Rightarrow		= A	
#					Dis	splacem	ents (g	lobal))				^								
	Node	X(inc	h) [Y (inc	:h) Z	Z (inch)	(d	eg) (YY (c	leg)	ZZ (d	deg)									
1	10	0.000		0.000	0	0.000	0.000	0	0.000	0	0.00	00									
2	20	0.059		-0.038	3 -	-0.061	-0.02	75	-0.04	03	-0.05	513									
3	30	0.077		-0.050) -	-0.073	-0.02	33	-0.03	65	-0.06	511									
4	40A	0.077		-0.050) -	-0.073	-0.02	33	-0.03	65	-0.06	11	- 11								
5	40B	0.059		-0.019	3 -	-0.062	0.004	6	0.076	2	-0.12	264									
6	50	0.059		-0.019	3 -	-0.062	0.004	6	0.076	2	-0.12	264									
7	60	0.043		0.055	-	-0.021	0.007	1	0.067	9	-0.14	155									
8	70	0.035		0.099	-	-0.003	0.008	3	0.062	4	-0.15	541									
9	80A	0.035		0.099	-	-0.003	0.008	3	0.062	4	-0.15	641									
10	80B	-0.012	2	0.143	0	0.007	0.011	1	0.032	1	-0.01	02									
11	90	-0.012	2	0.143	0	0.007	0.011	1	0.032	1	-0.01	02									
12	100	-0.003	3	0.101	-	-0.001	0.002	0	0.024	5	0.00	78									
13	110	0.000		0.059	-	-0.002	0.000	2	0.016	8	-0.00	104									
14	120	-0.000)	0.051	-	-0.002	0.000	3	0.015	4	-0.00	103									
15	130	-0.000)	0.044	-	-0.002	0.000	2	0.014	7	-0.00	101									
16	140	0.000		-0.015	5 -	-0.001	-0.00	05	0.009	4	0.000	01									
17	150	0.000		-0.073	3 -	-0.001	0.000	1	0.004	1	0.00	00									
18	160	0.000		-0.131	1 -	-0.001	0.000	0	-0.00	12	0.000	00									
19	170	0.000		-0.189	3 -	-0.001	-0.00	D2	-0.00	65	0.000	00									
20	180	0.000		-0.248	3 -	-0.001	0.001	2	-0.01	18	0.000	02									
21	190	0.000		-0.306	6 -	-0.003	-0.00	23	-0.01	71	-0.00	102									
22	200	0.000		-0.314	4 -	-0.002	-0.00	37	-0.01	78	-0.00	104									
23	210	0.000		-0.322	2 -	-0.001	-0.00	24	-0.01	97	-0.00	104	¥								
Lafled	Casalina	. Lood		hachar		ration (M	. D1 . T1	<u>х гн</u>	udrog	on Di	nolino	- 454	4F D2	112 0	l roc (l		Dow	-1			\sim
File	Caepipe	LOad	s on A	Anchor	s: Oper	raung (w	+P1+11)- [H]	yarog	en_Pi	penne	S_ASIV	/IE_B3	112_P	Lies (I		Deve	31			~
Lue	<u>N</u> esuii		<u>v</u> <u>v</u>	puons	s <u>vv</u> in		eip			.	_	.									
4	3 📕				đ	<u>1</u> @					E	•		•	j.	, <					
#	Node	Tag	FX (I	b)	FY (Ib	o) FZ	(lb)	MX (f	t-lb)	MY (ft-lb)	MZ (ft-lb)								
1	10		1821		-954	153	864	<mark>-118</mark> 7	6	-196	11	-990	3								
2	570		9630		-94	798	}	-406		-546	92	170									
3	630		410		-1178	214	15	-3206	;	6391		3580)								
4	690		-514		-1067	207	'5	-2624	1	-605	6	-324	0								
5	750		-478		173	205	52	422		-603	6	525									

Element forces results for each load case (such as Sustained, Operating, etc.) show the Element forces and moments in local coordinate system along with Stress Intensification Factors (SIFs) computed as per analysis code ASME B31.12 Part PL for each element as given below.

-0-	Caepipe	e : Pipe for	ces in local	coordinate	es: Operatir	ng (W+P1+	T1) - [Hyd	rogen_Pipe	elines_ASME	_B3112_PL	.re			×	<
<u>F</u> ile	<u>R</u> esult	ts <u>V</u> iew	<u>O</u> ptions	<u>W</u> indow	<u>H</u> elp										
4	3 🗖			<u>ê</u> i Q		\ -	⇒∣≣		➡ t	G →					
#	Node	Axial	y Shear	z Shear	Torsia	n(ft-lb)	Inplan	e(ft-lb)	Outpla	ne(ft-lb)	Flex	x. Fac	tors	Sopr	^
		(lb)	(lb)	(lb)	Moment	SIF	Moment	SIF	Moment	SIF	FFi	FFo	FFt	(psi)	
1	10 20	-15364 -17023	954 954	-1821 -1821	9903 9903		11876 1933	1.00	19611 628	1.00				3045 1027	
2	20 30	-16992 -17310	954 954	-5655 -5655	9903 9903		1933 25		628 -10681					1028 1599	
3	40A 40B	-17273 -10609	-10609 17773	-954 -954	9903 -1883		10681 -3284	2.60 2.60	25 -11810	2.17 2.17	8.19 8.19	8.19 8.19		3564 3517	
4	50 60	-10649 -10649	5178 5178	3441 3865	-1883 -1883		-11810 -25619		3284 13025					1589 3740	
5	60 70	-10693 -10693	-13100 -13100	-3338 -3125	-1883 -1883		-25619 -8152		13025 8716					3738 1545	
6	80A 80B	-10705 -24017	-24017 10705	-3488 -2988	-1883 2104		-8152 18471	2.60 2.60	8716 -4456	2.17 2.17	8.19 8.19	8.19 8.19		3698 5856	
7	90 100	-24284 -24284	3292 3292	-65 1100	2104 2104		18471 -5606		-4456 -672					1910 193	
8	100	-24662	-726	-379	2104		-5606		-672					177	~
<														>	.:

For the design of supports, Support Load Summary of CAEPIPE will show the loads on each support for all load cases selected for analysis as given below.

Caepipe : Suppor	t load sumr	nary for anc	hor at node	10 - [Hydro	ogen_Pipelir	nes_ASME_B	3112_PL.res (D:\KPD		\times
<u>File R</u> esults <u>V</u> iew	<u>Options</u>	<u>W</u> indow	<u>H</u> elp						
4 + =		<u>†</u>		⇐ ➡			>		
Load combination	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)			
Sustained	-25	-2	-2451	-49	99	-57			
Operating1	1821	-954	15364	-11876	-19611	-9903			
Design	2527	-1228	22074	-15140	-26577	-12569			
Maximum	2527	-2	22074	-49	99	-57			
Minimum	-25	-1228	-2451	-15140	-26577	-12569			
Allowables	0	0	0	0	0	0			

CAEPIPE displays an option "Soil Restraints" in addition to other analysis results as shown below.

Caepipe : Soil Restraints - [Hydrogen_Pipelines_ASME_B3112_PL:res (D:\KPDevelopment\Documents\Tutorials\31_Hydroge													×		
<u>File R</u> esults <u>V</u> iew <u>O</u> ptions <u>W</u> indow <u>H</u> elp															
4															
					A	xial	Trans	sverse	Vertica	al Down	Verti	cal Up	^		
#	From	То	Name	Туре	Stiffness (lb/inch)	Max Load (lb)									
1	20	30	S1	Cohesive	1022.5	654.4	128999	82559	0.0	0.0	0.0	0.0			
2	50	60	S1	Cohesive	1363.4	872.6	443038	283544	458773	293615	296791	189946			
3	60	70	S1	Cohesive	681.7	436.3	221519	141772	229387	146807	148396	94973			
4	90	100	S1	Cohesive	3739.7	2393.4	1.215E+6	777737	1.258E+6	805360	814072	521006			
5	100	110	S1	Cohesive	3739.7	2393.4	1.215E+6	777737	1.258E+6	805360	814072	521006			
6	110	120	S1	Cohesive	681.7	436.3	221519	141772	229387	146807	148396	94973			
7	120	130	S1	Cohesive	681.7	436.3	221519	141772	229387	146807	148396	94973			
8	130	140	S1	Cohesive	5169.6	3308.5	1.680E+6	1075105	1.740E+6	1113289	1.125E+6	720212			
9	140	150	S1	Cohesive	5169.6	3308.5	1.680E+6	1075105	1.740E+6	1113289	1.125E+6	720212			
	1		-			-		1							